Lec 9 CCandCBDesigns 08

Embed Size (px)

DESCRIPTION

Electronics

Citation preview

  • ESE319 Introduction to Microelectronics

    12008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Common Base BJT AmplifierCommon Collector BJT Amplifier

    Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

  • ESE319 Introduction to Microelectronics

    22008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Basic Single BJT Amplifier Features

    CE Amplifier CC Amplifier CB AmplifierVoltage Gain (AV) moderate (-RC/RE) low (about 1) high

    Current Gain (AI) moderate ( ) moderate ( ) low (about 1)

    Input Resistance high high low

    Output Resistance high low high

    1

    CE BJT amplifier => CS MOS amplifierCC BJT amplifier => CD MOS amplifierCB BJT amplifier => CG MOS amplifier

  • ESE319 Introduction to Microelectronics

    32008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Common Collector ( Emitter Follower) Amplifier

    In the emitter follower, the output voltage is taken be-tween emitter and ground. The voltage gain of this ampli-fier is nearly one the output follows the input - hence the name: emitter follower.

    vout

  • ESE319 Introduction to Microelectronics

    42008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Split bias voltage drops aboutequally across the transistorV

    CE (or V

    CB) and VRe (or VB).

    For simplicity,choose:

    R1=R2

    For an assumed = 100:

    RB=R1R2=R12=1

    RE1010 RE

    R1=R2=20 REVB=VCC

    2

    RE=VEI E

    =VCC /20.7

    I E

    Then, choose/specified IE, and the rest of the design follows:

    Vb

    iB

    iC

    iE

    vout

    As with CE bias design, stable op. pt. => RB1RE , i.e.

    Emitter Follower Biasing

  • ESE319 Introduction to Microelectronics

    52008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Typical DesignChoose: I E=1mA

    VCC=12VAnd the rest of the designfollows immediately:

    RE=VEI E

    =12 /20.7103

    =5.3k

    Use standard sizes!

    R1=R2=100 k

    RE=5.1k

    vout

    Vb

    iB

    iC

    iE

  • ESE319 Introduction to Microelectronics

    62008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Equivalent Circuits

    vout

    vout

    VCC

    /2

    Rb

    RB=R1R2

  • ESE319 Introduction to Microelectronics

    72008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Multisim Bias Check

    Identical results as expected!

    Rb

    +

    -VRb

    V Rb= I B RB=I E

    1RB=0.495V

    iB

    Rbvout vout

  • ESE319 Introduction to Microelectronics

    82008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Small signal mid-band circuit - where CB has negligible reactance(above min). Thevenin circuit consisting of RS and RB shows effect of RB negligible, since it is much larger than RS.

    Emitter Follower Small Signal Circuit

    Mid-band equivalent circuit:

    vsig '=RB

    RBRSvsig=

    5050.05

    vsigvsig

    RTH=RSRB=50

    50.05RSRS

    Rb

    vout

  • ESE319 Introduction to Microelectronics

    92008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Follower Small Signal Analysis - Voltage GainCircuit analysis:

    ib=vsig

    RSr1RE

    vout=RE 1vsig

    RSr1RE

    AV=voutvsig

    =RE vsig

    RSr 1

    RE

    1

    vsig=RSr1RE ib

    vout

    ib

    ie

    Solving for ib

  • ESE319 Introduction to Microelectronics

    102008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Small Signal Analysis Voltage Gain - cont.voutvsig

    =RE

    RSr 1

    RE

    Since, typically:

    RSr1

    RE

    AV=voutvsig

    RERE

    =1

    Note: AV is non-inverting

    vout

  • ESE319 Introduction to Microelectronics

    112008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    ib=vbg

    r1RE

    Use the base current expression:

    To obtain the base to ground resistance of the transistor:This transistor input resistance is in parallel with the 50 k RB, forming the total amplifier input resistance:

    Ri n=RSRBr bgRBr bg=515

    5155050 k=45.6 k

    vbg=r ibRE iE=r1 ibvbg

    +

    -

    Rin r bg=

    vbgib

    =r1RE1RE=1015.1 k=515k

    Rb

    RB=50 kRSRS=50

    Blocking Capacitor - CB - Selection

    ib

  • ESE319 Introduction to Microelectronics

    122008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    CB Selection cont.

    Ri n46 k=100

    min=220125=1.25102

    Assume the lowest frequencyis 20 Hz:

    C B10107

    1.250.461.73 F

    Choose CB such that its reactance is 1/10 of Rin at min:

    C B10

    min Ri n

    1C B

    =Ri n10

    Pick CB = 2 F (two 1 F caps in parallel), the nearest standard value in the RCA Lab. We could be (unnecessarily) more preciseand include Rs as part of the total resistance in the loop. It is verysmall compared to Rin.

  • ESE319 Introduction to Microelectronics

    132008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Final Design

    2.0 uF

    vout

  • ESE319 Introduction to Microelectronics

    142008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Multisim Simulation Results

    20 Hz. Data

    1 Khz. Data

  • ESE319 Introduction to Microelectronics

    152008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Of What value is a Unity Gain Amplifier?

    To answer this question,we must examine theoutput impedance of theamplifier and its powergain.

    vout

    ib

    ie

  • ESE319 Introduction to Microelectronics

    162008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Emitter Follower Output Resistance

    vx

    ix

    Rout

    0ib

    i x=ib ib=1 ib ib=ix1

    vx=ibRsr=RSr1

    i x

    Rout=vxi x=

    RSr1

    r

    1

    Assume:I C=1 mA r=

    VTI B

    =VTI C

    =2500

    =100 RS=50

    Rout2550100

    =25.5

    vout

    RB=50 kRSR

    out is the Thevenin resistance looking

    into the open-circuit output.

