43
Lecture 14.0: Lecture 14.0: Advances in Ultra Advances in Ultra-Cold Atom Physics: Cold Atom Physics: Development of Precision Frequency Standards (i.e., Clocks) and Development of Precision Frequency Standards (i.e., Clocks) and M W I f ( Q S ) W I f ( Q S ) Matter Matter-Wave Interferometers (i.e., Quantum Sensors) Wave Interferometers (i.e., Quantum Sensors) В. Г. Турышев В. Г. Турышев В. Г. Турышев В. Г. Турышев Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91009 USA Государственный Астрономический Институт им. П.К. Штернберга Q P b Университетский проспект, дом 13, Москва, 119991 Россия Quantum Matter Atomic Clocks Quantum Probes Курс Лекций: «Современные Проблемы Астрономии» для студентов Государственного Астрономического Института им. П.К. Штернберга 11 февраля – 26 мая 2008

Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

Lecture 14.0:Lecture 14.0:

Advances in UltraAdvances in Ultra--Cold Atom Physics:Cold Atom Physics:Development of Precision Frequency Standards (i.e., Clocks) and Development of Precision Frequency Standards (i.e., Clocks) and

MM W I f ( Q S )W I f ( Q S )MatterMatter--Wave Interferometers (i.e., Quantum Sensors)Wave Interferometers (i.e., Quantum Sensors)

В. Г. ТурышевВ. Г. ТурышевВ. Г. Турышев В. Г. Турышев Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91009 USAГосударственный Астрономический Институт им. П.К. Штернберга

Q P bу р р у р рУниверситетский проспект, дом 13, Москва, 119991 Россия

Quantum MatterAtomic Clocks

Quantum Probes

Курс Лекций: «Современные Проблемы Астрономии»для студентов Государственного Астрономического Института

им. П.К. Штернберга 11 февраля – 26 мая 2008

Page 2: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Summary

• Clocks:– µ-wave atomic clocks:

NIST F 1 C f t i l k 5 10 16 (1 d )• NIST F-1 Cs fountain µ-wave clock: 5 x 10-16 accuracy (1 day) – µ-wave atomic clocks on a chip:

• NIST Rb chip-scale µ-wave clock: 6 x 10-12 accuracy (1 sec)– Optical atomic clocks

• NIST Hg+ clock now < 3 x 10-17 (104 sec)

• Matter wave interferometers:• Matter-wave interferometers:– Gravity gradiometer:

• Demonstrated differential acceleration sensitivity: 3 x 10-9 g/Hz1/2

– Gyroscope• Achieved stability 2 x 10-6 deg/hr1/2 ARW (angle random walk)

– Accelerometer• Demonstrated performance 2.3 x 10-9 g/Hz1/2

Page 3: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

ESA AO-2004: Ultracold Atoms in Microgravity

• Optical Clocks in Space– Atomic clock ensemble for space applications based on the optical transitions of

strontium and ytterbium atomsy– Stability and accuracy of at the 10-17- 10-18 level – Such performances will impose major efforts to improve existing techniques for

time and frequency transfer both space-ground and space-space

Page 4: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

ESA AO-2004: Ultracold Atoms in Microgravity

• Atom Interferometry Sensors for Space Applications– Space-based instrument for the measurement of tiny rotations and

acceleration and for the detection of faint forcesacceleration and for the detection of faint forces– Quantum and metrological sciences; direct applications in inertial

navigation, Earth observation, geodesy, and geology

Sensitivity to accelerations (108 atoms):Ground 10-10 g/√Hz (expansion time 0.2 s)Ground 10 g/√Hz (expansion time 0.2 s)Space 10-12 g/√Hz (expansion time 3 s)Sensitivity to rotations (108 atoms): Ground: 10-9 rad/√Hz (expansion time 0.025 s)√ ( p )Space: 8⋅10-12 rad/√Hz (expansion time 3 s)Earth rotation rate: 7.2 10-5 rad/s

from E. Rasel et al. (2005)

Page 5: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Outline

• Clocks– µ-wave atomic clocks

O ti l t i l k– Optical atomic clocks

• Measurement of optical frequencies– Optical frequency chains p q y– Frequency comb technique

