33
ee392N - Spring 2012 Stanford University Intelligent Energy Systems © Dimitry Gorinevsky 1 Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012

Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

1

Lecture 2 Intelligent Energy Systems:

Monitoring Basics

Dimitry Gorinevsky

Seminar Course 392N ● Spring2012

Page 2: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Traditional Grid

• Worlds Largest Machine! – 3300 utilities – 15,000 generators, 14,000

TX substations – 211,000 mi of HV lines

(>230kV)

• A variety of interacting information decision and control systems

ee392N - Spring 2012 Stanford University

2 Intelligent Energy Systems © Dimitry Gorinevsky

Page 4: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Outline

1. Monitoring Applications 2. Statistical Process Control - SPC 3. Multivariate SPC – MSPC 4. Principal Component Analysis - PCA

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

4

Page 5: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Business Logic

Internet Applications

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

5

Database

Presentation Layer

Backend

Computer

Tablet Smart phone

Internet

CRM and ad analytics Portfolio optimization Decision support Fraud detection

Page 6: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Business Logic

Intelligent Energy Applications

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

6

Database

Presentation Layer

Computer

Tablet Smart phone

Internet Communications

Energy Application

Application Logic (Intelligent Functions)

Page 7: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

7

Control Functions

• Control function in a systems perspective – Closed loop

Page 8: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

8

Monitoring & Decision Support

• Monitoring functions are open-loop - Data presentation to a user

Page 9: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Power Generation Time Scales

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

9

Power Supply Scheduling

• Power generation and distribution • Energy supply side

Time (s) 1/10 10 1000 1 100 http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html

Anomalies & Sustainment

Page 10: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Power Demand Time Scales • Power consumption

– DR, Homes, Buildings, Plants

• Demand side

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

10

Demand Response

Home Thermostat

Building HVAC

Enterprise Demand Scheduling

Time (s) 100 1,000 10,000

Anomalies & Sustainment

Page 11: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

11

Monitoring Goals

• Situational awareness – Anomaly detection – State estimation

• System health management – Fault isolation – Condition based maintenances

Page 12: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

12

Condition Based Maintenance

• DOD CBM+ Initiative

Page 13: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Outline

1. Monitoring Applications 2. Statistical Process Control - SPC 3. Multivariate SPC – MSPC 4. Principal Component Analysis - PCA

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

13

Page 14: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

14

Anomaly Detection - SPC

• SPC - Statistical Process Control – Introduced for monitoring of manufacturing processes – Warning for off-target quality

• SPC vs. EPC – Engineering Process Control = feedback control

• Main SPC method – Shewhart Chart (Control Chart)

• Other SPC methods – EWMA, CuSum, Western Electric Rules

Page 15: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Plant/System Data

Exceedance Monitoring

• Currently used in most monitoring systems • Example: grid frequency deviation from 60Hz

– Empirical exceedance threshold

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

15

Monitoring Function: Exceedance

Detected Anomalies

Page 16: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

16

SPC: Shewhart Control Chart • W.Shewhart, Bell Labs, 1924 • Statistical Process Control (SPC) • UCL = µ + 3·σ • LCL = µ - 3·σ

Walter Shewhart (1891-1967)

sample 3 6 9 12 12 15

mean µ

qual

ity v

aria

ble

Lower Control Limit

Upper Control Limit

Exceedance / Out of control

Page 17: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

17

Shewhart Chart, cont’d • Quality variable assumed randomly

changing around a steady state • Detection: y(t) > UCL = µ + 3·σ • For a normal distribution, false alarm

probability is 0.27%

P(z > 3) = 1-Φ(3) = 0.1350·10-2 P(z < 3) = Φ(-3) = 0.1350·10-2

σµ−

=)()( tytz

UCL LCL

Page 18: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

18

SPC: Use Examples

• SPC in manufacturing • Fault monitoring for PHM/CBM • Sensor integrity monitoring

– Fault tolerance and redundancy management

Sensor

Reference - +

Fault

|v| < 3σ Normal yes

no

Page 19: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Outline

1. Monitoring Applications 2. Statistical Process Control - SPC 3. Multivariate SPC – MSPC 4. Principal Component Analysis – PCA

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

19

Page 20: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

20

Multivariate SPC • Univariate process: y(t)

