15
Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-1 CMOS Analog Circuit Design © P.E. Allen - 2010 LECTURE 160 – CURRENT MIRRORS AND SIMPLE REFERENCES LECTURE ORGANIZATION Outline • MOSFET current mirrors • Improved current mirrors • Voltage references with power supply independence • Current references with power supply independence • Temperature behavior of voltage and current references CMOS Analog Circuit Design, 2 nd Edition Reference Pages 134-153 Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-2 CMOS Analog Circuit Design © P.E. Allen - 2010 MOSFET CURRENT MIRRORS What is a Current Mirror? A current mirror replicates the input current of a current sink or current source as an output current. The output current may be identical to the input current or can be a scaled version of it. 060528-01 V DD Current Mirror i IN V DD i OUT = Ki IN V DD Current Mirror I IN V DD I OUT = KI IN i in Ki out i OUT i IN The above current mirrors are referenced with respect to ground. Current mirrors can also be referenced with respect to V DD and current sink inputs and outputs.

LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Embed Size (px)

Citation preview

Page 1: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-1

CMOS Analog Circuit Design © P.E. Allen - 2010

LECTURE 160 – CURRENT MIRRORS AND SIMPLEREFERENCES

LECTURE ORGANIZATIONOutline• MOSFET current mirrors• Improved current mirrors• Voltage references with power supply independence• Current references with power supply independence• Temperature behavior of voltage and current referencesCMOS Analog Circuit Design, 2nd Edition ReferencePages 134-153

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-2

CMOS Analog Circuit Design © P.E. Allen - 2010

MOSFET CURRENT MIRRORSWhat is a Current Mirror?A current mirror replicates the input current of a current sink or current source as anoutput current. The output current may be identical to the input current or can be ascaled version of it.

060528-01

VDD

CurrentMirror

iIN

VDD

iOUT = KiIN

VDD

CurrentMirror

IIN

VDD

IOUT = KIINiin Kiout

iOUTiIN

The above current mirrors are referenced with respect to ground. Current mirrors canalso be referenced with respect to VDD and current sink inputs and outputs.

Page 2: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-3

CMOS Analog Circuit Design © P.E. Allen - 2010

Characterization of Current MirrorsA current mirror is basically nothing more than a current amplifier. The idealcharacteristics of a current amplifier are:

• Output current linearly related to the input current, iout = Aiiin• Input resistance is zero• Output resistance is infinity

Also, the characteristic VMIN applies not only to the output but also the input.• VMIN(in) is the range of vin over which the input resistance is not small• VMIN(out) is the range of vout over which the output resistance is not large

Graphically:

Therefore, Rout, Rin, VMIN(out), VMIN(in), and Ai will characterize the current mirror.

CurrentMirror

+

-vin

iin+

-vout

iout

vin

iin

VMIN�(in)

Slope= 1/Rin

iin vout

iout

VMIN�(out)

Slope = 1/Rout

iout

1Ai

Fig. 300-01Input Characteristics Transfer Characteristics Output Characteristics

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-4

CMOS Analog Circuit Design © P.E. Allen - 2010

Simple MOS Current MirrorCircuit:

Assume that vDS2 > vGS - VT2, theniOiI =

L1W2W1L2

VGS-VT2VGS-VT1

2 1 + vDS21 + vDS1

K2’K1’

If the transistors are matched, then K1’ = K2’ and VT1 = VT2 to give,iOiI =

L1W2W1L2

1 + vDS21 + vDS1

If vDS1 = vDS2, theniOiI =

L1W2W1L2

Therefore the sources of error are:1.) vDS1 vDS2

2.) M1 and M2 are not matched.

M1 M2

iI iO

+

-

vDS1

+

-

vDS2

Fig. 300-02

+-vGS-

Page 3: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-5

CMOS Analog Circuit Design © P.E. Allen - 2010

Influence of the Channel Modulation Parameter, If the transistors are matched and the W/L ratios are equal, then

iOiI =

1 + vDS21 + vDS1

if the channel modulation parameter is the same for both transistors (L1 = L2).