• Matter-wave interferometers– Gravity gradiometer– Gyroscope– Accelerometer

Page 6: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Science and Applications

Atomic Clocks

Fundamental Physics:• Standard Model Extension tests

Atom Interferometers

Fundamental Physics:• Weak Equivalence Principle

Degenerate Quantum Gases

Fundamental Physics:Thermodynamics of the phaseStandard Model Extension tests

• Universality of the gravitational red-shift

• Time variations of fundamental constantsG it ti l d hift

• Weak Equivalence Principle tests

• Measurement of fundamental constants

• Time variations of fundamental

• Thermodynamics of the phase transition at ultra-low temperatures

• Collective excitations in the weak trapping regime

• Gravitational red-shift • Shapiro time delay and 1/c3

effects• Gravitational waves detectionApplications:

constants• Measurement of the gravito-magnetic effect

• Tests of the Newton’s law at short distances

• BEC coherence properties in microgravity

• Role of interactions in BEC: dipolar forces and short range interactionsApplications:

• Atomic time scales (TAI)• Time & Frequency metrology• Deep space navigation• Doppler trackingS h i ti f DSNA

short distances• Gravitational waves detection Applications:• Inertial navigation• Earth observation and

interactions• Dynamics of Bose mixtures in microgravity

Applications:• Synchronization of DSNA• VLBI• Time & Frequency transfer• Gravity mapping• Planetary exploration

monitoring• Geology and vulcanology• Gravity and gravity-gradient mapping

• Planetary exploration

• Atomic sources for atom interferometry

• High-resolution interferometric measurements with dilute coherent matter wavesa e a y e p o a o Planetary exploration coherent matter waves

Page 7: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

ClocksS l k i 3500 b CSun clock since 3500 b.C.

One period per dayQuarz clock since 1918

32.768 periods per second

clock = oscillator + counting devicePendulum clock since 1656One period per second

Cesium atomic clocks since 19559.192.631.770 periods per second

increasing number of oscillations → increasing stability→ increasing accuracy

Page 8: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

“The times they are a-changin’…”Bob Dylan

103

Huygen’s Pendulum

Bob Dylan

10-1

101

y (s

/day

) Chinese water clockyg

Harrison’s Chronometer

10-5

10-3

ncer

tain

ty

Shortt Clock

Quartz Crystal

10-9

10-7

Clo

ck U Quartz Crystal

Cs Beam Clock

10-11

200018001600140012001000

Cs Fountain

Year

Page 9: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Microwave Atomic Clocks

Microwave radiation

nucleus

electronelectron

Nuclear spin transitions are induced by radiation with a frequency in theNuclear spin transitions are induced by radiation with a frequency in the GHz region, e.g. the hyperfine transition in 133Cs: νCs = 9.2 GHz

Measure the transition frequency νCs very precisely

D fi th d th d ti f i dDefine the second as the duration of νCs periods

Atomic beam magnetic resonance technique (Nobel prize 1944 Rabi)Atomic beam magnetic resonance technique (Nobel prize 1944, Rabi)

Page 10: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Atomic Clocks: Basic Principles

Local oscillator

Correction

Clock output

Atomic sample

Interrogation

Inaccuracy: ε

on p

roba

bilit

yInaccuracy: ε

Fractional frequency fluctuations: y(t)

Fractional freq enc instabilit

Tran

sitioFractional frequency instability:

Fluctuations of the transition probability:

Atomic quality factor:Detuning

Atomic quality factor:

Page 11: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Cesium Atomic Clocks

Vacuum chamber Hot wire,Cs ionizerMagnetic shieldingGetter

Cesium beam

TA

B

A

B

Microwave cavity

Magnet(polarizer)

Magnet(analyzer)

Cesium oven Getter

T A

(Ramsey cavity)

Microwave radiation One second further after 9 192 631 770 cycles

at 9 192 631 770 Hz

Tunable microwave generator Serve control

Page 12: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

The Cesium Fountain Clock

C i Cl k h C S d d d h fi i i f h S d

Increasing the resolution by increasing

Cold Atoms allow long interaction timesCs Fountain Clock: The Current Standard and the Definition of the Second

