87
Chapter 34 rtebrate Evolution and Diversit

Lecture 17 - Vertebrates

Embed Size (px)

DESCRIPTION

VERTEBRATES

Citation preview

Page 1: Lecture 17 - Vertebrates

Chapter 34Vertebrate Evolution and Diversity

Page 2: Lecture 17 - Vertebrates
Page 3: Lecture 17 - Vertebrates

Four anatomical features that characterize the phylum Chordata

Page 4: Lecture 17 - Vertebrates

1.  Embryos all have a common skeletal structure called a notochord.  The notochord is a flexible rod located between the digestive tube and nerve chord.                                    a.  Provides skeletal support.b.  In most vertebrates, it’s replaced by a jointed skeleton.c.  Remains of the notochord exist as disks between the vertebrae. 2.  Dorsal, hollow nerve cord                                    a.  Develops into the brain and spinal cord of the adult.

Page 5: Lecture 17 - Vertebrates

3.  Pharyngeal slits                                     Water enters through the mouth and passes out through the slits in the pharynx, without going through the digestive system.

i.  Slits function as suspension-feeding devices in many invertebrate chordates ii.  Slits have been modified in more evolved vertebrates for:                        - Gas exchange                        - Hearing                        - Jaw support 4.  Postanal tail             Provides propulsion for swimming

Page 6: Lecture 17 - Vertebrates

B.  Invertebrate chordates provide clues to the origin of vertebrates                        1.  Subphylum Urochordata                                    Adult is sessile and feeds via pharyngeal slits. 

Page 7: Lecture 17 - Vertebrates

Subphylum Urochordata:  a tunicate

Page 8: Lecture 17 - Vertebrates

2.  Subphylum Cephalochordata                                    a.  Adult form shows chordate features.

b.  Adults feed and swim. 

Page 9: Lecture 17 - Vertebrates

Subphylum Cephalochordata:  the lancelet Branchiostoma

Page 10: Lecture 17 - Vertebrates
Page 11: Lecture 17 - Vertebrates
Page 12: Lecture 17 - Vertebrates
Page 13: Lecture 17 - Vertebrates

II.  Introduction to the vertebrates

A.  Neural crest, enhanced cephalization, vertebral column, and a closed circulatory system characterize the subphylum Vertebrata                        1.  Neural crest                                    a.  Embryonic feature that allows for many unique vertebrate characteristics, e.g. bones and cartilage are formed from the neural crest cells throughout the body.b.  Forms along the dorsal side of the embryo. Figure 34.6 (p. 683) – The neural crest, embryonic source of many unique vertebrate characters.

Page 14: Lecture 17 - Vertebrates
Page 15: Lecture 17 - Vertebrates

2.  Skeletal elements, such as the cranium (braincase), allow for the big evolutionary feature of vertebrates, cephalization. This gives us the term “Craniates” 3.  Vertebral column is the main support for the body axis.  It allows for large size, fast movement, and protection of the nerve cord. 4.  The closed circulatory system pumps oxygenated blood to cells and allows rapid metabolism, rapid movement to search for food, escape predators.

Page 16: Lecture 17 - Vertebrates

B.  Overview of vertebrate diversity                        Figure 34.7 (p. 684) – Phylogeny of the major groups of extant vertebrates. **Note the three super groups: Gnathostomes, Tetrapods, Amniotes**

Page 17: Lecture 17 - Vertebrates
Page 18: Lecture 17 - Vertebrates

III.  Jawless vertebrates            A.  These are the most primitive vertebrates.             B.  Groups include hagfish (no skeleton, no notochord in adult); lamprey (early version of a vertebral column).             Figure 34.8 (p. 685) – A hagfish.             Figure 34.9 (p. 685) – A sea lamprey.

Page 19: Lecture 17 - Vertebrates
Page 20: Lecture 17 - Vertebrates
Page 21: Lecture 17 - Vertebrates
Page 22: Lecture 17 - Vertebrates

Lamprey on trout

Page 23: Lecture 17 - Vertebrates
Page 24: Lecture 17 - Vertebrates

IV.  Fishes and amphibians            A.  Vertebrate jaws evolved from skeletal supports of pharyngeal slits

1.  Animals that replaced jawless vertebrates, and are Gnathostomes.            2.  Members of group have two pairs of fins. 3.  Jaws and fins allowed fish to become active in pursuit of food and in biting off chunks of flesh.

4.  Jaws evolved from modifications of skeletal elements of anterior pharyngeal gill slits. 

Page 25: Lecture 17 - Vertebrates

Hypothesis for the evolution of vertebrate jaws

Page 26: Lecture 17 - Vertebrates

 5.  Fishes were prevalent about 360 to 400 million years ago- the “Age of Fishes”   6.  Two groups are alive today:                                    a.  Class Chondricthyes:  Sharks and rays have cartilaginous skeletons Figure 34.11 (p. 688) – Cartilaginous fishes.

