184
Indeterminate Forms L’Hˆ opital’s Rule Examples Lecture 19 Section 10.5 Indeterminate Form (0/0) Section 10.6 Other Indeterminate Forms (/), (0 ·∞), ··· Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 1 / 15

Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples

Lecture 19Section 10.5 Indeterminate Form (0/0)

Section 10.6 Other Indeterminate Forms (∞/∞), (0 · ∞),· · ·

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 1 / 15

Page 2: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 3: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 4: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 5: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 6: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 7: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 8: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 9: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 10: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 11: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 12: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 13: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 14: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 15: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 16: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 17: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

What is the Indeterminate Form (0/0)?Example

limx→2

x − 2

x2 − 4= lim

x→2

x − 2

(x − 2)(x + 2)= lim

x→2

1

x + 2=

1

2 + 2=

1

4

(L’Hopital’s Rule) = limx→2

f ′(x)

g ′(x)= lim

x→2

1

2x=

1

2 · 2=

1

4(Amazing!!)

As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but thequotient

f (x)

g(x)=

x − 2

x2 − 4→ 0

0.

We can not determine a value for “00” without some extra work!

If limx→a

f (x) = limx→a

g(x) = 0, then limx→a

f (x)

g(x)might equal any

number or even fail to exist!

Condensed: The “form” 00 is indeterminate.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 2 / 15

Page 18: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 19: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 20: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 21: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 22: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 23: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 24: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 25: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 26: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 27: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 28: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 29: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Indeterminate FormsIndeterminate Forms

The most basic indeterminate form is 00 .

It is indeterminate because, if limx→a

f (x) = limx→a

g(x) = 0, then

limx→a

f (x)

g(x)might equal any number or even fail to exist!

Specific cases: limx→0

sin x

x, lim

x→∞

e−x

sin(1/x), · · · .

The forms ∞∞ and 0 · ∞ are also indeterminate.

They are actually equivalent to 00 , since any specific case of

one can be recast as a specific case of another.

For example,

limx→0+

x ln x = limx→0+

ln x

1/x= lim

x→0+

x

1/ ln x

0 · ∞ ∞∞

0

0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 3 / 15

Page 30: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples (0/0) (∞/∞) and Others

Quiz

Quiz

1. Give the limit for

{1− n

n + 2

}∞n=1

(a) 0, (b) 1, (c) 2.

2. Give the limit for

{1 +

n

n + 2

}∞n=1

(a) 0, (b) 1, (c) 2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 4 / 15

Page 31: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 32: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 33: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 34: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 35: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 36: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 37: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 38: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 39: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 40: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 41: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 42: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 43: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 44: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 45: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 46: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 47: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 48: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 49: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 50: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

L’Hopital’s Rule

L’Hopital’s Rule

Suppose that limx→?

f (x)

g(x)is a

0

0or∞∞

. Then limx→?

f (x)

g(x)= lim

x→?

f ′(x)

g ′(x)

Examples

limx→2

x − 2

x2 − 4

(0

0

)= lim

x→2

1

2x=

1

2 · 2=

1

4

limx→0

sin x

x

(0

0

)= lim

x→0

cos x

1=

1

1= 1

limx→0

x − sin x

x sin x

(0

0

)= lim

x→0

1− cos x

sin x + x cos x

(0

0

)still

= limx→0

sin x

cos x + cos x − x sin x=

0

2= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 5 / 15

Page 51: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 52: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 53: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 54: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 55: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 56: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 57: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 58: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 59: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 60: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

What is Wrong with This?

What is wrong with the following argument?

limx→0+

x2

sin x

(0

0

)= lim

x→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Remark

L’Hopital’s rule does not apply in cases where the numerator or thedenominator has a finite non-zero limit!!!For example,

limx→0+

2x

cos x=

0

1= 0,

but a blind application of L’Hopital’s rule leads incorrectly to

limx→0+

2x

cos x= lim

x→0+

2

− sin x=

2

−0= −∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 6 / 15

Page 61: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples Rule

Quiz

Quiz

3. Give the limit for{

n1n

}∞n=1

(a) 1, (b) 2, (c) e.

4. Give the limit for

{(1 +

1

n

)n}∞n=1

(a) 1, (b) 2, (c) e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 7 / 15

Page 62: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 63: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 64: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 65: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 66: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 67: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 68: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 69: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 70: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 71: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 72: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 73: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 74: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 75: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 76: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 77: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 78: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 79: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 80: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 81: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form 00

Examples

limx→0

sin x − x

x3

(0

0

)= lim

x→0

cos x − 1

3x2

(0

0

)still!

= limx→0

− sin x

6x

(0

0

)still! = lim

x→0

− cos x

6=−1

6

limx→0

2 cos x − 2 + x2

x4

(0

0

)= lim

x→0

−2 sin x + 2x

4x3

(0

0

)still!

= limx→0

−2 cos x + 2

12x2

(0

0

)still!

= limx→0

2 sin x

24x

(0

0

)still! = lim

x→0

2 cos x

24=

2

24=

1

12

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 8 / 15

Page 82: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 83: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 84: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 85: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 86: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 87: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 88: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 89: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 90: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 91: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 92: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 93: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 94: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 95: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞∞

Examples

limx→∞

x2

ex

(∞∞

)= lim

x→∞

2x

ex

(∞∞

)still!