Increasing the resolution by increasing the interaction time

Uncertainty less then 10-16 (one second in 60 million years)y )

fCs= 9,192,631,770 Hz

NIST, Time & Frequency Division,http://tf.nist.gov/timefreq/cesium/fountain.htmNIST: Steve Jefferts, Liz Donley, Tom Heavner, Tom Parker

Page 13: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Atomic Fountain Clocks

Cs-Rb fountain clock FO2N 109Nat ~ 109

s ~ 3 mmT ~ 1 mK

4 /v ~ 4 m/sH ~ 1 m

100 ms ≤ Tload ≤ 500 ms1 1 ≤ T ≤ 1 51.1 s ≤ Tcycle ≤ 1.5 s

Page 14: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Ramsey Fringes

1.0

0.6

0.8

1.0

Linewidth: 0.94 HzQuality factor: Qat= 9.82×109

S/N ratio: 1/ 50000.8

-1.0 -0.5 0.0 0.5 1.00.0

0.2

0.4 0.94 Hz

S/N ratio: 1/σδP ~ 5000

0 4

0.6

0.2

0.4

-100 -50 0 50 1000.0

-100 -50 0 50 100detuning (Hz)

Page 15: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Performances of FO2

Inaccuracy (×10-16)

Second Order 3207 0(4 7)

Fractional frequency instability

Second Order Zeeman

3207.0(4.7)

Blackbody radiation

-127.0(2.1)

Cold collisions 0 0(1 0)Cold collisions + cavity pulling

0.0(1.0)

Residual first order Doppler

0.0(2.0)

Recoil 0 0(1 0)Recoil 0.0(1.0)

Ramsey and Rabi pulling

0.0(1.0)

Microwave l k

0.0(2.0)leakage

Background collisions

0.0(1.0)

Total 7

Page 16: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Improvement of Cs μ-wave standards over 50 years

Optical

OpticalOptical Clocks

Page 17: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

NIST F-1 Cs fountain microwave clock

NIST F-1 Cs fountain microwave clock now at 5 x 10-16 accuracy

Page 18: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Types of clocks

Higher Precision

???

PrimaryStandard

CompactAtomic Clock CSAC Wristwatch

Quartz CrystalPrecision

Quartz Crystal

Loses 1 sec in: 108 years 1000 years Size: 107 cm3 100 cm3

Power: kW 5 WCost: $1 M $1,000

1000 years1cm3

30 mW$100

1 year 1 day1 cm3 10-3 cm3

30 mW 10 mW$100 $1Cos $ $ ,000

Smaller Size

$ $100 $1

Page 19: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Components Optimization

Cell performance (table top experiment):

ω1ω2

ω1 ω2

ω12

2ωRF= ω1- ω2= ω12

ωRF

• Cell dimensions 1x1x1mm• Buffer gas Ar-Ne mixture• CPT linewidth 1.2kHz @ 3% contrast

S. Knappe et al., submitted to Optics Letters (2006)

@(ratio CPT amplitude to optical absorption)

Page 20: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Chip-Scale Vapor-Cell Atomic Clocks at NIST

The NIST Chip-scale Atomic clock

NIST is currently building structures such as those shown above, that are the size of a grain of rice (V < 10 mm3) and could run on a AA battery (dissipate < 75 mW).

Page 21: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Chip-Scale Atomic Clock from NIST

• Project Goals:– To develop a compact, low-power micromachined frequency reference physics package

capable of providing atomically precise timing for portable, battery-operated applications. • The NIST Approach:

i b d ll ti l h t l ti t i (CPT) it ti f i– … is based on all-optical coherent-population-trapping (CPT) excitation of microwave resonances in a thermal vapor of alkali atoms. The atoms are confined in a miniature cell fabricated using MEMS techniques and the Q-factor is enhanced using a buffer gas.

– Light from a vertical-cavity surface-emitting laser, modulated at the atomic resonance frequency by an external local oscillator (LO), creates the necessary excitation. The LO is locked to the atomic resonance using a servo.

