Lecture 06 Synthetic Hydro Graphs

Embed Size (px)

Citation preview

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    1/31

    Lecture No. 6-1 1

    CWR 4101 Hydrograph Generation

    Synthetic Hydrographs Chapter 6

    Dr. Marty Wanielista

    [email protected]

    www.stormwater.ucf.edu

    http://classes.cecs.ucf.edu/CWR4101/wanielista

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    2/31

    Lecture No. 6-1 2

    Topics

    Chapter 6 Synthetic Hydrograph

    Definitions

    Types of Synthetic HydrographsRational Method

    NRCS or SCS Method

    Clark Unit Graph

    Santa Barbara

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    3/31

    Lecture No. 6-1 3

    Synthetic Hydrograph Definition: Synthetic Hydrograph is a plot of

    flow versus time and generated based on a

    minimal use of streamflow data.

    Example: A pending land use change and the

    resulting runoff hydrograph is thus unknown,

    but nevertheless must be estimated.

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    4/31

    Lecture No. 6-1 4

    0

    200

    400

    600

    800

    1000

    0 10 20 30 40 50 60

    Time (hr)

    Discharge(c

    fs)

    Objective: Determine the Surface

    Runoff HydrographD

    Rainfall Excess

    tb

    tp tr

    tcL

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    5/31

    Lecture No. 6-1 5

    where:

    C = Runoff coefficient

    i = Intensity (in/hr)

    A = Watershed area (acre)

    The Rational Method Hydrograph

    pQ CiA!

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    6/31

    Lecture No. 6-1 6

    Assumptions using the Rational Method

    Triangular Hydrograph

    Rational Formula

    0

    10

    20

    30

    40

    50

    60

    0 20 40 60 80

    Time Minutes

    Flow(

    CFS)

    1. D >= tc2. Constant rainfall

    intensity

    3. Product of CA is

    linear with time, both

    during and after the

    rain or (on rising and

    recession limbs)

    As such method is reasonablefor small homogeneous

    watersheds.

    Qp = CiA at tc and

    Q = (CA)t(i) for all t < tc

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    7/31

    Lecture No. 6-1 7

    Rational Method Hydrograph

    Rising limb = falling limb

    Area under hydrograph = Area under hyetograph

    Rational Formula

    0

    10

    20

    30

    40

    50

    60

    0 20 40 60 80

    Time Minutes

    Fl

    ow(

    CFS)

    Area = 12 acres, i=4in/hr

    Tc= 30 minutes

    Vol of Rain= Vol of Runoff

    Rain Vol = 4in/hr * (30/60) = 2 in

    Runoff Vol = 87,100 CF or 2 in

    Vol rain (CF) = Vol runoff (CF)

    (C)(i)(A)(1.008)(D) = (tb)(Qp)/2

    But D = tb/2 and time in seconds

    Qp = 1.008CiA

    i=4in/hr

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    8/31

    Lecture No. 6-1 8

    where:

    0.75 = attenuation factor

    C = Runoff coefficient

    i = Intensity (in/hr)

    A = Watershed area (acre)

    The SCS (NRCS) Hydrograph - Typical

    0.75pQ CiA!

    NOTE: if A is in mi2, the attenuation factor would be 484.

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    9/31

    Lecture No. 6-1 9

    Typical SCS HydrographTypical SCS Hydrograph

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    40.0

    0 20 40 60 80 100

    Time M inutes

    Flow(

    CFS)

    Area = 12 acres, i=4in/hr

    Tc= 30 minutes

    Vol of Rain= Vol of RunoffRain Vol = 4in/hr * (30/60) = 2 in

    Runoff Vol = 87,100 CF or 2 in

    Vol rain (CF) = Vol runoff (CF)

