Lecture 04 OCLS

Embed Size (px)

Citation preview

  • 7/30/2019 Lecture 04 OCLS

    1/48

    Lecture 4: Well-Posedness and Internal Stability

    Well-Posedness of Feedback Systems

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 1/17

  • 7/30/2019 Lecture 04 OCLS

    2/48

    Lecture 4: Well-Posedness and Internal Stability

    Well-Posedness of Feedback Systems

    Internal Stability of Feedback Systems

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 1/17

  • 7/30/2019 Lecture 04 OCLS

    3/48

    One Degree of Freedom Feedback Control System

    K and P represent the controller and the plant,

    r and y are the reference and the output,

    up and yp the input and output of the plant,

    di and d the input and output disturbances,

    n is the measurement noise.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 2/17

  • 7/30/2019 Lecture 04 OCLS

    4/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    5/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)up + d, up = u + di

    u = K(s) r n y

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    6/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n y

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    7/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu = K(s)

    r n

    P(s)

    u + di

    + d

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    8/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu = r n

    P(s)

    u + di

    + d

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    9/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu + P(s)u = r n P(s)di d

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    10/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu =

    1 + P(s)

    1

    [r n P(s)di d]

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    11/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu =

    1 + P(s)

    1

    [r n P(s)di d]

    u =

    1

    s 1

    s + 2

    1

    r n +

    s 1

    s + 2di d

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    12/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu =

    1 + P(s)

    1

    [r n P(s)di d]

    u =

    s + 2 (s 1)

    s + 2

    1

    r n +

    s 1

    s + 2di d

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    13/48

    Example of a not realizable system

    Suppose that

    P(s) = s 1

    s + 2, K(s) = 1

    y = P(s)

    u + di

    + d

    u = K(s) r n yu =

    1 + P(s)

    1

    [r n P(s)di d]

    u =

    s + 2 (s 1)

    s + 2

    1

    r n +

    s 1

    s + 2di d

    u =

    s + 2

    3

    r n d

    +

    s 1

    3 di

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 3/17

  • 7/30/2019 Lecture 04 OCLS

    14/48

    Concept of Well-Posedness:

    A closed-loop system is said to be well-posed, if all transferfunctions (matrices) from all the external signals

    r, n, di, d

    to the input and output signals

    y and u

    are proper (the degree of the numerator is not bigger than thedegree of the denominator).

    If this is not true, the system is not physically realizable.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 4/17

  • 7/30/2019 Lecture 04 OCLS

    15/48

    Combining external signals

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 5/17

  • 7/30/2019 Lecture 04 OCLS

    16/48

    Combining external signals

    K(s) = K(s), w1 = di, w2 = n + d r

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 5/17

  • 7/30/2019 Lecture 04 OCLS

    17/48

    One Degree of Freedom Feedback Control System

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 6/17

  • 7/30/2019 Lecture 04 OCLS

    18/48

    One Degree of Freedom Feedback Control System

    e1 = w1 + K(s)e2, e2 = w2 + P(s)e1

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 6/17

  • 7/30/2019 Lecture 04 OCLS

    19/48

    One Degree of Freedom Feedback Control System

    e1 = w1 + K(s)e2, e2 = w2 + P(s)e1

    e1 = w1+Kw2 + P e1 e1 = I K(s)P(s)1

    w1 + K(s)w2

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 6/17

  • 7/30/2019 Lecture 04 OCLS

    20/48

    One Degree of Freedom Feedback Control System

    e1 = w1 + K(s)e2, e2 = w2 + P(s)e1

    e1 = I K(s)P(s)1

    w1 + K(s)w2e2 =

    I P(s)K(s)

    1

    w2 + P(s)w1

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 6/17

  • 7/30/2019 Lecture 04 OCLS

    21/48

    Criteria for Well-Posedness

    The feedback system with proper K(s) and P(s)

    e1 = I K(s)P(s)1

    w1 + K(s)w2e2 =

    I P(s)K(s)

    1

    P(s)w1 + w2

    is well-posed if and only if

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 7/17

  • 7/30/2019 Lecture 04 OCLS

    22/48

    Criteria for Well-Posedness

    The feedback system with proper K(s) and P(s)

    e1 = I K(s)P(s)1

    w1 + K(s)w2e2 =

    I P(s)K(s)