• Potential Applications:– Commercial: compact, low-power frequency references with exceptional long-term frequency

stabilityMilitary GPS receivers: direct P(Y) code acquisition and resistance to jamming– Military GPS receivers: direct P(Y) code acquisition and resistance to jamming

– Wireless communications systems: enhanced security of transmitted data– Application of cell fabrication technology to advanced devices and applications such as

magnetometers, gyroscopes and fiber telecommunications • Major Accomplishments by May 2006:Major Accomplishments by May 2006:

– Constructed functioning chip-scale physics package based on 87Rb with V = 9.5 mm3, P = 75 mW and with improved short- and long-term frequency stability: σy(1 sec.) = 4×10-12 and σy(1 hr.) = 2×10-11

– Demonstrated chip-scale atomic magnetometer: dBmin ~ 200 pT/ Hz • Long-Term Milestones:

– V = < 1cm3, P < 30 mW, and drift = < ± 1 μs/day

Page 22: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

DARPA Chip-Scale Atomic Clock ProgramTh G l f th P• The Goal of the Program:– To create ultra-miniaturized, low-power, atomic time and frequency reference units that will

achieve, relative to present approaches:– >200X reduction in size (from 230 cm3 to <1 cm3), >300X reduction in power (from 10 W to <30

mW), performance (±1×10-11 accuracy, drift of <1 µs/day).) p ( y µ y)• The chip-scale atomic clock will enable:

– A ultra-miniature wristwatch-size ultra low power time & frequency references for high-security UHF communication and jam-resistant GPS receivers.

– These time reference units will improve mobility & robustness of any systems & platforms w/ sophisticated UHF communication and/or nav requirementssophisticated UHF communication and/or nav. requirements.

– In military GPS receivers − will improve the jamming margin in a high-jamming environment, reacquisition capability, and position identification accuracy.

– In surveillance, these clocks can be used to improve resolution in Doppler radars, to enhance accuracy of location identification of radio emitters.

• The Key Focus:– Innovative solutions in micro or nano-fabrication, materials processing, design, transduction

mechanism, interconnects, to improve the time referencing. – Research elements include confinement & stabilization of Ce, Rb, or other species, excitation and

detection of the hyperfine-transition resonance of the chosen species and phase locking or directdetection of the hyperfine transition resonance of the chosen species, and phase locking or direct coupling with MEMS resonators:

• temperature stability, magnetic shielding, hermetic encapsulation, maintenance of atomic ground-state coherence within the confinement cell;

• integration with vertical cavity surface emitting laser (VSCEL) or other photon g y g ( ) pand/or microwave sources and photo detector with the confinement cell;

• integration, phase locking, and/or direct coupling with MEMS resonators.

Page 23: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Atomic Fountain Clocks in Space

Thermal beamBenefits of Space

• Weightlessness– Long interrogation times

– Narrow clock transitions

• Linewidth: 100 mHzCold atoms

• Instability: 7⋅10-14 at 1 s

3⋅10-16 at 1 day

A 10 16

Cold atoms in microgravity

• Accuracy: ~ 10-16

• Low mechanical vibrations

• Possibility of worldwide access microgravityoss b ty o o d de access

Page 24: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

The ACES Mission (CNES/ESA)

Page 25: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

PHARAO: A Cold-Atom Clock in μ-gravity

Page 26: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Microwave clocks

Page 27: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

These clocks get even better in space: longer observation times, lower velocity.

NIST – U. Colorado – JPLPrimary Atomic Reference Clock in Space (PARCS)

Page 28: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

The ACES Clock Signal

Short term servo loop:Locks PHARAO local oscillator to

SHM ensuring a better short and mid- 10-13

PHARAO SHMACES signalSHM ensuring a better short and mid-

term stabilityLong term servo loop:

Corrects for SHM drifts providing

10-14

ACES signal

σ y(τ)

Corrects for SHM drifts providing the ACES clock signal with the long-term stability and accuracy PHARAO

10-16

10-15

σ10-1 100 101 102 103 104 105 106 107

τ [s]

