Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

Embed Size (px)

Citation preview

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    1/15

    Heat ExchangersDr. Senthilmurugan S. Department of Chemical Engineering IIT Guwahati - CL204 - Part !

    LMTD method

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    2/15

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    3/15

    5/12/16 | Slide .

    Temperature ro!ile and Enthalp" #alances in Heatexchangers

    ! onl" sensi+le heat is trans!erred and

    constant speci!ic heats are assumed

    &here cpc % speci!ic heat o! cold !luid

    cph % speci!ic heat o! &arm !luid

    arallel !lo&

    +a  ( ) ( )h ph ha hb c pc cb cam c T T m c T T  − = −& &

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    4/15

    5/12/16 | Slide 0

    Temperature ro!ile and Enthalp" #alances in Heatexchangers

    ,ondenser  The (apor enters the condenser as

    saturated (apor no superheat and

    lea(es the condensate lea(es at

    condensing temperature &ithout +eing

    !urther cooled3

    $here % 4ate o! condensation o!

    (apour' hlh % latent heat o! (aporiation

    o! (apour 

    ! the condensate lea(es at a

    temperature that is less than the

    condensing temperature o! the (apor 

     

    ( )h lh c pc cb cam h m c T T q= − =& &

    ( )

    ( )

    h lh ph hb ha

    c pc cb ca

    m h c T T  

    m c T T  

    + − = −

    &

    &

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    5/15

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    6/15

    5/12/16 | Slide 6

    ntegration o! heat !lux across H-

    To calculate heat !lux to the entire area o! a

    heat exchanger 7o' the euation must +e

    integrated3 This can +e done !ormall" &here

    certain simpli!"ing assumptions are accepted3

    The assumptions are

    13 The o(erall coe!!icient U is constant'

    23 The speci!ic heats o! the hot and cold!luids are constant'

    .3 Heat exchange &ith the am+ient is

    negligi+le'

    03 The !lo& is stead" and either parallel or

    counter current'

    .

    Moderate temperature ' the assumption o!constant U and Cp is not seriousl" in error3

    .  7ssumptions 2 and 0 impl" that i! Tc and Th'

    are plotted against gi(es straight line linear

    relationship3 Since Th and Tc ' (ar" linearl"

    &ith ' 8T

    The heat trans!erred through an element

    o! area d7 ma" +e &ritten

    Th% a(g3 temperature o! hot stream at

    area d7o T,% a(g3 temperature o! cold stream at

    area d7i corresponding to d7o

    9o% *(er all heat trans!er coe!!icient+ased on d7o

     

    ,on(ection

    Energ" #alance

    ( )o o h cdq U dA T T  = −

    h ph hdq m c dT  = − &

    c pc cdq m c dT  =   &

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    7/15

    5/12/16 | Slide :

    ntegration o! heat !lux across H-

    hh ph

    dqdT 

    m c=

    − &

    c

    c pc

    dqdT 

    m c=&

    1 1h c

    c pc h ph

    dT dT dqm c m c

     − = − + ÷ ÷  & &

    ( )o o h cdq U dA T T  = −

    ( )   1 1h co o

    h c c pc h ph

    d T T U dA

    T T m c m c

     −= − + ÷ ÷−  & &

    ( )

    0

    1 1hb cb o

    ha ca

    T T A

    h c

    o o

    h c c pc h phT T 

    d T T 

    U dAT T m c m c

     −= − + ÷ ÷−  ∫ ∫ & &

    1 1ln

      hb cbo o

    ha ca c pc h ph

    T T U A

    T T m c m c

       −= − + ÷ ÷ ÷−      & &

    ( ) ( )) )h ph ha hb c pc cb caq m c T T m c T T  = − = −& &

    ( )ln   hb cb o o ha hb cb caha ca

    T T U AT T T T  

    T T q  − −= − + − ÷−  

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    8/15

    5/12/16 | Slide ;

    ntegration o! heat !lux across H-,o

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    9/15

    5/12/16 | Slide =

    Logarithmic Mean Temperature Di!!erence LMTD

    Distance

    Tha

    Tc+

    Th+

    Tca

    d

    d7

    ,old !luid Tc

    Hot !luid Th 

    8Ta8T+

    Distance

    Tha

    Tc+

    Th+

    Tca

    d

    d7,old !luid Tc

    Hot !luid Th 

    8T+

    n

    b a M 

    b

    a

    T T T T 

    l T 

    ∆ − ∆∆ =  ∆   ÷∆  

    n

    b a M 

    b

    a

    T T T T 

    l T 

    ∆ − ∆∆ =  ∆ ÷∆  

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    10/15

    5/12/16 | Slide 1>

    ,orrection !actor !or LMTD

    LMTD correction is reuired &hen

    !ollo&ing assumptions are not hold?