Ratio error (%) versus drain voltage difference:

Note that one could use this effect tomeasure .

Measure VDS1,VDS2, iI and iO andsolve the above equation for the channelmodulation parameter, . 4.0

8.0

5.0

6.0

7.0

0.0

3.0

2.0

1.0

0.0 5.0 vDS2 - vDS1 (volts)

λ = 0.01

1.0 2.0

λ = 0.015

λ = 0.02

Ratio Error vDS2 - vDS1 (volts)

v DS2

v DS1

1 11

100

+ +−

⎡ ⎣⎢⎤ ⎦⎥×

λ λ%

Rat

io E

rror

vDS1 = 2.0 volt

Fig. 300-033.0 4.0

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-6

CMOS Analog Circuit Design © P.E. Allen - 2010

Illustration of the Offset Voltage Error Influence

Assume that VT1 = 0.7V and K’W/L = 110μA/V2.

8.0

16.0

10.0

12.0

14.0

0.0

6.0

4.0

2.0

0.0 10

ΔVT (mV)

1.0 2.0

i O i i

100

⎡ ⎣⎢⎤ ⎦⎥×

%R

atio

Err

or1

iI = 1μA

3.0 4.0 5.0 6.0 7.0 8.0 9.0

iI = 3μA

iI = 5μA

iI = 10μA

iI = 100μA

Fig. 300-4

Key: Make the part of VGS causing the current to flow, VON, more significant than VT.

Page 4: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-7

CMOS Analog Circuit Design © P.E. Allen - 2010

Influence of Error in Aspect Ratio of the TransistorsExample 160-1 - Aspect Ratio Errors in Current MirrorsA layout is shown for a one-to-four current amplifier. Assume that the lengths areidentical (L1 = L2) and find the ratio error if W1 = 5 ± 0.1 μm. The actual widths of the twotransistors are

W 1 = 5 ± 0.1 μm and W2 = 20 ± 0.1 μm

SolutionWe note thatthe toleranceis not multi-plied by thenominal gainfactor of 4.The ratio ofW 2 to W1 and consequently the gain of the current amplifier is

iOiI =

W 2W 1

= 20 ± 0.15 ± 0.1 = 4

1 ± (0.1/20)1 ± (0.1/5) 4 1 ±

0.120 1 -

±0.15 4 1 ±

0.120 -

±0.420 = 4 - (±0.03)

where we have assumed that the variations would both have the same sign (correlated). Itis seen that this ratio error is 0.75% of the desired current ratio or gain.

iO

M1 M2

+

-

+

-

+

-

VDS1VDS2

iI

VGS����������

M1M2iO iI

GND

Fig. 300-5

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-8

CMOS Analog Circuit Design © P.E. Allen - 2010

Influence of Error in Aspect Ratio of the Transistors-ContinuedExample 160-2 - Reduction of the Aspect Ratio Errors in Current MirrorsUse the layout technique illustrated below and calculate the ratio error of a currentamplifier having the specifications of the previous example.SolutionsThe actual widths of M1 and M2 are

W 1 = 5 ± 0.1 μm and W2 = 4(5 ± 0.1) μm

The ratio of W2 to W1 and consequently the current gain is given below and is for al

practical purposes independent of layout error.

iOiI =

4(5 ± 0.1)5 ± 0.1 = 4

��������

��������

��������

����

����M1M2bM2a M2dM2c iO

M1 M2

iI

iI

GND

GND

iO

Fig. 300-6

Page 5: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-9

CMOS Analog Circuit Design © P.E. Allen - 2010

Summary of the Simple MOS Current Mirror/Amplifier• Minimum input voltage is VMIN(in) = VT+VON

Okay, but could be reduced to VON.Principle:

M1M2

VTiI iO

VT+VON+-

+

-VON

M1 M2VT

Fig. 300-7

iI iO

VT+VON

+

-

+

-

VON

Ib

IbIb

VDD

Ib

M3 M4

M5 M6 M7

Will deal with later in low voltage op amps.• Minimum output voltage is VMIN(out) = VON