Stability of the ACES clock signal:Stability of the ACES clock signal: - 3⋅10-15 at 300s (ISS pass)- 3⋅10-16 at 1 day- 1⋅10-16 at 10 days- 1⋅10 at 10 days

Accuracy: ~1⋅10-16

Page 29: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Pioneering Aspects of the ACES Mission

• Technology demonstrator for cold atom based missions

• First μg experiments with cold atoms

• Validation in space of complex laser systems

• Validation of a new generation of atomic Quantum Probes

clocks

• Precursor of optical clocks: towards the 10-18 stability and accuracy regime Quantum MatterAtomic Clocks

• Demonstration of stable and accuratetime and frequency transfer

• Long-distance clock-to-clock comparisonscomparisons

• Contribution to high performance global time scale

from E. Rasel et al. (2005)

These results will arrive in time to prepare the nextThese results will arrive in time to prepare the next generation of atomic quantum sensors for space

Page 30: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

ACES Mission Objectives IACES Mission Objectives ACES performances Scientific background and recent results

Test of a new generation of space clocks

Cold atoms in a micro-gravity environment Study of cold atom physics in microgravity.

Such studies will be essential for the development of atomic quantumsensors for space applications (optical clocks, atom interferometers, atomlasers).

Test of the space cold atom clock PHARAO

PHARAO performances: frequency instability lower than 3·10-16 atone day and inaccuracy at the 10-16 level.The short term frequency instability will be evaluated by directcomparison to SHM. The long term instability and the systematicfrequency shifts will be measured by comparison to ultra-stableground clocks.

Frequency instability: optical clocks show better performances; theirfrequency instability can be one or more orders of magnitude better thanPHARAO, but their accuracy is still around the 10-15 level.Inaccuracy: at present, cesium fountain clocks are the most accuratefrequency standards.

Test of the space hydrogen maser SHM

SHM performances: frequency instability lower than 2.1·10-15 at1000 s and 1.5·10-15 at 10000 s.The medium term frequency instability will be evaluated by directcomparison to ultra-stable ground clocks. The long term instabilitywill be determined by the on-board comparison to PHARAO inFCDP

SHM performances are extremely competitive compared to state-of-the-artas the passive H-maser developed for GALILEO or the ground H-maserEFOS C developed by the Neuchâtel Observatory:

Maser σy (1000 s) σy (10000 s)

GALILEO 3.2·10-14 1.0·10-14FCDP. GALILEO 3.2 10 1.0 10

EFOS C 2.0·10-15 2.0·10-15

Precise and accurate time and frequency transfer

Test of the time and frequency link MWL

Time transfer stability will be better than 0.3 ps over one ISS pass,7 ps over 1day, and 23 ps over 10 days.

At present, no time and frequency transfer link has performancescomparable with MWL.

Time and frequency comparisons between

ground clocks

Common view comparisons will reach an uncertainty level below1 ps per ISS pass.Non common view comparisons will be possible at an uncertaintylevel of

• 2 ps for τ =1000 s

Existing T&F links

Time stability (1day)

Time accuracy (1day)

Frequency accuracy (1day)

GPS-DB 2 ns 3-10 ns 4·10-14

GPS-CV 1 ns 1-5 ns 2·10-14

• 5 ps for τ =10000 s• 20 ps for τ =1 day GPS-CP 0.1 ns 1-3 ns 2·10-15

TWSTFT 0.1-0.2 ns 1 ns 2-4·10-15

Page 31: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

ACES Mission Objectives II

ACES Mission Objectives ACES performances Scientific background and recent results

Precise and accurate time and frequency transfer

Absolute synchronization of ground clocks

Absolute synchronization of ground clock time scales with anuncertainty of 100 ps These performances will allow time and frequency transfer at anof ground clocks uncertainty of 100 ps.

unprecedented level of stability and accuracy. The development of suchlinks is mandatory for space experiments based on high accuracyfrequency standards.Contribution to atomic

time scalesComparison of primary frequency standards with accuracy at the10-16 level.

Fundamental physics tests

Th i h i i l d hif ill b

Measurement of the gravitational red shift

The uncertainty on the gravitational red-shift measurement will bebelow 50·10-6 for an integration time corresponding to one ISSpass (~ 300 s).With PHARAO full accuracy, uncertainty will reach the 2·10-6

level.