    1

    P(s)w1 + w2

    is well-posed if and only if the matrix transfer function

    I K(s)P(s)

    1

    exists and is proper.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 7/17

  • 7/30/2019 Lecture 04 OCLS

    23/48

    Criteria for Well-Posedness

    The feedback system with proper K(s) and P(s)

    e1 = I K(s)P(s)1

    w1 + K(s)w2e2 =

    I P(s)K(s)

    1

    P(s)w1 + w2

    is well-posed if and only if the matrix

    I K(s)P(s)

    s=+is invertible.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 7/17

  • 7/30/2019 Lecture 04 OCLS

    24/48

    Criteria for Well-Posedness

    The feedback system with proper K(s) and P(s)

    e1 = I K(s)P(s)1

    w1 + K(s)w2e2 =

    I P(s)K(s)

    1

    P(s)w1 + w2

    is well-posed if and only if the matrix

    I K(s)P(s)

    s=+is invertible.

    It is sufficient to have either K(s) or P(s) strictly proper.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 7/17

  • 7/30/2019 Lecture 04 OCLS

    25/48

    Lecture 4: Concepts of Well-Posedness and Internal

    Stability

    Well-Posedness of Feedback System

    Internal Stability of Feedback System

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 8/17

  • 7/30/2019 Lecture 04 OCLS

    26/48

    Concept of Internal Stability of Feedback System:

    The well-posed feedback system

    e1 = w1 + K(s)e2, e2 = w2 + P(s)e1

    or the well-posed feedback system

    e1 =

    I K(s)P(s)

    1

    w1 + K(s)w2

    e2 = I P(s)K(s)1

    P(s)w1 + w2is said to be internally stable if all 4 transfer functions

    from (w1, w2) to (e1, e2)

    have no poles in the closed right-half plane, i.e.

    (I KP)1, (I KP)1K, (I PK)1P, (I PK)1

    belong to RH .

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 9/17

  • 7/30/2019 Lecture 04 OCLS

    27/48

    Example

    Suppose that

    P(s) = s 1

    s + 1, K(s) =

    1

    s 1

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 10/17

  • 7/30/2019 Lecture 04 OCLS

    28/48

    Example

    Suppose that

    P(s) = s 1

    s + 1, K(s) =

    1

    s 1

    Then

    e1e2

    =

    I K(s)P(s)1

    I

    K(s)P(s)1

    K(s)I P(s)K(s)

    1

    P(s)

    I P(s)K(s)1

    w1w2

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 10/17

  • 7/30/2019 Lecture 04 OCLS

    29/48

    Example

    Suppose that

    P(s) = s 1

    s + 1, K(s) =

    1

    s 1

    Then

    e1e2

    =

    I K(s)P(s)1

    I

    K(s)P(s)1

    K(s)I P(s)K(s)

    1

    P(s)

    I P(s)K(s)1

    w1w2

    =

    s + 1s + 2

    (s + 1)(s 1)(s + 2)

    s 1

    s + 2

    s + 1

    s + 2

    w1

    w2

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 10/17

  • 7/30/2019 Lecture 04 OCLS

    30/48

    Example

    Suppose that

    P(s) = s 1

    s + 1, K(s) =

    1

    s 1

    Then

    e1e2

    =

    I K(s)P(s)1

    I

    K(s)P(s)1

    K(s)I P(s)K(s)

    1

    P(s)

    I P(s)K(s)1

    w1w2

    =

    s + 1s + 2

    (s + 1)(s 1)(s + 2)

    s 1

    s + 2

    s + 1

    s + 2

    w1

    w2

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 10/17

  • 7/30/2019 Lecture 04 OCLS

    31/48

    Co-Prime Factorization

    Two polynomials

    p(s) = sk + p1 sk1 + + pk1 s + pk

    q(s) = sm + q1 sm1 + + qm1 s + qm

    are called co-prime if they have no common roots.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 11/17

  • 7/30/2019 Lecture 04 OCLS

    32/48

    Co-Prime Factorization

    Two polynomials

    p(s) = sk + p1 sk1 + + pk1 s + pk

    q(s) = sm + q1 sm1 + + qm1 s + qm

    are called co-prime if they have no common roots.