    (C)(i)(A)(D) = (2.67)(tp)(Qp)/2

    But D = tp and time in seconds

    Qp = 0.75CiA

    tp=D 1.67tp

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    10/31

    Lecture No. 6-1 10

    Table 6.7 Ratios for Dimensionless Hydrograph for K = 484

    Curvilinear Hydrograph Triangle Hydrograph

    Time Discharge Mass Discharge Mass

    t/tp q/qp Q/Qt q/qp Q/Qt

    0.00 0.000 0.000 0.00 0.000

    0.10 0.015 0.001 0.10 0.004

    0.20 0.075 0.006 0.20 0.015

    0.30 0.160 0.018 0.30 0.034

    0.40 0.280 0.037 0.40 0.060

    0.50 0.430 0.068 0.50 0.094

    0.60 0.600 0.110 0.60 0.135

    0.70 0.770 0.163 0.70 0.184

    0.80 0.890 0.223 0.80 0.240

    1.00 1.000 0.375 1.00 0.375

    1.10 0.980 0.450 0.94 0.447

    1.20 0.920 0.517 0.88 0.5151.30 0.840 0.557 0.82 0.579

    1.40 0.750 0.643 0.76 0.638

    1.50 0.650 0.068 0.70 0.693

    1.60 0.570 0.727 0.64 0.743

    1.80 0.430 0.796 0.52 0.830

    2.00 0.320 0.848 0.40 0.899

    The SCS (NRCS) Hydrograph - Typical

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    11/31

    Lecture No. 6-1 11

    2.20 0.240 0.888 0.28 0.950

    2.40 0.180 0.916 0.16 0.984

    2.60 0.130 0.938 0.04 0.999

    2.67 0.00 1.000

    2.80 0.098 0.954

    3.50 0.036 0.984

    4.00 0.018 0.993

    4.50 0.009 0.997

    5.00 0.004 0.999

    infinity 0.000 1.000

    Qt = 2.67/2 1.335

    (File Table 6-7.xls sheet 1)

    The SCS (NRCS) Hydrograph - Typical

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    12/31

    Lecture No. 6-1 12

    Problem 4 (page 249) of 6.6.1 Hand Problems Calculate the peak runoff from a

    residential area with similar watershed soil and surface characteristics. The area is

    20 ac in size with 40% of imperviousness. Use a rainfall intensity of 3 in./hr for 1 hr.

    Do the calculations by using the rational formula and the SCS (NRCS) typicalhydrograph procedure. Compare results and discuss assumptions. The pervious

    area does not contribute to runoff.

    Qp

    = CiA = (0.4)(3 in/hr)(20 ac)

    = 24 cfs

    Qp = 0.75 CiA = 0.75 (0.4)(3in/hr)(20 ac) = 18 cfs

    0.75p

    Q CiA!

    pQ CiA!

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    13/31

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    14/31

    Lecture No. 6-1 14

    pQ KCiA!

    where:

    K = 2/(1+x) = attenuation

    factor

    C = Runoff coefficient

    i = Intensity (in/hr)

    A = Watershed area (acre)

    The SCS (NRCS) Hydrograph - General

    NOTE: The attenuation factor K

    is given in Table 6.6 on page 213

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    15/31

    Lecture No. 6-1 15

    The SCS (NRCS) Unit Hydrograph

    1. For large watersheds, time of concentration tc"" duration (D) of constant rainfall intensity

    2. Rainfall cannot last long enough that the

    peak flow, Qp, will occur at time tc

    3. Instead, the peak flow, Qp, will occur at time

    tp, which is a function of rainfall duration D

    and the watershed characteristics represented

    by tc

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    16/31

    Lecture No. 6-1 16

    The SCS (NRCS) Unit Hydrograph

    2

    4.33p

    p

    CiADQ

    t!

    1 2V V!

    3.33r p

    t t!

    where:

    2/4.33 = attenuation factorD = Rainfall duration

    i = Intensity (in/hr)

    A = Watershed area (acre)

    0.46pp

    CiADQ

    t!

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    17/31

    Lecture No. 6-1 17

    The SCS (NRCS) Unit Hydrograph

    21

    p

    p

    CiADQx t

    !

    1 2V V!

    r pt xt!

    2

    1p

    p p

    AR KARQ

    x t t

    ! !

    2p

    Dt L! 0.6 cL t!where: R = Rainfall excess and

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    18/31

    Lecture No. 6-1 18

    The SCS (NRCS) Unit Hydrograph

    2( 1, )

    1p

    p

    KARq with R K

    t x! ! !

    Now you can do problem 19 on page 252

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    19/31

    Lecture No. 6-1 19

    The SCS (NRCS) Unit Hydrograph

    SCS Unit Hydrograph

    0

    50

    100

    150

    200

    250

    300

    0.00 1.00 2.00 3.00 4.00

    Time (hr)

    Discharge(cfs) SCS Curve Unit

    Hydrograph

    SCS Triangular Unit

    Hydrograph

    Time Discharge

    (hr) (cfs)

    0.00 0

    0.25 73

    0.50 246

    0.75 293

    1.00 202

    1.25 121

    1.50 72

    1.75 41

    2.00 26

    2.25 15

    2.50 9

    2.75 6

    3.00 3

    3.25 1

    3.50 0

    time q

    0 0

    0.68 300

    1.8 0

    Example Problem 6.4 (page 219) For an actual drainage basin with data shown in

    Table 6.8, compute a unit hydrograph using the typical SCS hydrograph shape

    (K=484).tc = 55 min = 0.92 hr, A = 270 acre = 0.42 mi

    2, K = 484

    L = 0.6 tc = 0.55 hr, Assume D = 0.5L = 0.28 hr} 0.25 hr

    / 2 0.25 / 2 0.55 0.68pt D L hr! ! !0.6 0.6 0.92 0.55c L t hr! ! v !