    13 The o(erall coe!!icient U is

    constant'

    23 The speci!ic heats o! the hot and

    cold !luids are constant'.3 Heat exchange &ith the am+ient is

    negligi+le' and

    03 The !lo& is stead" and either

    parallel or counter current'

    53

    @ (s T linear +eha(iours13 Hot stream is saturated

    (apor'

    23 Ao reaction occur during heat

    exchange

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    11/15

    5/12/16 | Slide 11

    Tca

    Tc+

    Baria+le *(erall Heat Trans!er ,oe!!icient

    $hen 9 (aries linearl" &ith the

    temperature drop o(er the entire heating

    sur!ace then total heat !lux is de!ined as

    Distance

    Tha

    Tc+

    Th+

    Tca

    d

    d7

    ,old !luid Tc

    Hot !luid Th 

    8Ta8T+

    n

    ob b oa ao

    ob b

    oa a

    U T U T  q A

    U T l U T 

    ∆ − ∆=

     ∆   ÷∆  

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    12/15

    5/12/16 | Slide 12

    ,orrection o! LMTD !or ,ross!lo& H-

    $hen !lo& t"pes other than countercurrent

    or parallel appear' it is customar" to de!ine

    a correction !actor FG, &hich is so

    determined that &hen it is multiplied +" the

    LMTD !or countercurrent !lo&' the product

    is the true a(erage temperature drop3

    The !actor C is the ratio o! the !all in

    temperature o! the hot !luid to the rise in

    temperature o! the cold !luid3

    The !actor ηH is the heating e!!ecti(eness'or the ratio o! the actual temperature rise o!the cold !luid to the maximum possi+le

    temperature rise o+taina+le i! the &arm<

    end approach &ere ero +ased on

    countercurrent !lo&3

    ,orrection o! LMTD !or cross!lo&3

    G o o M  q F U A T  = ∆

    in out  

    out in

    h h

    c c

    T T  Z 

    T T −= −out in

    in in

    c h H 

    h c

    T T 

    T T η  −= −

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    13/15

    5/12/16 | Slide 1.

    ,orrection o! LMTD

    F is al&a"s less than unit"3 The mean

    temperature drop' and there!ore the capacit" o! the

    exchanger' is less than that o! a countercurrent

    exchanger ha(ing the same LMTD3

    $hen F G is less than a+out >3;' the exchanger

    should +e redesigned &ith more passes or larger

    temperature di!!erences? other&ise the heat<

    trans!er sur!ace is ine!!icientl" used and there isdanger that small changes in operating conditions

    ma" cause the exchanger to +ecome unsta+le

    operation3

    $hen F G is less than >3:5' it !alls rapidl" as ηH increases' so that operation is sensiti(e to small

    changes3 n this region' also'

     7n" de(iations !rom the +asic assumptions on&hich the charts are +ased +ecome important'

    especiall" that o! a uni!orm thermal histor" !or all

    elements o! !luid3 Leaage through and around the

    +a!!les ma" partiall" in(alidate this assumption3

    1

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    14/15

    5/12/16 | Slide 10

    Siing a Heat ExchangerF

    ,ase 1F *utlet temperature H- is no&n

    *ne euation and one unno&n

    Eas" to sol(e

    ,ase 2F *utlet temperature hot stream H- is

    unno&n

    *ne euation and three unno&ns

    Hard to sol(e and use o! iterati(e techniues Example

    ,alculate @ and the unno&n outlet hot

    stream temperature3

    ,alculate 8TM and o+tain the correction

    !actor ) i! necessar"

    ,alculate the o(erall heat trans!ercoe!!icient3

    Determine 73

    The LMTD method is not as eas" to use !or

    per!ormance anal"sis &hen +oth steam out let

    temperature not no&n

    LMTD method

    ,ase 2

    ,ase 1

    ( ) ( )

    n

    hb cb ha ca

    o o

    hb cb

    ha ca

    T T T T  q U A

    T T l 

    T T 

    − − − =  − ÷−  

    ( ) ( )

    n

    hb cb ha ca

    o o

    hb cb

    ha ca

    T T T T  q U A

    T T l T T 

    − − − =

     − ÷−  

  • 8/17/2019 Lect - 19 Heat Exchanger Lecture 3 of 4.pptx

    15/15