    If p(s) and q(s) are co-prime, then there are two polynomialsx(s) and y(s) such that

    x(s)p(s) + y(s)q(s) = 1

    and the pair ( x(s) , y(s) ) can be found from the (reversed)Euclids algorithm.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 11/17

  • 7/30/2019 Lecture 04 OCLS

    33/48

    Co-Prime Factorization

    Two transfer functions p(s) RH , q(s) RH arecalled co-prime if there are two new transfer functionsx(s) RH and y(s) RH such that

    x(s)p(s) + y(s)q(s) = 1

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 12/17

  • 7/30/2019 Lecture 04 OCLS

    34/48

    Co-Prime Factorization

    Two transfer functions p(s) RH , q(s) RH arecalled co-prime if there are two new transfer functionsx(s) RH and y(s) RH such that

    x(s)p(s) + y(s)q(s) = 1

    Meaning: if p(s) and q(s) have a common divisor h RH :

    p(s) = h(s)p1(s) and q(s) = h(s)q1(s)

    such that

    p1(s) RH and q1(s) RH

    then

    h1(s) RH

    i.e. h(s) has neither zeros no poles in the closed right-halfplane (such transfer functions are called minimum-phase).

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 12/17

  • 7/30/2019 Lecture 04 OCLS

    35/48

    Co-Prime Factorization

    Two matrix transfer functions M(s), N(s) RH are calledright co-prime over RH if

    they have the same number of columns

    there are matrices Xr(s) , Yr(s) RH such that

    Xr(s), Yr(s)

    M(s)

    N(s)

    = Xr(s)M(s)+Yr(s)N(s) = I

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 13/17

  • 7/30/2019 Lecture 04 OCLS

    36/48

    Co-Prime Factorization

    Two matrix transfer functions M(s), N(s) RH are calledright co-prime over RH if

    they have the same number of columns

    there are matrices Xr(s) , Yr(s) RH such that

    Xr(s), Yr(s)

    M(s)

    N(s)

    = Xr(s)M(s)+Yr(s)N(s) = I

    Two matrix transfer functions M(s), N(s) RH are calledleft co-prime over RH if

    they have the same number of rows there are matrices Xl(s) , Yl(s) RH such that

    M(s), N(s) Xl(s)Yl(s)

    = M(s)Xl(s)+N(s)Yl(s) = Ic A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 13/17

  • 7/30/2019 Lecture 04 OCLS

    37/48

    Defining a Co-Prime Factorization

    Given a matrix transfer function G(s) , then

    G(s) = N(s)M1(s) is a right co-prime factorization, if

    M(s), N(s) are right co-prime over RH ;

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 14/17

  • 7/30/2019 Lecture 04 OCLS

    38/48

    Defining a Co-Prime Factorization

    Given a matrix transfer function G(s) , then

    G(s) = N(s)M1(s) is a right co-prime factorization, if

    M(s), N(s) are right co-prime over RH ;

    G(s) = M1(s)N(s) is a left co-prime factorization, if

    M(s),

    N(s) are left co-prime over

    RH;

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 14/17

  • 7/30/2019 Lecture 04 OCLS

    39/48

    Defining a Co-Prime Factorization

    Given a matrix transfer function G(s) , then

    G(s) = N(s)M1(s) is a right co-prime factorization, if

    M(s), N(s) are right co-prime over RH ;

    G(s) = M1(s)N(s) is a left co-prime factorization, if

    M(

    s)

    , N(

    s) are left co-prime over

    RH;

    G(s) is said to have double co-prime factorization, if thereare right and left co-prime factorizations such

    Xr(s) Yr(s)

    N(s) M(s)

    M(s) Yl(s)

    N(s) Xl(s)

    = I

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 14/17

  • 7/30/2019 Lecture 04 OCLS

    40/48

    Computing a Co-Prime Factorization

    Given a matrix transfer function G(s) = A B

    C D

    with

    (A, B) stabilizable, i.e. F : (A + BF) is stable;

    (A, C) detectable, i.e. L : (A + LC) is stable;

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 15/17

    C i C P i F i i

  • 7/30/2019 Lecture 04 OCLS

    41/48

    Computing a Co-Prime Factorization

    Given a matrix transfer function G(s) = A B

    C D

    with

    (A, B) stabilizable, i.e. F : (A + BF) is stable;

    (A, C) detectable, i.e. L : (A + LC) is stable;