    ( 1)p

    p

    KARq with R

    t

    ! !qp = 484 x0.42 x1/0.68

    = 298.94}

    300 cfs

    (File Table 6-9.xls sheet 1)

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    20/31

    Lecture No. 6-1 20

    Time Discharge Time Disicharge Curve UH

    Ratio Ration (T) (q) Time Discharge

    (t/tp) (q/qp) (hr) (cfs) (hr) (cfs)

    0.00 0.000 0.000 0.00 0.00 00.10 0.015 0.068 4.50 0.25 73

    0.20 0.075 0.136 22.50 0.50 246

    0.30 0.160 0.204 48.00 0.75 293

    0.40 0.280 0.272 84.00 1.00 202

    0.50 0.430 0.340 129.00 1.25 121

    0.60 0.600 0.408 180.00 1.50 72

    0.70 0.770 0.476 231.00 1.75 41

    0.80 0.890 0.544 267.00 2.00 26

    1.00 1.000 0.680 300.00 2.25 15

    1.10 0.980 0.748 294.00 2.50 91.20 0.920 0.816 276.00 2.75 6

    1.30 0.840 0.884 252.00 3.00 3

    1.40 0.750 0.952 225.00 3.25 1

    1.50 0.650 1.020 195.00 3.50 0

    1.60 0.570 1.088 171.00

    1.80 0.430 1.224 129.00

    2.00 0.320 1.360 96.00

    2.20 0.240 1.496 72.00

    2.40 0.180 1.632 54.00

    2.60 0.130 1.768 39.002.80 0.098 1.904 29.40

    3.50 0.036 2.380 10.80

    4.00 0.018 2.720 5.40

    4.50 0.009 3.060 2.70

    5.00 0.004 3.400 1.20

    Table 6.9 Calculation of Unit Hydrograph SCS Procedure

    (tp = 0.68), (qp = 300)

    Computation of Unit Hydrograph Clock HourReading

    (File Table 6-9.xls sheet 1)(File Table 6-7.xls sheet 3)

    Time Discharge

    t/tp q/qp

    0.00 0.000

    0.10 0.0150.20 0.075

    0.30 0.160

    0.40 0.280

    0.50 0.430

    0.60 0.600

    0.70 0.770

    0.80 0.890

    1.00 1.000

    1.10 0.980

    1.20 0.9201.30 0.840

    1.40 0.750

    1.50 0.650

    1.60 0.570

    1.80 0.430

    2.00 0.320

    2.20 0.240

    2.40 0.180

    2.60 0.130

    2.672.80 0.098

    3.50 0.036

    4.00 0.018

    4.50 0.009

    5.00 0.004

    Dimensionless

    Hudrograph

    for K = 484

    Table 6.7 Ratios

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    21/31

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    22/31

    Lecture No. 6-1 22

    Cumulative TA Curve

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    t/tc

    TA

    Incremental TA Curve

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    t/tc

    TA

    1.51.414 (0 0.5)i i iTA T T ! e

    1.51 1.414(1 ) (0.5 1)i i iTA T T !

    Develop a time area (TA) curve

    (File Table 6-10.xls sheet 1)

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    23/31

    Lecture No. 6-1 23

    (File Table 6-10.xls sheet 1)

    Table 6.10 Development of a TA for Example 6.5Time (hr) Time/t

    cCumulative TA Incremental TA t

    c= 7 hr

    0.0 0.000 0.000 0.000

    1.0 0.143 0.076 0.076

    2.0 0.286 0.216 0.140

    3.0 0.429 0.397 0.1814.0 0.571 0.603 0.207

    5.0 0.714 0.784 0.181

    6.0 0.857 0.924 0.140

    7.0 1.000 1.000 0.076

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    24/31

    Lecture No. 6-1 24

    Routing the time area curve

    22

    tcR t

    (!