Page 27: Lecture 17 - Vertebrates
Page 28: Lecture 17 - Vertebrates

Osteichthyes:  Extant classes of bony fishes

Page 29: Lecture 17 - Vertebrates
Page 30: Lecture 17 - Vertebrates

Lake trout

Whitefish

Sturgeon

WalleyeGreat LakesSome of the natives

Page 31: Lecture 17 - Vertebrates

Great LakesSome Exotics

Rainbow trout/brown trout

Alewife

Smelt

Ruffe

Page 32: Lecture 17 - Vertebrates

Great LakesSome successors

Largemouth bass

Yellow perch

Bluegill

Page 33: Lecture 17 - Vertebrates
Page 34: Lecture 17 - Vertebrates

D.  Tetrapods evolved from specialized fishes that inhabited shallow water Figure 34.15 (p. 690) – The origin of tetrapods.

1.  The first tetrapods to spend much time on land were amphibians.        Figure 34.17 (p. 691) – Amphibian orders.

Order Urodela – Salamanders, retain tails as adults

Order Anura – Frogs, lack tails as adults

Order Apoda – Caecilians, lack legs

Page 35: Lecture 17 - Vertebrates

2.  There were earlier tetrapods.  These were specialized fish that

• occupied shallow ponds, • breathed air by gulping, and • developed lobed walking fins for moving from one pond to another.

 3.  Why go on dry land? There were no other competitors for plants and insects that serve as food.

Page 36: Lecture 17 - Vertebrates
Page 37: Lecture 17 - Vertebrates
Page 38: Lecture 17 - Vertebrates
Page 39: Lecture 17 - Vertebrates
Page 40: Lecture 17 - Vertebrates

           

4.  Amphibians need to return to water to lay eggs and for development of larvae.

 

Figure 34.18 (p. 692) – The “dual life” of a frog.

Page 41: Lecture 17 - Vertebrates
Page 42: Lecture 17 - Vertebrates
Page 43: Lecture 17 - Vertebrates

V.  Amniotes (includes reptiles, mammals, and birds)            A.  Evolution of the amniotic egg expanded the success of vertebrates on land Figure 34.19 (p. 693) – The amniotic egg.                        

Page 44: Lecture 17 - Vertebrates
Page 45: Lecture 17 - Vertebrates

1.  Amniotic eggs allowed vertebrates to sever the link with water and live their whole lives on land.

 

2.  Specialized membranes, called extra-embryonic membranes that function in gas exchange, waste storage, and transfer of nutrients.

a.  Membranes develop from tissues derived from the embryo.

b.  One membrane, the amnion, gives the name for the amniotic egg.

Page 46: Lecture 17 - Vertebrates
Page 47: Lecture 17 - Vertebrates
Page 48: Lecture 17 - Vertebrates

B.  Reptilian heritage is evident in all amniotes                        1.  Scales of keratin, waterproof skin - prevent dehydration.- Reptiles cannot breathe through skin, so all gas exchange occurs via lungs. 2.  Shelled amniotic eggs require internal fertilization.  Shell forms around fertilized egg in the reproductive tract. 3.  Reptiles don’t use metabolism to regulate body temperature; they are ectotherms.  Ectotherms absorb external heat (i.e. sunlight) Reptiles are able to survive on about 10% of calories required by mammals. 4.  Oldest reptiles are from the late Carboniferous (about 300 million years ago) dinosaurs and pterosaurs.

Page 49: Lecture 17 - Vertebrates

5.  Modern reptiles include 6,500 species that are in four groups:                           a.  Testudines – Turtles     - Some species returned to water; all lay eggs on land. b.  Sphenodontia – Tuataras                                     c.  Squamata – Lizards, snakes      - Lizards are the most numerous group.     - Snakes are descendants of lizards and have vestigial pelvic and limb bones.  d.  Crocodilia – Crocodiles, alligators      - This is the group most closely related to dinosaurs  Figure 34.24 (p. 697) – Extant reptiles.

Page 50: Lecture 17 - Vertebrates
Page 51: Lecture 17 - Vertebrates
Page 52: Lecture 17 - Vertebrates
Page 53: Lecture 17 - Vertebrates

 C.  Birds began as feathered reptiles, evolved to fly:                        1.  Honeycombed skeletons are light and strong good for flight. Figure 34.25 (p. 698) – Form fits function:  the avian wing and feather.