• Two univariate processes

( ))(1)(

)1,(1 222

cccFczP

Φ−+−Φ=−=>2

202 ~ χ

σµ

=yz

Chi-squared CDF

Page 21: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

21

MSPC Explanation

• MSPC=Multivariate Statistical Process Control • Scatter plot for correlated channels

Time series data Keep the data values, ignore the time stamp

y1(t)

y2(t)

y1

y2

Page 22: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

22

Multivariate SPC

• Two correlated univariate processes y1(t), y2(t)

=

2

1

yy

y

=

2

1

µµ

µ

cov(y) = P

multivariate outlier: out of control

Page 23: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

23

Whitened Variables

• Uncorrelated linear combinations z(t) = L·[y(t)-µ]

LTL= P-1 cov(z) = I

• Declare fault (anomaly) if

( ) ( ) 22

12 ~ χµµ −−= − yPyz T

( ) )2;(1 222 cFczP −=>

( ) ( ) 21 cyPy T >−− − µµ

CDF for Chi-squared with 2 DOF

Page 24: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Plant / System Data

Multivariate Monitoring

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

25

Monitoring data processing:

Advisory Info: • Anomaly

Historical Data Set

Models: Performance, Noise

xPxT

yxT 12 ˆ

ˆ−=

−= µ)(ty

P̂,µ̂

22 cT >

Page 25: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

26

Hotelling's T2

• Empirical parameter estimates

( )

( )µµµ

µ

−≈−−=

≈=

=

=

ytytyN

P

yEtyN

TN

t

N

t

cov)ˆ)()(ˆ)((1ˆ

)(1ˆ

1

1

• Hotelling's T 2 two-sample statistics is

• T 2 distribution differs from since are

considered as random variables, y(t) ~ N(µ,P)

Harold Hotelling (1895-1973)

2χ µ̂,P̂

( ) ( )µµ ˆ)1(ˆˆ)1( 11

2 −+−+⋅= −+ NyPNyT T

NN

Page 26: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Multivariate SPC with T2

• The anomaly detection decision is • Threshold c is defined by the false positive/false

negative tradeoff based on the distribution

where F is the Fisher-Snedecor’s F-distribution p is the dimension of the data vector y N is the size of the training data set ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

27

22 cT >

pNpFpN

pNT −−−

,2

)()1(~

Page 27: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

Outline

1. Monitoring Applications 2. Statistical Process Control - SPC 3. Multivariate SPC – MSPC 4. Principal Component Analysis – PCA

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

28

Page 28: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

PCA

• PCA = Principal Component Analysis

• What if empirical covariance P=XXT/N is not invertible? Cannot compute xTP-1x – This happens in most real cases

• SVD of the data and covariance matrix X = U⋅ S⋅ VT = ∑k uk skvk

T

XXT= U⋅ S2⋅ UT = ∑k uk sk2uk

T

VTV = I ee392N - Spring 2012

Stanford University Intelligent Energy Systems

© Dimitry Gorinevsky 29

Scores

Loadings

[ ]µµµ ˆ)(ˆ)2(ˆ)1( −−−= NyyyX

Page 29: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

PCA Structure

• Singular vectors (principal components) U = [UR U0]

UR - Range Space; nonzero singular values, sk > 0 U0 - Null Space; zero singular values, sk=0

>>[U,S,W]=svd(X*X’) % 2ms for 100x100

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

30

• Singular values sk

nonzero

‘zero’

k

Page 30: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

PCA, T2, and Q statistics

• T2 statistics is used in Range Space of P is Range Space projection of x

• Range Space: covariance is invertible

• Must also monitor Null Space projection • Q statistics: Q = xTU0U0 x

– a.k.a. SPE (squared prediction error)

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

31

2RxxQ −=

xUUx RTRR =

RRTR xPxT 12 −=

Page 31: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

PCA, T2, and Q Summary

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

32

Q T2

principal component #2

principal component #1

Page 32: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

PCA Prediction Model

• Null space defines linear dependency between monitored variables

U0x = v ≈ 0 m linear equations • Can be interpreted as a dependence between two

subsets of variables

• SPE yields model prediction error:

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

33

=

zy

x vbzy +=m

k

2bzy −

Page 33: Lecture 2 Intelligent Energy Systems: Monitoring Basics · Lecture 2 Intelligent Energy Systems: Monitoring Basics Dimitry Gorinevsky Seminar Course 392N Spring2012 . Traditional

End of Lecture 2

ee392N - Spring 2012 Stanford University

Intelligent Energy Systems © Dimitry Gorinevsky

34