    (1(1 )i i iIUH cTA c IUH!

    where:

    (t = time step size (hr), R = Clark routing parameter (hr)

    c = linear routing coefficient

    IUHi = the i-th increment of the instantaneous unit hydrograph

    10.5( )i i iTA TA TA !

    10.5( )i i iUH IUH IUH !

    where:

    UHi = the i-th increment of the unit hydrograph

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    25/31

    Lecture No. 6-1 25

    Example Problem 6.5 (page 223). A 15-mi2 watershed in the western part of the

    United States has a time of concentration of 7 hr. If the Clark storage coefficient R

    is estimated to be 8 hr, calculate the unit hydrograph

    Table 6.11 Final Results of the Generation of Unit Hydrograph by the Clark Method c= 0.117647059

    for Example Problem 6.5

    Time Step Incremental TA IUH Offset IUH Final IUH UH (cfs)

    1 0.000 0.0000 0.0045 0.0022 22

    2 0.076 0.0045 0.0167 0.0106 102

    3 0.140 0.0167 0.0336 0.0251 243

    4 0.181 0.0336 0.0524 0.0430 416

    5 0.207 0.0524 0.0691 0.0608 588

    6 0.181 0.0691 0.0799 0.0745 721

    7 0.140 0.0799 0.0832 0.0815 789

    8 0.076 0.0832 0.0779 0.0805 779

    9 0.000 0.0779 0.0687 0.0733 709

    10 0.000 0.0687 0.0606 0.0647 626

    11 0.000 0.0606 0.0535 0.0570 552

    12 0.000 0.0535 0.0472 0.0503 487

    13 0.000 0.0472 0.0416 0.0444 430

    14 0.000 0.0416 0.0367 0.0392 379

    15 0.000 0.0367 0.0324 0.0346 335

    16 0.000 0.0324 0.0286 0.0305 295

    17 0.000 0.0286 0.0252 0.0269 261

    (File Table 6-11.xls sheet 1)

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    26/31

    Lecture No. 6-1 26

    18 0.000 0.0252 0.0223 0.0238 230

    19 0.000 0.0223 0.0196 0.0210 203

    20 0.000 0.0196 0.0173 0.0185 179

    21 0.000 0.0173 0.0153 0.0163 158

    22 0.000 0.0153 0.0135 0.0144 139

    23 0.000 0.0135 0.0119 0.0127 123

    24 0.000 0.0119 0.0105 0.0112 108

    25 0.000 0.0105 0.0093 0.0099 96

    26 0.000 0.0093 0.0082 0.0087 84

    27 0.000 0.0082 0.0072 0.0077 75

    28 0.000 0.0072 0.0064 0.0068 66

    29 0.000 0.0064 0.0056 0.0060 58

    30 0.000 0.0056 0.0050 0.0053 51

    31 0.000 0.0050 0.0044 0.0047 45

    32 0.000 0.0044 0.0039 0.0041 40

    33 0.000 0.0039 0.0034 0.0036 35

    34 0.000 0.0034 0.0030 0.0032 31

    35 0.000 0.0030 0.0027 0.0028 27

    36 0.000 0.0027 0.0023 0.0025 24

    (File Table 6-11.xls sheet 1)

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    27/31

    Lecture No. 6-1 27

    0

    0.01

    0.02

    0.03

    0.04

    0.050.06

    0.07

    0.08

    0.09

    0 10 20 30 40

    Time (hr)

    Discharge(unitrainfallunitare

    perunittim

    e)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 10 20 30 40

    Time (hr)

    Discharge(cfs)

    (File Table 6-11.xls sheet 2)

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    28/31

    Lecture No. 6-1 28

    Santa Barbara Urban Hydrograph

    1. Compute rainfall excess for each (t; note: this will

    be a function of pervious and impervious areas.

    2. Convert rainfall excess to instant hydrograph, I((t)

    3. SBUH is obtained by routing

    ( )( )

    R t AI t

    t

    (( !

    (

    (2) (1) [ (1) (2) 2 (1)]r

    Q Q K I I Q!

    where:

    (2 )r

    c

    tK

    t t

    (!