• Output resistance is Rout = 1ID

• Input resistance is Rin 1

gm

• Current gain accuracy is poor because vDS1 vDS2

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-10

CMOS Analog Circuit Design © P.E. Allen - 2010

IMPROVED CURRENT MIRRORSLarge Output Swing Cascode Current Mirror

• Rout gm2rds2rds1

• Rin = ? vin = rds5(iin-gm5vgs5)+vs5 = rds5(iin +gm5vs5)+vs5 = rds5iin+(1+gm5rds5)vs5

But, vs5 = rds3(iin - gm3vin)

vin = rds5iin + (1+gm5rds5)rds3iin - gm3rds3(1+gm5rds5)vin

Rin = viniin =

rds5 + rds3 + rds3gm5rds5gm3rds3(1+gm5rds5)

1gm3

• VMIN(out) = 2VON

• VMIN(in) = VT + VON

• Current gain is excellent because vDS1 = vDS3.

060528-02

M2

M1M3

1/4

M4

VDD

IIN IOUT

M5

iin

1/1

1/1

1/1

1/1

gm5vgs5rds5

gm3vgs3 rds3

+

-

vs5

D5=G3

D3=S5

S3=G5

+

-

viniin

= gm3vin

VDD VDD

ioutR

Page 6: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-11

CMOS Analog Circuit Design © P.E. Allen - 2010

Self-Biased Cascode Current Mirror

• Rin = ?

vin = iinR + rds3(iin-gm3vgs3)+ rds1(iin-gm1vgs1)

But,vgs1 = vin-iinR

andvgs3 = vin-rds1(iin-gm1vgs1)

= vin-rds1iin+gm1rds1(vin-iinR)vin = iinR+rds3iin-gm3rds3[vin-rds1iin+gm1rds1(vin-iinR)]+rds1[iin-gm1(vin+iinR)]vin[1+gm3rds3+gm1rds1gm3rds3+gm1rds1]

= iin[R+rds1+rds3+gm3rds3rds1+ gm1rds1gm3rds3R]

Rin =

R + rds1 + rds3 + gm3rds3rds1 + gm1rds1gm3rds3R1 + gm3rds3 + gm1rds1gm3rds3 + gm1rds1

1

gm1 + R

• Rout gm4rds4rds2

• VMIN(in) = VT + 2VON •VMIN(out) = 2VON • Current gain matching is excellent

VDD VDD

I1 I2iin iout

R

M1 M2

M3 M4

gm3vgs3

rds3

R

gm1vgs1 rds1

+

-

vin

+

-

v2v1

+

-

+

-

vin

Small-signal model to calculate Rin.Self-biased, cascode current mirrorFig. 310-03

iin

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-12

CMOS Analog Circuit Design © P.E. Allen - 2010

MOS Regulated Cascode Current Mirror

IBiasIO

M3

M2

M1

ii

M4

FIG. 310-11

VDD

io

VDD

II

VDD

• Rout gm2rds3

• Rin 1

gm4

• VMIN(out) = VT+2VON (Can be reduced to 2VON)

• VMIN(in) = VT+VON (Can be reduced to VON)• Current gain matching - good as long as vDS4 = vDS2

Page 7: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-13

CMOS Analog Circuit Design © P.E. Allen - 2010

Summary of MOS Current Mirrors

CurrentMirror

Accuracy OutputResistance

InputResistance

MinimumOutputVoltage

MinimumInput

VoltageSimple Poor rds 1

gm

VON VT+VON

Wide OutputSwing

Cascode

Excellent gmrds21

gm

2VON VT+VON

Self-biasedCascode

Excellent gmrds2 R + 1

gm

2VON VT+2VON

RegulatedCascode

Good-Excellent

gm2rds31

gm

VT+2VON(Can be2VON)

