28
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 10 Lecture 10: PN Junction & MOS Capacitors Prof. Niknejad

Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10

Lecture 10: PN Junction & MOS Capacitors

Prof. Niknejad

Page 2: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Lecture Outline

� Review: PN Junctions Thermal Equilibrium

� PN Junctions with Reverse Bias (3.3-3.6)

� MOS Capacitors (3.7-3.9):– Accumulation, Depletion, Inversion

– Threshold Voltage

– CV Curve

Page 3: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Results of MT #1

� Good Job!

� This is only 17% of your grade

13STD DEV

99MAX

34MIN

74AVG

Homework 15%Laboratory 20%Midterm #1 17%Midterm #2 18%Final 30%

Page 4: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

PN Junction in Thermal Equilibrium

� Contact potential develops between P and N region

� Diffusion current balanced by drift current

� Depletion region is a “space-charge” region where the concentration of free carriers is low

� The depletion region is charged due to the immobile background ions (donors and acceptors)

� Used the “Depletion Approximation” to estimate the charge density � calculate the electric fields and potential variation using electrostatics in 1D

Page 5: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Have we invented a battery?

� Can we harness the PN junction and turn it into a battery?

� Numerical example:

2lnlnln

i

ADth

i

A

i

Dthpnbi n

NNV

n

N

n

NV =

+=−≡ φφφ

mV60010

1010logmV60lnmV26

20

1515

2=×==

i

ADbi n

NNφ

?

Page 6: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Contact Potential

� The contact between a PN junction creates a potential difference

� Likewise, the contact between two dissimilar metals creates a potential difference (proportional to the difference between the work functions)

� When a metal semiconductor junction is formed, a contact potential forms as well

� If we short a PN junction, the sum of the voltages around the loop must be zero:

mnpmbi φφφ ++=0

pnmnφ

pmφ

+

−biφ )( mnpmbi φφφ +−=

Page 7: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

PN Junction Capacitor

� Under thermal equilibrium, the PN junction does not draw any current

� But notice that a PN junction stores charge in the space charge region (transition region)

� Since the device is storing charge, it’s acting like a capacitor

� Positive charge is stored in the n-region, and negative charge is in the p-region:

nodpoa xqNxqN =

Page 8: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Reverse Biased PN Junction

� What happens if we “reverse-bias” the PN junction?

� Since no current is flowing, the entire reverse biased potential is dropped across the transition region

� To accommodate the extra potential, the charge in these regions must increase

� If no current is flowing, the only way for the charge to increase is to grow (shrink) the depletion regions

+

−Dbi V+−φ

DV 0<DV

Page 9: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Current Under Reverse Bias

� Under thermal equilibrium current is zero � If we apply a reverse bias, we are increasing the barrier

against diffusion current� Drift current is low since the field only moves minority

carriers across junction� In fact, current is not zero but very small since the minority

carrier concentration is low. Minority carriers within one diffusion length of junction can contribute to a reverse bias current. This is more or less independent of the applied bias

pn

+− DV−pφ

nφ Dn V+φ

pφ0dX )( Dd VX

0E 0E

Page 10: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Voltage Dependence of Depletion Width

� Can redo the math but in the end we realize that the equations are the same except we replace the built-in potential with the effective reverse bias:

+−=+=

da

DbisDnDpDd NNq

VVxVxVX

11)(2)()()(

φε

bi

Dn

da

a

d

DbisDn

Vx

NN

N

qN

VVx

φφε −=

+−= 1

)(2)( 0

bi

Dp

da

d

a

DbisDp

Vx

NN

N

qN

VVx

φφε −=

+−= 1

)(2)( 0

bi

DdDd

VXVX

φ−= 1)( 0

Page 11: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Charge Versus Bias

� As we increase the reverse bias, the depletion region grows to accommodate more charge

� Charge is not a linear function of voltage

� This is a non-linear capacitor

� We can define a small signal capacitance for small signals by breaking up the charge into two terms

bi

DaDpaDJ

VqNVxqNVQ

φ−−=−= 1)()(

)()()( DDJDDJ vqVQvVQ +=+

Page 12: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Derivation of Small Signal Capacitance

� From last lecture we found

� Notice that

�++=+ DV

DDJDDJ v

dV

dQVQvVQ

D

)()(

RD VVbipa

VV

jDjj

VxqN

dV

d

dV

dQVCC

==

−−===

φ1)( 0

bi

D

j

bi

Dbi

paj

V

C

V

xqNC

φφφ −

=−

=112

00

da

da

bi

s

da

d

a

bis

bi

a

bi

paj NN

NNq

NN

N

qN

qNxqNC

+=

+

==

φεφε

φφ 2

2

220

0

Page 13: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Physical Interpretation of Depletion Cap

� Notice that the expression on the right-hand-side is just the depletion width in thermal equilibrium

� This looks like a parallel plate capacitor!

da

da

bi

sj NN

NNqC

+=

φε

20

0

1

0

11

2 d

s

dabissj XNN

qC

εφε

ε =

+=

)()(

Dd

sDj VX

VCε=

Page 14: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

A Variable Capacitor (Varactor)

� Capacitance varies versus bias:

� Application: Radio Tuner

0j

j

C

C

Page 15: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

P-type Si Substrate

N-type Diffusion RegionOxide

“Diffusion” Resistor

� Resistor is capacitively isolation from substrate – Must Reverse Bias PN Junction!