The ACES measurement of the gravitational red shift will improveexisting results (Gravity Probe A experiment and measurements based onthe Mössbauer effect). Space-to-ground clock comparisons at the 10-16

level, will yield a factor 25 improvement on previous measurements.

Time variations of the fine structure constant α ca be measured at Crossed comparisons of clocks based on different atomic elements willSearch for a drift of the fine structure constant

the level of precision α -1 ⋅ dα / dt < 1⋅10-16 year -1.The measurement requires comparisons of ground clocksoperating with different atoms

Crossed comparisons of clocks based on different atomic elements willimpose strong constraints on the time drifts of fundamental constantsimproving existing results.

Search for Lorentz transformation violations

Measurements can reach a precision level of δc / c ~ 10-10 in thesearch for anisotropies of the speed of light.Th t l th ti t bilit f SHM PHARAO

ACES results will improve previous measurements (GPS-basedmeasurements, Gravity Probe A experiment, measurements based on thef

and test of the SME These measurements rely on the time stability of SHM, PHARAO,MWL, and ground clocks over one ISS pass.

, y p ,Mössbauer effect) by a factor 10 or more.

Page 32: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

From the μ-wave to the optical domain

• Fractional frequency instability atthe quantum projection noise

( )τ

TNπ

τσ c

aty

11

0ννΔ

=

Δν 1Hz limited by the interaction time (effect of gravity)– Δν ∼ 1Hz, limited by the interaction time (effect of gravity)– Nat ∼ 106, limited by cooling and trapping techniques, collisional shift, etc.

• Solution: increase ν0 → optical transition show a potential

– μ-wave fountain clocks:

– Optical clocks:

0 p pincrease of 5 orders of magnitude

– Optical clocks:

• Accuracy:– theoretical studies foresee the possibility of reaching the 10-18 regime

• Major difficulties:– Measurements of optical frequencies (frequency-comb generator)– Recoil and first order Doppler effectspp– Downconversion noise of the interrogation oscillator (Dick effect)

Page 33: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Optical Atomic Clocks

Visible light

nucleus

electronelectron

Electronic quantum transitions are induced by visible light with a frequency in the THz region!q y g

400 THz 500 THz 600 THz 700 THz

Page 34: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Optical Atomic Clocks:pScience and Metrology on theFemtosecond Time Scale

Page 35: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Principle of Operation of Optical Clocks

from S.A. Diddams et al., Science 293, 825 (2001)

Page 36: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Components of an Optical Clock

νo

Detector

Atom(s)

Δν

Atomic Resonance

Detector& SlowLaser

Control

Laser Counter &Read OutFast

LaserControl

•Isolated cavity narrows laser linewidth

Read Out

IsolatedOptical Cavity

Isolated cavity narrows laser linewidthand provides good short-term stability

•Atoms provide long-term stability and accuracy

C t l t l t t 1•Counter accumulates cycles to generate 1 sec

Page 37: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Atomic Clock Stability

High stability requires: large signal and narrow linewidth• signal size ∝ N number of atoms Δν Natom

• Narrow linewidth and high frequency gives high Q

ν0

Fractional frequency instability ≈(as the Allan Deviation)

1 1/ / atomS N Q S N Q Nν

ν τΔ

= ∝⋅ ⋅ ⋅

≈10-16 @ 1s≈10-19 @ 1s

Eg. Cold Ca, 400 Hz linewidth, 106 atoms

?? atom, 1 Hz linewidth, 106 atoms

Trapped single ions vs. laser-cooled neutral atoms (106)

Hg+, Yb+, Sr+, In+, Al+… Ca, Sr, Mg, Yb, Ag …

Small systematics, narrow lines High S/N, Doppler sensitivity

Page 38: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Oscillator Stability

10-12

σ y(τ)

Quartz

Quantum Limited Instability1( ) ~ fσ τ Δ

10-14

10-13

bilit

y —

σ

H-maserCs

Quartz ( )of N

σ ττ

10-15

10

— I

nsta

b H maserCs

Ca

10-16

Dev

iatio

n

Hg+Optical Cavity

10-17

Alla

n D

-2 0 2 4 6

1 day 1 monthCa(predict)