VT+VON(Can be

VON)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-14

CMOS Analog Circuit Design © P.E. Allen - 2010

VOLTAGE REFERENCES WITH POWER SUPPLY INDEPENDENCEPower Supply IndependenceHow do you characterize power supply independence?Use the concept of:

SVREF

VDD =

VREF/VREFVDD/VDD

= VDDVREF

VREFVDD

Application of sensitivity to determining power supply dependence:

VREFVREF

= SVREF

VDD

VDDVDD

Thus, the fractional change in the reference voltage is equal to the sensitivity times thefractional change in the power supply voltage.For example, if the sensitivity is 1, then a 10% change in VDD will cause a 10% change inVREF.

Ideally, we want SVREF

VDD to be zero for power supply independence.

Page 8: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-15

CMOS Analog Circuit Design © P.E. Allen - 2010

MOSFET-Resistance Voltage References

vout

VDD

+

-

R

VREF

VDD

+

-

R

VREF

R1

R2

Fig. 370-03

VREF = VGS = VT +

2(VDD-VREF)R

or

VREF = VT - 1R +

2(VDD-VT)R +

1( R)2

SVREF

VDD =

11 + 2 (VDD-VT)R

VDDVREF

Assume that VDD=5V, W/L =100 and R=100k ,

Thus, VREF 0.7875V and SVREF

VDD = 0.0653

This circuit allows VREF to belarger. If the current in R1 (andR2) is small compared to thecurrent flowing through thetransistor, then

VREF R1 + R2

R2 VGS

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-16

CMOS Analog Circuit Design © P.E. Allen - 2010

Bipolar-Resistance Voltage References

vout

VCC

+

-

R

VREF

VCC

+

-

R

VREF

R1

R2

Fig. 370-04

VREF = VEB = kTq ln

IIs

and I = VCC VEB

R VCCR

give VREF kTq ln

VCCRIs

SVREFVCC =

1ln[VCC/(RIs)] =

1ln(I/Is)

If VCC = 5V, R = 4.3k and Is = 1fA,then VREF = 0.719V.

Also, SVREF

VCC = 0.0362

If the current in R1 (and R2)is small compared to thecurrent flowing through thetransistor, then

VREF R1 + R2

R1 VEB

Can use diodes in place of the BJTs.

Page 9: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-17

CMOS Analog Circuit Design © P.E. Allen - 2010

CURRENT REFERENCES WITH POWER SUPPLY INDEPENDENCEPower Supply IndependenceAgain, we want

SIREF

VDD =

IREF/IREFVDD/VDD

= VDDIREF

IREFVDD

to approach zero.

Therefore, as SIREF

VDD approaches zero, the change in IREF as a function of a change in VDD

approaches zero.

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-18

CMOS Analog Circuit Design © P.E. Allen - 2010

Gate-Source Referenced Current ReferenceThe circuit below uses both positive and negative feedback to accomplish a currentreference that is reasonably independent of power supply.Circuit:

i

v

IQ

VQ

RI2 =

WL

I1 = (VGS1 - VT)2

M2

+

-

M1

I5

M8

VGS1

M3M4

R

I6

M5

M6

I1 I2

Startup

VDD

VGS1M7

Fig. 370-06

Desiredoperatingpoint

Undesiredoperatingpoint

0V

K'N2RB

Principle:

If M3 = M4, then I1 I2. However, the M1-R loop gives VGS1=VT1 + 2I1

KN’(W1/L1)

Solving these two equations gives I2 = VGS1

R = VT1

R + 1R

2I1KN’(W1/L1)

The output current, Iout=I1=I2 can be solved as Iout= VT1

R + 1

1R2 + 1R

2VT1

1R +1

( 1R)2

Page 10: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-19

CMOS Analog Circuit Design © P.E. Allen - 2010

Simulation Results for the Gate-Source Referenced Current Reference

The current ID2 appears to be okay, why isID1 increasing?Apparently, the channel modulation on thecurrent mirror M3-M4 is large.At VDD = 5V, VSD3 = 2.83V and VSD4 =1.09V which gives ID3 = 1.067ID4