  • ESE319 Introduction to Microelectronics

    172008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Multisim Verification of Rout

    Multisim short circuit check( = 100, vout = vsig):

    Rout=voci sc

    =AV vsig rms

    isc rms= 1

    0.0396=25.25

    Thevenin equivalent for the short-circuited emitter follower. If was 200, as for most good NPN transistors, Rout would be lower - close to 12 .

    Rout

    Av*vsigAV = 1

    i sc=i x

    i sc=i x

    Rin

    i x=1i xvsig=RS ibr ib

    Rout=AV vsig

    i x=

    RSr1Rin=RSr1RERL1RL

    +

    -voc=AV vsig

  • ESE319 Introduction to Microelectronics

    182008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Equivalent Circuits with Load RL

    vout

    ib

    ie

    RL

    +-

    RL||Revload+

    -

    Rout=vsig rms i sc rms

    = 10.0396

    =25.25

    RinZin=

    vsigie

    '

    Rin=RSr1RERL1RL

    Rout

    Av*vsig

  • ESE319 Introduction to Microelectronics

    192008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Emitter Follower Power GainConsider the case where a R

    L = 50 load is connected through an infinite

    capacitor to the emitter of the follower we designed. Using its Thevenin equivalent:

    vload=RL AV vsigRLRout

    =5075

    vsig=23

    vsig

    i load=AV vsig

    RoutRL=

    vsig75

    pload=vload i load=2

    225vsig

    2

    i sig=ib=vsigRin

    vsig1RERL

    vsig

    10150

    psig=vsig isig1

    5000vsig

    2

    +-

    vload

    -vth=G vsig

    Rout25

    RL50+

    50 load is in parallel with 5.1k RE and dominates:

    C=

    AV1iloadRinvsig Av*vsig

    G pwr=ploadpsig

    = 25000225

    =44.41

    isig

  • ESE319 Introduction to Microelectronics

    202008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    The Common Base Amplifier

    Voltage Bias Design Current Bias Design

    vout vout

  • ESE319 Introduction to Microelectronics

    212008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Common Base ConfigurationBoth voltage and current biasing follow the same rules asthose applied to the common emitter amplifier.

    As before, insert a blocking capacitor in the input signal pathto avoid disturbing the dc bias.

    The common base amplifier uses a bypass capacitor or adirect connection from base to ground to hold the base atground for the signal only!

    The common emitter amplifier (except for intentional REfeedback) holds the emitter at signal ground, while the commoncollector circuit does the same for the collector.

  • ESE319 Introduction to Microelectronics

    222008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    We keep the same bias that we established for the gain of 10 common emitter amplifier.All that we need to do is pick the capacitor values and calculate the circuit gain.

    vout

    470 Ohm

    4.7 k Ohm47k Ohm

    5.1k Ohm

    Voltage Bias Common Base Design

  • ESE319 Introduction to Microelectronics

    232008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Common Base Small Signal Analysis - C INDetermine C

    IN:

    Find a equivalent impedance for the input circuit, RS, CIN, and RE2:

    i'b

    I'ci'e

    isig

    Zin

    4.7 k Ohm

    470 Ohm

    ideally for min

    1minC IN

    RSRE2r e1

    minC IN=

    RSr e10

    C IN=10

    minRSr e

    vRe2=RE2r e

    RE2r eRS1

    jC IN

    vsig

    vRe2=RE2r e

    RE2r eRSvsig

    (let ) C B=

    ib

    ic

    ie

    r e=r

    1

    re

  • ESE319 Introduction to Microelectronics

    242008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Determine C IN cont.

    minC IN RSr e1C IN10

    2minRSr e=

    1022075

    F

    A suitable value for CIN for a 20 Hz lower frequency:

    C IN=10

    125.6751062F ! Not too practical!

    Must choose smaller value of CIN.1. Choose: minC IN RSr e=1

    or2. Choose larger min

  • ESE319 Introduction to Microelectronics

    252008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Small-signal Analysis - C Bi'b i'c

    i'e

    Note the reference currentreversals (due to v

    sig polarity)!

    vsig=RS ie'r 1jC B ib'

    vsig=RS ie'r 1jC B ie

    '

    1

    ie' =

    1

    1RSr 1

    jC B

    vsigZin=vsigie

    '

    ic

    ie

    ib

    Determine

    Zin

    Determine CB: (let )C IN=

    RE2

    >> RS

    ib'

  • ESE319 Introduction to Microelectronics

    262008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Determine CBi'b i'c

    i'e

    ie' =

    1

    1RSr 1

    jC B

    vsig

    ie' =

    vsig

    RS11 r 1jC B

    Z in=vsigie

    ' =RS11 r 1jC B

    ideally Z inRSr 1

    1C B

    1RSr for min

    Zin

    RE2

    >> RS

    ib'

  • ESE319 Introduction to Microelectronics

    272008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Determine - C B cont.i'b i'c

    i'e Choose:

    C B10

    min 1RSr F

    vout

    Z inRSr 1

    1C B

    1RSr

    For min

    C B10

    220 1001502500 =10.5 F

    i.e.

    RE2

    >> RS

    ib'

  • ESE319 Introduction to Microelectronics

    282008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Small-signal Analysis Voltage Gain

    ie'

    1

    RSr 1

    vsig=1

    RSr e vsig

    vout=RC ic' =RC ie

    ' =1

    RCRSr e

    vsig

    AV=voutvsig

    =1

    RCRSr e

    =100101

    51005025

    67

    Assume: C B=C IN=

    RE2

    >> RS

    ib'

  • ESE319 Introduction to Microelectronics

    292008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Multisim Simulation

    1062 uF

  • ESE319 Introduction to Microelectronics

    302008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 01Oct08 KRL

    Multisim Frequency Response

    20 Hz. response

    1 KHZ. Response