    (

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    29/31

    Lecture No. 6-1 29

    (File Table 6-12.xls sheet 1)

    Given are 270.6 Compute 1. Routing Coefficient

    d' (fraction) 0.75 Kr=Dt/(2tc+ 0.12

    (t=15 min 0.25

    tc=55 min = 0.92 2. Des ing hydrographCN (perviou 54

    S' 8.52

    Rainfall Rainfall ainfall exces ainfall exces ainfall exces Total Runoff Instant Watershed

    Time Depth Depth r Runoff dept Runoff depth Runoff depth Depth Infiltration Hydrograph Hydrograph

    Time (min) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (cfs) (cfs)

    Increment t P((t) P(t) Rperv(t) Rperv ((t) Rimperv ((t) Rt((t) F((t) I(t) Q(t)

    0 0 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.00 0.00

    1 15 0.10 0.10 0.001 0.001 0.100 0.075 0.025 82.17 9.83

    2 30 0.11 0.21 0.005 0.004 0.110 0.083 0.027 91.10 28.20

    3 45 0.12 0.33 0.012 0.007 0.120 0.092 0.028 100.21 44.34

    4 60 0.15 0.48 0.026 0.013 0.150 0.116 0.034 126.41 60.84

    5 75 0.16 0.64 0.045 0.019 0.160 0.125 0.035 136.19 77.70

    6 90 0.17 0.81 0.070 0.026 0.170 0.134 0.036 146.14 92.88

    7 105 0.27 1.08 0.122 0.051 0.270 0.215 0.055 234.98 116.25

    8 120 0.30 1.38 0.192 0.071 0.300 0.243 0.057 264.91 148.23

    9 135 1.08 2.46 0.551 0.359 1.080 0.900 0.180 981.96 261.9210 150 1.14 3.60 1.069 0.518 1.140 0.985 0.155 1074.56 445.25

    11 165 0.32 3.92 1.235 0.166 0.320 0.281 0.039 307.22 504.02

    12 180 0.28 4.20 1.387 0.152 0.280 0.248 0.032 270.55 452.55

    13 195 0.24 4.44 1.521 0.134 0.240 0.214 0.026 233.11 404.53

    thus, R = P2/(P+S')

    Table 6.12 Design Hydrograph

    Note: Rainfall excess for pervious area calculated assumi

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    30/31

    Lecture No. 6-1 30

    14 210 0.24 4.68 1.659 0.138 0.240 0.215 0.025 234.16 363.65

    15 225 0.18 4.86 1.765 0.106 0.180 0.162 0.018 176.27 325.74

    16 240 0.16 5.02 1.861 0.096 0.160 0.144 0.016 157.14 287.70

    17 255 0.14 5.16 1.947 0.085 0.140 0.126 0.014 137.83 254.15

    18 270 0.13 5.29 2.027 0.080 0.130 0.118 0.012 128.26 225.18

    19 295 0.13 5.42 2.108 0.081 0.130 0.118 0.012 128.51 202.0220 300 0.12 5.54 2.183 0.076 0.120 0.109 0.011 118.85 183.28

    21 315 0.12 5.66 2.259 0.076 0.120 0.109 0.011 119.05 167.89

    22 330 0.12 5.78 2.336 0.077 0.120 0.109 0.011 119.25 156.23

    23 345 0.11 5.89 2.408 0.071 0.110 0.100 0.010 109.48 146.21

    24 360 0.11 6.00 2.480 0.072 0.110 0.100 0.010 109.64 137.45

    25 375 0.00 6.00 2.480 0.000 0.000 0.000 0.000 0.00 117.68

    26 390 0.00 6.00 2.480 0.000 0.000 0.000 0.000 0.00 89.53

    27 405 0.00 6.00 2.480 0.000 0.000 0.000 0.000 0.00 68.11

    28 420 0.00 6.00 2.480 0.000 0.000 0.000 0.000 0.00 51.82

    29 435 0.00 6.00 2.480 0.000 0.000 0.000 0.000 0.00 39.42450 29.99

    465 22.81

    480 17.36

    495 13.20

    510 10.05

    525 7.64

    540 5.81

    555 4.42

    570 3.36

    585 2.56600 1.95

    Design Hydrograph using the SBUH Method

    0.00

    100.00

    200.00

    300.00

    400.00

    500.00

    600.00

    0 100 200 300 400 500 600

    Time (min)

    Discharge(cfs)

    Kr = 0.12

    (File Table 6-12.xls sheet 1)

  • 8/3/2019 Lecture 06 Synthetic Hydro Graphs

    31/31

    Lecture No. 6-1 31

    CWR 4101 Hydrograph Generation

    Synthetic Hydrographs Chapter 6

    Synthetic Hydrographs Methods

    Rational

    NRCS or SCS

    Clark Unit Graph

    Santa Barbara