107μANeed to cascode the upper current mirror.SPICE Input File:

Simple, Bootstrap Current ReferenceVDD 1 0 DC 5.0VSS 9 0 DC 0.0M1 5 7 9 9 N W=20U L=1UM2 3 5 7 9 N W=20U L=1UM3 5 3 1 1 P W=25U L=1UM4 3 3 1 1 P W=25U L=1UM5 9 3 1 1 P W=25U L=1UR 7 9 10KILOHMM8 6 6 9 9 N W=1U L=1UM7 6 6 5 9 N W=20U L=1U

RB 1 6 100KILOHM.OP.DC VDD 0 5 0.1.MODEL N NMOS VTO=0.7 KP=110UGAMMA=0.4 +PHI=0.7 LAMBDA=0.04.MODEL P PMOS VTO=-0.7 KP=50UGAMMA=0.57 +PHI=0.8 LAMBDA=0.05.PRINT DC ID(M1) ID(M2) ID(M5).PROBE.END

0 1 2 3 4 5VDD

120μA

100μA

80μA

60μA

40μA

20μA

0

ID1

ID2

Fig. 370-07

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-20

CMOS Analog Circuit Design © P.E. Allen - 2010

Cascoded Gate-Source Referenced Current Reference

SPICE Input File:

Cascode, Bootstrap Current ReferenceVDD 1 0 DC 5.0VSS 9 0 DC 0.0M1 5 7 9 9 N W=20U L=1UM2 4 5 7 9 N W=20U L=1UM3 2 3 1 1 P W=25U L=1UM4 8 3 1 1 P W=25U L=1UM3C 5 4 2 1 P W=25U L=1UMC4 3 4 8 1 P W=25U L=1URON 3 4 4KILOHMM5 9 3 1 1 P W=25U L=1UR 7 9 10KILOHMM8 6 6 9 9 N W=1U L=1U

M7 6 6 5 9 N W=20U L=1URB 1 6 100KILOHM.OP.DC VDD 0 5 0.1.MODEL N NMOS VTO=0.7 KP=110UGAMMA=0.4 PHI=0.7 LAMBDA=0.04.MODEL P PMOS VTO=-0.7 KP=50UGAMMA=0.57 PHI=0.8 LAMBDA=0.05.PRINT DC ID(M1) ID(M2) ID(M5).PROBE.END

0 1 2 3 4 5VDD

120μA

100μA

80μA

60μA

40μA

20μA

0

ID1

ID2

Fig. 370-

M2

+

-

M1

I5

M8

VGS1

M3 M4

R

M5

I1 I2

Startup

VDD

M7

0V

RB

M3C MC4

MC5

RON

Page 11: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-21

CMOS Analog Circuit Design © P.E. Allen - 2010

Base-Emitter Referenced Circuit

M2

+

-

+

-

M1

I5

M7

-

VEB1

VR

M3 M4

R

M5

I1

I2

Startup

Q1

VDD

070621-01

i2

i1

Desiredoperating

point

Undesiredoperating

point

i2=Vtln(i1/Is)/R

i2=i1M6

Iout = I2 = VEB1

R

BJT can be a MOSFET in weak inversion.

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-22

CMOS Analog Circuit Design © P.E. Allen - 2010

Low Voltage Gate-Source Referenced MOS Current ReferenceThe previous gate-source referenced circuits required at least 2 volts across the powersupply before operating.A low-voltage gate-source referenced circuit:

VSS

M3 M4

VDD

R

M1 M2

VT

VTI1

I2

VT+VON

VON

VR

VT+VON

VON

Fig. 4.5-8A

Without the batteries, VT, the minimum power supply is VT+2VON+VR.