= limx→∞

2

ex=

2

∞= 0

limx→∞

ln(3x + 2x)

x

(∞∞

)= lim

x→∞

3x ln 2 + 2x ln 2

3x + 2x

= limx→∞

ln 3 + (2/3)x ln 2

1 + (2/3)x=

ln 3 + 0

1 + 0= ln 3

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 9 / 15

Page 96: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 97: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 98: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 99: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 100: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 101: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 102: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 103: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 104: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 105: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 106: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 107: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 108: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 109: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 110: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Proof.

limx→∞

ln x

(∞∞

)= lim

x→∞

1/x

αxα−1= lim

x→∞

1

αxα−1= 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 111: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Remark

ln x tends to infinity slower than any positive power of x .

Any positive power of ln x tends to infinity slower than x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 112: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ln x

limx→0+

xα ln x = 0, α > 0.

Proof.

limx→0+

xα ln x (0 · ∞) = limx→0+

ln x

x−α

(∞∞

)= lim

x→0+

1/x

−αx−α−1= lim

x→0+

−α= 0

limx→∞

ln x

xα= 0, α > 0.

Remark

ln x tends to infinity slower than any positive power of x .

Any positive power of ln x tends to infinity slower than x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 10 / 15

Page 113: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 114: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 115: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 116: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 117: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 118: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 119: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 120: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 121: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 122: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 123: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 124: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Limit Properties of ex

limx→∞

xn

ex= 0.

Proof.

limx→∞

xn

ex

(∞∞

)= lim

x→∞

nxn−1

ex

(∞∞

)= lim

x→∞

n(n − 1)xn−2

ex

(∞∞

)= · · ·

= limx→∞

n!

ex=

n!

∞= 0

Remark

ex tends to infinity fasterr than any positive power of x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 11 / 15

Page 125: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 126: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 127: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 128: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 129: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 130: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 131: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 132: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 133: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 134: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 135: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 136: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 137: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 138: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 139: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 140: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 141: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 142: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Exponential Forms: 1∞, 00, and ∞0

Since ln xp = p ln x , the log can be used to convert each ofexponential forms 1∞, 00, and ∞0 to 0 · ∞:

ln(1∞) = ∞ · 0, ln(00) = ∞ · 0, ln(∞0) = 0 · ∞.

If limx→?

ln f (x) = L, then limx→?

f (x) = eL.

Example

limx→0+

xx(00

)= e0 = 1

limx→0+

ln(xx)(ln 00

)= lim

x→0+x ln x (0 · ∞)

= limx→0+

ln x

1/x

(∞∞

)= lim

x→0+

1/x

−1/x2= lim

x→0+(−x) = 0

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 12 / 15

Page 143: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 144: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 145: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 146: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 147: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 148: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 149: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 150: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 151: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 152: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 153: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 154: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 155: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 156: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 157: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 158: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 159: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 160: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 161: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 162: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 163: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

More Exponential Forms: 1∞, 00, and ∞0

Examples

limx→∞

x1/x(∞0

)= e0 = 1

limx→0+

(1 + x)1/x (1∞) = e1 = e

limx→∞

ln x1/x(ln∞0

)= lim

x→∞

ln x

x

(∞∞

)= lim

x→∞

1/x

1= 0

limx→0+

ln(1 + x)1/x (ln 1∞) = limx→0+

ln(1 + x)

x

(0

0

)= lim

x→0+

1

1 + x= 1

Set x = n, we have the familiar result: as n →∞, n1n → 1.

Set x = 1/n, we have: as n →∞,(1 + 1

n

)n → e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 13 / 15

Page 164: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 165: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 166: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 167: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 168: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 169: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 170: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 171: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 172: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 173: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 174: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 175: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 176: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 177: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 178: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 179: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 180: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 181: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 182: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 183: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Form ∞−∞The form ∞−∞ can be handled by converting it to a quotient.

limx→(π/2)−

(tan x − sec x) (∞−∞) = limx→(π/2)−

sin x − 1

cos x

(0

0

)= lim

x→(π/2)−

cos x

− sin x=

0

−1= 0

limx→∞

(ex+e−x − ex

)(∞−∞) = lim

x→∞

ee−x − 1

e−x

(0

0

)= lim

x→∞

ee−x(−e−x)

−e−x= lim

x→∞ee−x

= e0 = 1

tan x − sec x =sin x

cos x− 1

cos x=

sin x − 1

cos x

ex+e−x − ex = ex(ee−x − 1

)=

ee−x − 1

e−x

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 14 / 15

Page 184: Lecture 19 - Section 10.5 Indeterminate Form (0/0) Section

Indeterminate Forms L’Hopital’s Rule Examples 00∞∞ ln x and ex Exponential Forms ∞−∞

Outline

Indeterminate FormsIndeterminate Form (0/0)Other Indeterminate Forms

L’Hopital’s RuleL’Hopital’s Rule

More ExamplesForm 0

0Form ∞

∞Limit Properties of ln x and ex

Exponential Forms: 1∞, 00, and ∞0

Form ∞−∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 19 March 25, 2008 15 / 15