10-2 100 102 104 106

Averaging Time (s)

Page 39: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Phase Noise of Microwave and Optical Oscillators

-80

1 GHz Carrier

-100

-80

z]

High Quality Quartz

Commecial µ-wave synthesizer

-140

-120

(f) [d

Bc/H

z Commecial µ wave synthesizer

Sapphire µ-wave Resonator + Divider

Ca Optical

-180

-160

L( Resonator + Divider

Hg+ Optical

-200

100 101 102 103 104 105

Hg OpticalCavity

10 10 10 10 10 10Frequency [Hz]

Page 40: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Ion clock example: Single 199Hg+

Jim Bergquist et al.Single Hg+ ion

~ 6.5 Hz@ 1 PHz

Page 41: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Al+/Hg+ Optical Clock Stability

29096 d f d t10-13

29096 seconds of data

7×10-15τ-1/2

Hg vs Maser (AVAR)Hg vs Al (AVAR)

10-14

Hg vs Al (AVAR)Hg vs Al (THEO1)

10-15

Δν/ν

4 x 10-17

10-16

4 x 10

100 101 102 103 104 10510-17

ti [ d ]

Systematic uncertainty of Hg+ clock now < 3x10-17 ! (April 2006)time [seconds]

Page 42: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Cool Alkaline Earth – Strontium

T ~ 0.5 photon recoil

Xu et al., Phys. Rev. Lett. 90, 193002 (2003).Loftus et al., Phys. Rev. Lett. 93, 073003 (2004).Ido et al., Phys. Rev. Lett. 94, 153001 (2005). Santra et al., Phys. Rev. Lett. 94, 173002 (2005).L dlo et al Ph s Re Lett 96 033003 (2006) ~ 220 nK

3P88S 1S 3P 7 6 kH 7 10 16

δn/n at 1sΓ/2π

Ludlow et al., Phys. Rev. Lett. 96, 033003 (2006).Zelevinsky et al., Phys. Rev. Lett. 96, 203201 (2006).

3P23P1

3P

88Sr 1S0-3P1 7.6 kHz 7x10-16

< 10mHz ~10-1887Sr 1S0-3P0

689 nmP0

698 nmw01S0w0

w0

Page 43: Lecture 14.0: Advances in UltraAdvances in Ultra--Cold ...lnfm1.sai.msu.ru/~turyshev/lectures/lecture_14.0-Clocks-Q-Sensors.pdf · • Optical Clocks in Space – Atomic clock ensemble

ADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORSADVANCES IN PRECISION CLOCKS AND QUANTUM SENSORS

Absolute Frequency of 87Sr 1S0 – 3P0

2400

28001.05

1.00

Ludlow et al., Phys. Rev. Lett. 96, 033003 (2006).

Accuracy soon reaching3000

3200

Q ~ 1 x 1014

2000

coun

ts 0.95

0 90coun

ts

FWHM

y g1 x 10-15

4060

JILA 2005Hz]

2200

2400

2600

2800

Cou

nts

FWHM:

1600

Phot

on c

Linewidth:200 (30) Hz

0.90

0.85Pho

ton 15 Hz

200

2040 JILA 2005

-17.6 ± 2.8 (stat) ± 20 (sys) Hz

2990

0 [H

1600

1800

2000

2200

Phot

on C 4.6 Hz

0 9 0 6 0 3 0 0 0 3 0 6

12000.80

0.75March 2, 2006 -60

-40-20

2280

0422

-20 -10 0 10 20 301200

1400

Cl k L D t i (H )

April, 2006

-0.9 -0.6 -0.3 0.0 0.3 0.6698 nm probe frequency (kHz)

0.75

-300 -200 -100 0 100Frequency scan (Hz)

5/3 5/31 6/28 2/10 3/10-100-80

ν sr -

4292 2005 2006

Clock Laser Detuning (Hz)

Projected stability ν Date (2005 - 2006)Projected stability< 1 x 10-15 at 1 s