35
1 Learning for Text Categorization

Learning for Text Categorization

  • Upload
    isanne

  • View
    57

  • Download
    1

Embed Size (px)

DESCRIPTION

Learning for Text Categorization. Text Categorization. Representations of text are very high dimensional (one feature for each word). High-bias algorithms that prevent overfitting in high-dimensional space are best. - PowerPoint PPT Presentation

Citation preview

Page 1: Learning for Text Categorization

1

Learning for Text Categorization

Page 2: Learning for Text Categorization

2

Text Categorization

• Representations of text are very high dimensional (one feature for each word).

• High-bias algorithms that prevent overfitting in high-dimensional space are best.

• For most text categorization tasks, there are many irrelevant and many relevant features.

• Methods that sum evidence from many or all features (e.g. naïve Bayes, KNN, neural-net) tend to work better than ones that try to isolate just a few relevant features (decision-tree or rule induction).

Page 3: Learning for Text Categorization

3

Naïve Bayes for Text

• Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary V = {w1, w2,…wm} based on the probabilities P(wj | ci).

• Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|– Equivalent to a virtual sample of seeing each word in each

category exactly once.

Page 4: Learning for Text Categorization

4

Text Naïve Bayes Algorithm(Train)

Let V be the vocabulary of all words in the documents in DFor each category ci C

Let Di be the subset of documents in D in category ci

P(ci) = |Di| / |D| Let Ti be the concatenation of all the documents in Di

Let ni be the total number of word occurrences in Ti

For each word wj V Let nij be the number of occurrences of wj in Ti

Let P(wi | ci) = (nij + 1) / (ni + |V|)

Page 5: Learning for Text Categorization

5

Text Naïve Bayes Algorithm(Test)

Given a test document XLet n be the number of word occurrences in XReturn the category:

where ai is the word occurring the ith position in X

)|()(argmax1

n

iiii

CiccaPcP

Page 6: Learning for Text Categorization

6

Naïve Bayes Time Complexity

• Training Time: O(|D|Ld + |C||V|)) where Ld is the average length of a document in D.– Assumes V and all Di , ni, and nij pre-computed in O(|D|

Ld) time during one pass through all of the data.– Generally just O(|D|Ld) since usually |C||V| < |D|Ld

• Test Time: O(|C| Lt) where Lt is the average length of a test document.

• Very efficient overall, linearly proportional to the time needed to just read in all the data.

• Similar to Rocchio time complexity.

Page 7: Learning for Text Categorization

7

Underflow Prevention

• Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.

• Class with highest final un-normalized log probability score is still the most probable.

Page 8: Learning for Text Categorization

8

Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.

• However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not.– Output probabilities are generally very close to

0 or 1.

Page 9: Learning for Text Categorization

9

Textual Similarity Metrics

• Measuring similarity of two texts is a well-studied problem.

• Standard metrics are based on a “bag of words” model of a document that ignores word order and syntactic structure.

• May involve removing common “stop words” and stemming to reduce words to their root form.

• Vector-space model from Information Retrieval (IR) is the standard approach.

• Other metrics (e.g. edit-distance) are also used.

Page 10: Learning for Text Categorization

10

The Vector-Space Model

• Assume t distinct terms remain after preprocessing; call them index terms or the vocabulary.

• These “orthogonal” terms form a vector space. Dimension = t = |vocabulary|

• Each term, i, in a document or query, j, is given a real-valued weight, wij.

• Both documents and queries are expressed as t-dimensional vectors: dj = (w1j, w2j, …, wtj)

Page 11: Learning for Text Categorization

11

Graphic RepresentationExample:D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?• How to measure the degree of

similarity? Distance? Angle? Projection?

Page 12: Learning for Text Categorization

12

Document Collection• A collection of n documents can be represented in the vector

space model by a term-document matrix.• An entry in the matrix corresponds to the “weight” of a term

in the document; zero means the term has no significance in the document or it simply doesn’t exist in the document.

T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

: : : : : : : :Dn w1n w2n … wtn

Page 13: Learning for Text Categorization

13

Term Weights: Term Frequency

• More frequent terms in a document are more important, i.e. more indicative of the topic. fij = frequency of term i in document j

• May want to normalize term frequency (tf) by dividing by the frequency of the most common term in the document: tfij = fij / maxi{fij}

Page 14: Learning for Text Categorization

14

Term Weights: Inverse Document Frequency

• Terms that appear in many different documents are less indicative of overall topic.

df i = document frequency of term i

= number of documents containing term i idfi = inverse document frequency of term i,

= log2 (N/ df i)

(N: total number of documents)• An indication of a term’s discrimination power.• Log used to dampen the effect relative to tf.

Page 15: Learning for Text Categorization

15

TF-IDF Weighting• A typical combined term importance indicator is tf-

idf weighting:wij = tfij idfi = tfij log2 (N/ dfi)

• A term occurring frequently in the document but rarely in the rest of the collection is given high weight.

• Many other ways of determining term weights have been proposed.

• Experimentally, tf-idf has been found to work well.

Page 16: Learning for Text Categorization

16

Computing TF-IDF -- An Example

Given a document containing terms with given frequencies:

A(3), B(2), C(1)Assume collection contains 10,000 documents and document frequencies of these terms are: A(50), B(1300), C(250)Then:A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

Page 17: Learning for Text Categorization

17

Similarity Measure

• A similarity measure is a function that computes the degree of similarity between two vectors.

• Using a similarity measure between the query and each document:– It is possible to rank the retrieved documents in the

order of presumed relevance.– It is possible to enforce a certain threshold so that the

size of the retrieved set can be controlled.