With the batteries, VT, the minimum power supply is 2VON+VR 0.5V

Page 12: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-23

CMOS Analog Circuit Design © P.E. Allen - 2010

Summary of Power-Supply Independent References• Reasonably good, simple voltage and current references are possible• Best power supply sensitivity is approximately 0.01

(10% change in power supply causes a 0.1% change in reference)

Type of ReferenceS

VREF

VPP or S

IREF

VPP

Voltage division 1Simple Current Reference 1MOSFET-R <1BJT-R <<1Gate-source Referenced <<1Base-emitter Referenced <<1

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-24

CMOS Analog Circuit Design © P.E. Allen - 2010

TEMPERATURE BEHAVIOR OF VOLTAGE AND CURRENT REFERENCESCharacterization of Temperature DependenceThe objective is to minimize the fractional temperature coefficient defined as,

TCF = 1

VREF

VREF

T = 1T S

VREF

T parts per million per °C or ppm/°C

Temperature dependence of PN junctions:

i IsexpvVt

Is = KT3exp-VGO

Vt

1Is

IsT =

(ln Is)T =

3T +

VGOTVt

VGOTVt

dvBEdT

VBE - VGOT = -2mV/°C at room temperature

(VGO = 1.205 V at room temperature and is called the bandgap voltage)Temperature dependence of MOSFET in strong inversion:

dvGSdT =

dVTdT +

2LWCox

ddT

iDμo

μo = KT-1.5

VT(T) = VT(To) - (T-To)

dvGSdT - -2.3

mV°C

Resistors: (1/R)(dR/dT) ppm/°C

Page 13: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-25

CMOS Analog Circuit Design © P.E. Allen - 2010

Bipolar-Resistance Voltage ReferencesFrom previous work we know that,

VREF = kTq ln

VDD - VREF

RIs

However, not only is VREF a function of T, but R and Is are alsofunctions of T.

dVREF

dT = kq ln

VDD-VREF

RIs +

kTq

RIs

VDD-VREF

-1RIs

dVREF

dT -VDD-VREF

RIs

dRRdT +

dIs

IsdT

= VREF

T - Vt

VDD-VREF dVREF

dT - Vt

dRRdT +

dIs

IsdT = VREF-VGO

T - Vt

VDD-VREF dVREF

dT - 3Vt

T - Vt

R dRdT

dVREF

dT =

VREF-VGO

T - Vt

dRRdT -

3Vt

T

1 +Vt

VDD-VREF

VREF-VGO

T - Vt dRRdT -

3Vt

T

TCF = 1

VREF dVREF

dT = VREF-VGO

VREF·T - Vt

VREF

dRRdT -

3Vt

VREF·T

If VREF = 0.6V, Vt = 0.026V, and the R is polysilicon, then at 27°K the TCF is

VDD

+

-

R

VREF

Fig. 380-1

TCF =0.6-1.2050.6·300 -

0.026·0.00150.6 -

3·0.0260.6·300 = 33110-6-65x10-6-433x10-6 =-3859ppm/°C

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-26

CMOS Analog Circuit Design © P.E. Allen - 2010

MOSFET Resistor Voltage ReferenceFrom previous results we know that

VREF = VGS = VT +

2(VDD-VREF)R

or VREF = VT - 1R +

2(VDD-VT)R +

1( R)2

Note that VREF, VT, , and R are all functions of temperature.

It can be shown that the TCF of this reference is

dVREFdT =

+VDD VREF

2 R1.5T

1R

dRdT

1 +1

2 R (VDD VREF)

TCF = +

VDD VREF2 R

1.5T

1R

dRdT

VREF(1 +1

2 R (VDD VREF))

VDD

+

-

R

VREF

Fig. 380-02

Page 14: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-27

CMOS Analog Circuit Design © P.E. Allen - 2010

Example 160-3 - Calculation of MOSFET-Resistor Voltage Reference TCF

Calculate the temperature coefficient of the MOSFET-Resistor voltage reference whereW/L=2, VDD=5V, R=100k using the parameters of Table 3.1-2. The resistor, R, ispolysilicon and has a temperature coefficient of 1500 ppm/°C.Solution