    The left and right co-prime factorizations can be computed as

    M(s) Yl(s)N(s) Xl(s)

    :=

    A + BF B LF I 0C + DF D I

    Xr(s) Yr(s)

    N(s) M(s)

    :=

    A + LC (B + LD) LF I 0C D I

    That is, G(s) = N(s)M

    1(s) = M

    1(s)N(s) , and theseare coefficients of the double co-prime factorization.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 15/17

    U i C P i F t i ti

  • 7/30/2019 Lecture 04 OCLS

    42/48

    Using a Co-Prime Factorization

    One Degree of Freedom Feedback Control System

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 16/17

    U i C P i F t i ti

  • 7/30/2019 Lecture 04 OCLS

    43/48

    Using a Co-Prime Factorization

    Given plant and controller matrix transfer functions

    P(s) = N(s)M1(s) = M1(s)N(s)

    K(s) = U(s)V

    1

    (s) =V

    1

    (s)

    U(s)

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 16/17

    Using a Co Prime Factorization

  • 7/30/2019 Lecture 04 OCLS

    44/48

    Using a Co-Prime Factorization

    Given plant and controller matrix transfer functions

    P(s) = N(s)M1(s) = M1(s)N(s)

    K(s) = U(s)V

    1

    (s) =V

    1

    (s)

    U(s)

    The following conditions are equivalent:

    the closed-loop system is internally stable; (I KP)1 , (I KP)1K , (I PK)1P , and

    (I PK)1 RH ;

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 16/17

    Using a Co Prime Factorization

  • 7/30/2019 Lecture 04 OCLS

    45/48

    Using a Co-Prime Factorization

    Given plant and controller matrix transfer functions

    P(s) = N(s)M1(s) = M1(s)N(s)

    K(

    s) =

    U(

    s)

    V1

    (s

    ) =V1

    (s

    )U

    (s

    )

    The following conditions are equivalent:

    the closed-loop system is internally stable; (I KP)1 , (I KP)1K , (I PK)1P , and

    (I PK)1 RH ;

    the matrix function

    M U

    N V

    is invertible in RH ;

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 16/17

    Using a Co Prime Factorization

  • 7/30/2019 Lecture 04 OCLS

    46/48

    Using a Co-Prime Factorization

    Given plant and controller matrix transfer functions

    P(s) = N(s)M1(s) = M1(s)N(s)

    K(

    s) =

    U(

    s)

    V1

    (s

    ) =V1

    (s

    )U

    (s

    )

    The following conditions are equivalent:

    the closed-loop system is internally stable; (I KP)1 , (I KP)1K , (I PK)1P , and

    (I PK)1 RH ;

    the matrix function

    M U

    N V

    is invertible in RH ;

    the matrix function V U

    N M

    is invertible in RH

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 16/17

    Next Lecture / Assignments:

  • 7/30/2019 Lecture 04 OCLS

    47/48

    Next Lecture / Assignments:

    Next lecture (February 2, 13:15-15:00, in A208):Performance Specifications and Limitations.

    The first assignment is due to hand in.

    Next practice: February 3, 10:15-12:00, in A205,

    You are invited to attend Ph.D. defense of Uwe Metin:February 5, 9:00-12:00, in N200, Naturvetarhuset;Title: Principles for Planning and Analyzing Motions of Underactu-

    ated Mechanical Systems and Redundant Manipulators.

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 17/17

    Next Lecture / Assignments:

  • 7/30/2019 Lecture 04 OCLS

    48/48

    Next Lecture / Assignments:

    Next lecture (February 2, 13:15-15:00, in A208):Performance Specifications and Limitations.

    The first assignment is due to hand in.

    Next practice: February 3, 10:15-12:00, in A205,

    You are invited to attend Ph.D. defense of Uwe Metin:February 5, 9:00-12:00, in N200, Naturvetarhuset;Title: Principles for Planning and Analyzing Motions of Underactu-

    ated Mechanical Systems and Redundant Manipulators.

    Problem: Let G(s) = (s1)(s+2)(s3) . Find a stable co-prime

    factorization G(s) = n(s)m(s)

    and x, y RH such that

    xn + ym = 1 .

    c A.Shiriaev/L. Freidovich. Januar 29, 2010. O timal Control for Linear S stems: Lecture 4 . 17/17