Page 18: Learning for Text Categorization

18

Similarity Measure - Inner Product

• Similarity between vectors for the document di and query q can be computed as the vector inner product:

sim(dj,q) = dj•q = wij · wiq

where wij is the weight of term i in document j and wiq is the weight of term i in the query

• For binary vectors, the inner product is the number of matched query terms in the document (size of intersection).

• For weighted term vectors, it is the sum of the products of the weights of the matched terms.

t

i 1

Page 19: Learning for Text Categorization

19

Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of unique terms.

• Measures how many terms matched but not how many terms are not matched.

Page 20: Learning for Text Categorization

20

Inner Product -- Examples

Binary:– D = 1, 1, 1, 0, 1, 1, 0

– Q = 1, 0 , 1, 0, 0, 1, 1

sim(D, Q) = 3

retrie

val

database

archite

cture

computer

textmanagem

ent

informatio

n

Size of vector = size of vocabulary = 70 means corresponding term not found

in document or query

Weighted: D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3

Q = 0T1 + 0T2 + 2T3

sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10 sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

Page 21: Learning for Text Categorization

21

Cosine Similarity Measure• Cosine similarity measures the cosine of the angle

between two vectors.• Inner product normalized by the vector lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / (9+49+1)(0+0+4) = 0.13

Q = 0T1 + 0T2 + 2T3

t3

t1

t2

D1

D2

Q

D1 is 6 times better than D2 using cosine similarity but only 5 times better using inner product.

t

i

t

i

t

i

ww

ww

qdqd

iqij

iqij

j

j

1 1

22

1

)(

CosSim(dj, q) =

Page 22: Learning for Text Categorization

22

K Nearest Neighbor for Text

Training:For each each training example <x, c(x)> D Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:Compute TF-IDF vector d for document yFor each <x, c(x)> D Let sx = cosSim(d, dx)Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D. (get most similar neighbors)Return the majority class of examples in N

Page 23: Learning for Text Categorization

23

Illustration of 3 Nearest Neighbor for Text

Page 24: Learning for Text Categorization

24

3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle polymorphic categories better.

Page 25: Learning for Text Categorization

25

Nearest Neighbor Time Complexity

• Training Time: O(|D| Ld) to compose TF-IDF vectors.

• Testing Time: O(Lt + |D||Vt|) to compare to all training vectors.– Assumes lengths of dx vectors are computed and stored

during training, allowing cosSim(d, dx) to be computed in time proportional to the number of non-zero entries in d (i.e. |Vt|)

• Testing time can be high for large training sets.

Page 26: Learning for Text Categorization

26

Nearest Neighbor with Inverted Index

• Determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.

• Use standard VSR inverted index methods to find the k nearest neighbors.

• Testing Time: O(B|Vt|) where B is the average number of training documents in which a test-document word appears.

• Therefore, overall classification is O(Lt + B|Vt|) – Typically B << |D|

Page 27: Learning for Text Categorization

27

Relevance Feedback in IR

• After initial retrieval results are presented, allow the user to provide feedback on the relevance of one or more of the retrieved documents.

• Use this feedback information to reformulate the query.

• Produce new results based on reformulated query.

• Allows more interactive, multi-pass process.

Page 28: Learning for Text Categorization

28

Relevance Feedback Architecture

RankingsIRSystem

Documentcorpus

RankedDocuments

1. Doc1 2. Doc2 3. Doc3 . .

1. Doc1 2. Doc2 3. Doc3 . .

Feedback

Query String

Revised

QueryReRankedDocuments

1. Doc2 2. Doc4 3. Doc5 . .

QueryReformulation

Page 29: Learning for Text Categorization

29

Using Relevance Feedback (Rocchio)

• Relevance feedback methods can be adapted for text categorization.

• Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).

• For each category, compute a prototype vector by summing the vectors of the training documents in the category.

• Assign test documents to the category with the closest prototype vector based on cosine similarity.

Page 30: Learning for Text Categorization

30

Rocchio Text Categorization Algorithm(Training)

Assume the set of categories is {c1, c2,…cn}For i from 1 to n let pi = <0, 0,…,0> (init. prototype vectors)For each training example <x, c(x)> D Let d be the frequency normalized TF/IDF term vector for doc x Let i = j: (cj = c(x))

(sum all the document vectors in ci to get pi)

Let pi = pi + d

Page 31: Learning for Text Categorization

31

Rocchio Text Categorization Algorithm(Test)

Given test document xLet d be the TF/IDF weighted term vector for xLet m = –2 (init. maximum cosSim)For i from 1 to n: (compute similarity to prototype vector) Let s = cosSim(d, pi) if s > m let m = s let r = ci (update most similar class prototype)Return class r

Page 32: Learning for Text Categorization

32

Illustration of Rocchio Text Categorization

Page 33: Learning for Text Categorization

33

Rocchio Properties

• Does not guarantee a consistent hypothesis.• Forms a simple generalization of the

examples in each class (a prototype).• Prototype vector does not need to be

averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.

• Classification is based on similarity to class prototypes.

Page 34: Learning for Text Categorization

34

Rocchio Anomoly

• Prototype models have problems with polymorphic (disjunctive) categories.

Page 35: Learning for Text Categorization

35

Rocchio Time Complexity

• Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors.

• Training Time: O(|D|(Ld + |Vd|)) = O(|D| Ld) where Ld is the average length of a document in D and Vd is the average vocabulary size for a document in D.

• Test Time: O(Lt + |C||Vt|) where Lt is the average length of a test document and |Vt | is the average vocabulary size for a test document.– Assumes lengths of pi vectors are computed and stored during

training, allowing cosSim(d, pi) to be computed in time proportional to the number of non-zero entries in d (i.e. |Vt|)