First, calculate VREF . Note that R = 220x10-6x105 = 22 and dRRdT = 1500ppm/°C

VREF = 0.7 1

22 + 2(5 0.7)

22 +122

2 = 1.281V

Now, dVREF

dT = 2.3x10-3 +

5 1.2812 22

1.5300 1500x10-6

1 +1

2 22 (5 - 1.281)

= -1.189x10-3V/°C

The fractional temperature coefficient is given by

TCF = 1.189x10-3 1

1.281 = 928 ppm/°C

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-28

CMOS Analog Circuit Design © P.E. Allen - 2010

Gate-Source and Base-Emitter Referenced Current Source/SinksGate-source referenced source:

The output current was given as, Iout = VT1

R + 1

1R2 + 1R

2VT1

1R +1

( 1R)2

Although we could grind out the derivative of Iout with respect to T, the temperatureperformance of this circuit is not that good to spend the time to do so. Therefore, let usassume that VGS1 VT1 which gives

Iout VT1

R dIout

dT = 1R

dVT1

dT - 1R2

dRdT

In the resistor is polysilicon, then

TCF = 1

Iout dIout

dT = 1

VT1 dVT1

dT - 1R

dRdT =

-VT1

- 1R

dRdT =

-2.3x10-3

0.7 -1.5x10-3 = -4786ppm/°C

Base-emitter referenced source:

The output current was given as, Iout = I2 = VBE1

R

The TCF = 1

VBE1 dVBE1

dT - 1R

dRdT

If VBE1 = 0.6V and R is poly, then the TCF = 1

0.6 (-2x10-3) - 1.5x10-3 = -4833ppm/°C.

Page 15: LECTURE 160 – CURRENT MIRRORS AND ... - Analog IC Design…aicdesign.org/SCNOTES/2010notes/Lect2UP160_(100325).pdf · Lecture 160 – Current Mirrors and Simple References (3/25/10)

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-29

CMOS Analog Circuit Design © P.E. Allen - 2010

Technique to Make gm Dependent on a ResistorConsider the following circuit with all transistors having aW/L = 10. This is a bootstrapped reference which creates aVbias independent of VDD. The two key equations are:

I3 = I4 I1 = I2and

VGS1 = VGS2 + I2RSolving for I2 gives:

I2 = VGS1-VGS2

R = 1R

2I1ß1

-2I2ß2

= 2I1

R ß1 1 -

12

I2 = 1

R 2ß1 I2 = I1 =

1

2ß1R2 = 1

2·110x10-6·10·25x106 = 18.18μA

Now, Vbias can be written as

Vbias=VGS1=2I2ß1

+VTN = 1

ß1R+VTN = 1

110x10-6·10·5x103 + 0.7 = 0.1818+0.7=0.8818V

Any transistor with VGS = Vbias will have a current flow that is given by 1/2ßR2.

Therefore, gm = 2Iß = 2ß

2ßR2 = 1R gm =

1R

M3 M4

M1M2A

M2B M2C

M2D

R=5kΩ

VDD

+

-VBias

Fig. 4.5-11

Lecture 160 – Current Mirrors and Simple References (3/25/10) Page 160-30

CMOS Analog Circuit Design © P.E. Allen - 2010

Summary of Reference Performance

Type of Reference SVREF

VDD

TCF Comments

MOSFET-R <1 >1000ppm/°CBJT-R <<1 >1000ppm/°CGate-SourceReferenced

Good if currentsare matched

>1000ppm/°C Requires start-up circuit

Base-emitterReferenced

Good if currentsare matched

>1000ppm/°C Requires start-up circuit

• A MOSFET can have zero temperature dependence of iD for a certain vGS

• If one is careful, very good independence of power supply can be achieved• None of the above references have really good temperature independenceConsider the following example:

A 10 bit ADC has a reference voltage of 1V. The LSB is approximately 0.001V.Therefore, the voltage reference must be stable to within 0.1%. If a 100°C change intemperature is experienced, then the TCF must be 0.001%/C or multiplying by 104

requires a TCF = 10ppm/°C.