2.  Toothless for weight reduction. 3.  Endothermic = use metabolic energy to generate heat.       - Feathers provide insulation.     - Efficient circulatory system supports high rate of metabolism necessary for flying. 4.  Acute vision Large brains that allow complex behavior. 5.  Wings - Flight enhanced the ability to hunt and scavenge, escape predators, and move with changing seasons.

Page 54: Lecture 17 - Vertebrates
Page 55: Lecture 17 - Vertebrates

6.  Theropods were the closest dinosaur relative of birds.  Example:  Velociraptor Archeopteryx is an example of a Mesozoic bird that shows reptilian features.

 

 Figure 34.27 (p. 699) – Archaeopteryx, a Jurassic bird-reptile.

Page 56: Lecture 17 - Vertebrates
Page 57: Lecture 17 - Vertebrates
Page 58: Lecture 17 - Vertebrates
Page 59: Lecture 17 - Vertebrates
Page 60: Lecture 17 - Vertebrates

7.  Modern birds include about 8,600 species. 

Some are flightless = ratites.  Figure 34.29 (p. 701) – A small sample of birds.

Page 61: Lecture 17 - Vertebrates
Page 62: Lecture 17 - Vertebrates

D.  Mammals diversified extensively in the wake of the Cretaceous extinctions                        1.  Radiation of mammals occurred during two events:                                    a.  Extinction of dinosaurs                                    b.  Fragmentation of continents 2.  There are about 4,500 species of extant mammals

Page 63: Lecture 17 - Vertebrates

 3.  Features of mammals:                                    a.  Defined by Linnaeus as having mammary glands, which produce milk rich in fats, sugars, proteins, minerals, and vitamins.

b.  Hair and subcutaneous fat help retain metabolic heat.

c.  Most embryos develop in a uterus.  In placental mammals, the lining of the uterus and extraembryonic membranes form the placenta.

d.  Large brains and long period of parental care. Ability to learn.

e.  Differentiation of teeth for efficient eating.

Page 64: Lecture 17 - Vertebrates
Page 65: Lecture 17 - Vertebrates

4.  The earliest mammals evolved from reptiles about 220 million years ago.  Therapsids gave rise to mammals. Early example is the Morganucodon in previous figure. 5.  Major groups of mammals:                                    a.  Monotremes – lay eggs and produce milk, but have no nipples.- Platypus, echidna            

b.  Marsupials – born early in embryonic development; climb to mother’s pouch and attach to a nipple.- Opossum, kangaroo 

Figure 34.31 (p. 703) – Australian monotremes and marsupials.  

Page 66: Lecture 17 - Vertebrates
Page 67: Lecture 17 - Vertebrates
Page 68: Lecture 17 - Vertebrates

                                    c.  Eutherians – long pregnancy with embryonic attachment to mother in uterus via placenta.                                                - Human, Wolf

Figure 34.32 (p. 704) – Evolutionary convergence of marsupial and eutherian (placental) mammals.

   Table 34.1 (p. 705) – Major Orders of Mammals

Page 69: Lecture 17 - Vertebrates
Page 70: Lecture 17 - Vertebrates
Page 71: Lecture 17 - Vertebrates
Page 72: Lecture 17 - Vertebrates
Page 73: Lecture 17 - Vertebrates
Page 74: Lecture 17 - Vertebrates
Page 75: Lecture 17 - Vertebrates

VI.  Primates and the evolution of Homo sapiens            A.  Primate evolution provides context for understanding human origins                        1.  Hands and feet adapted for grasping. Possess opposable thumb.                        2.  Large brains allow complex social behavior.

 Figure 34.35 (p. 708) – A phylogenetic tree of primates.

Page 76: Lecture 17 - Vertebrates
Page 77: Lecture 17 - Vertebrates
Page 78: Lecture 17 - Vertebrates
Page 79: Lecture 17 - Vertebrates
Page 80: Lecture 17 - Vertebrates
Page 81: Lecture 17 - Vertebrates

B.  Hominid lineage diverged from other primates about 7 million years ago. Humans compared to other hominids:                                    a.  Brain size – large size allows development of language and social behavior. b.  Jaw shape – shortened to give a flatter face.

 

 

Page 82: Lecture 17 - Vertebrates
Page 83: Lecture 17 - Vertebrates

c.  Bipedalism = walking on two legs.

        - Frees hands to do other things.

        - Eyes set higher; can see farther.

 

Page 84: Lecture 17 - Vertebrates
Page 85: Lecture 17 - Vertebrates
Page 86: Lecture 17 - Vertebrates

d.  Females smaller than males

 

e.  Extended parental care changes family structure and enhances learning and social behavior.

Page 87: Lecture 17 - Vertebrates