– PN Junction creates a distributed capacitance with substrate (RC transmission line)

Page 16: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

MOS Capacitor

� MOS = Metal Oxide Silicon� Sandwich of conductors separated by an insulator � “Metal” is more commonly a heavily doped polysilicon

layer n+ or p+ layer� NMOS � p-type substrate, PMOS � n-type substrate

Oxide (SiO2)

Body (p-type substrate)

Gate (n+ poly)

011.7sε ε=

03.9oxε ε=

Very Thin!

~ 1nmoxt

x

0

Page 17: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

P-I-N Junction

� Under thermal equilibrium, the n-type poly gate is at a higher potential than the p-type substrate

� No current can flow because of the insulator but this potential difference is accompanied with an electric field

� Fields terminate on charge!

ln ap

i

NkT

q nφ = − 550mV

nφ + ≈

Body (p-type substrate)

Gate (n+ poly)

Page 18: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Fields and Charge at Equilibrium

� At equilibrium there is an electric field from the gate to the body. The charges on the gate are positive. The negative charges in the body come from a depletion region

Body (p-type substrate)

++++++++++++++++++− − − − − − − − −− − − − − − − −

− − − − − − − − − 0dX

+

−oxV +

−BV oxE

Page 19: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Good Place to Sleep: Flat Band

� If we apply a bias, we can compensate for this built-in potential

� In this case the charge on the gate goes to zero and the depletion region disappears

� In solid-state physics lingo, the energy bands are “flat” under this condition

( )FB pnV φ φ+= − −

( ) 0G GB FBQ V V= =

Body (p-type substrate)

+−0FBV <

Page 20: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Accumulation

� If we further decrease the potential beyond the “flat-band” condition, we essentially have a parallel plate capacitor

� Plenty of holes and electrons are available to charge up the plates

� Negative bias attracts holes under gate

( )G ox GB FBQ C V V= −

Body (p-type substrate)

−+GB FBV V<++++++++++++++++++−−−−−−−−−−−−−−−−−−

B GQ Q=

Page 21: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Depletion

� Similar to equilibrium, the potential in the gate is higher than the body

� Body charge is made up of the depletion region ions

� Potential drop across the body and depletion region

Body (p-type substrate)

+−GB FBV V> + + + + + + + + + +

( )B a d GBQ qN X V= −− − − − − − − − −− − − − − − − −

( )G GB BQ V Q= −

Page 22: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Body (p-type substrate)

+ + + + + + + + + +

Inversion

� As we further increase the gate voltage, eventually the surface potential increases to a point where the electron density at the surface equals the background ion density

� At this point, the depletion region stops growing and the extra charge is provided by the inversion charge at surface

+−GB TV V=− − − − − − − − −− − − − − − − −

sq

kTs i an n e N

φ

= = s pφ φ= −

Page 23: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Threshold Voltage

� The threshold voltage is defined as the gate-body voltage that causes the surface to change from p-type to n-type

� For this condition, the surface potential has to equal the negative of the p-type potential

� We’ll derive that this voltage is equal to:

12 2 ( 2 )Tn FB p s a p

ox

V V q NC

φ ε φ= − + −

Page 24: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Inversion Stops Depletion

� A simple approximation is to assume that once inversion happens, the depletion region stops growing

� This is a good assumption since the inversion charge is an exponential function of the surface potential

� Under this condition:

,max( )G Tn BQ V Q≈ −

,max( ) ( )G GB ox GB Tn BQ V C V V Q= − −

Page 25: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Q-V Curve for MOS Capacitor

� In accumulation, the charge is simply proportional to the applies gate-body bias

� In inversion, the same is true

� In depletion, the charge grows slower since the voltage is applied over a depletion region

GQ

( )GBV VTnVFBV

inver

sion

accu

mula

tion

depletion

,maxBQ−

( )N GBQ V−

Page 26: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Numerical Example

� MOS Capacitor with p-type substrate:

� Calculate flat-band:

� Calculate threshold voltage:

20nmoxt = 16 35 10 cmaN −= ×

( ) (550 ( 402)) 0.95VFB pnV φ φ+= − − = − − − = −

12 2 ( 2 )Tn FB p s a p

ox

V V q NC

φ ε φ= − + −

13

-6

3.45 10 F/cm

2 10 cmox

oxox

Ct

ε −×= =×

19 12 162 1.6 10 1.04 10 5 10 2 0.4.95 2( 0.4) 0.52VTn

ox

VC

− −× × × × × × × ×= − − − + =

Page 27: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Num Example: Electric Field in Oxide

� Apply a gate-to-body voltage:

� Device is in accumulation

� The entire voltage drop is across the oxide:

� The charge in the substrate (body) consist of holes:

2.5GB FBV V= − <

56

2.5 0.55 ( 0.4) V8 10

2 10 cmGB pox n

oxox ox

VVE

t t

φ φ+

+ − − + − −= = = = − ××

7 2( ) 2.67 10 C/cmB ox GB FBQ C V V −= − − = ×

Page 28: Lecture 10: PN Junction & MOS Capacitorsinst.cs.berkeley.edu/~ee105/fa03/handouts/lectures/Lecture10.pdf · EECS 105Fall 2003, Lecture 10 Prof. A. Niknejad PN Junction in Thermal

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 10 Prof. A. Niknejad

Numerical Example: Depletion Region

� In inversion, what’s the depletion region width and charge?

,max 2 0.8VB s p p p pV φ φ φ φ φ= − = − − = − =

2,max ,max

1

2a

B ds

qNV X

ε

=

,max,max

2144nms B

da

VX

qN

ε= =

7 2,max ,max 1.15 10 C/cmB a dQ qN X −= − = − ×