Lead &Lag Compensators

Embed Size (px)

Citation preview

  • 7/27/2019 Lead &Lag Compensators

    1/17

    Chapter 10

    Compensator

    10.1 Introduction

    Fig 1.1-1: Compensat or k. bs as ++ ;

    phase l ead or phase l ag compensat or .

    Compensat i ng networks are used i n cl osed- l oop syst em t o i mproveper f ormance. The compensat ors shown ar e made- up of el ect r i c r esi st orsand capaci t ors, whi ch are passi ve el ement s.

  • 7/27/2019 Lead &Lag Compensators

    2/17

    220 Compensator.

    The t r ansf er f unct i ons devel oped ar e based on no l oadi ng ef f ectupon t he out put . Al l t he tr ansf er f unct i ons are expr essed i n nondi mensi onal f orm.

    From t he f i l t er i ng standpoi nt , t he hi gh pass f i l t er i s of t en

    r ef er r ed t o as a phase- l ead cont r ol l er si nce posi t i ve phase i si nt r oduced t o t he syst em over some appr opr i ate f r equency range. Thel ow- pass f i l t er i s al so known as a phase- l ag cont r ol l er , si nce t hecorr espondi ng phase i nt r oduced i s negat i ve.

    10.2 Phase-Lag Compensator

    Fig 10.2-1:Typi cal l ag compensat or ci r cui t .

    The ci r cui t shown i s a t ypi cal l ag or i nt egral compensat or . Theout put si gnal i s pr opor t i onal t o t he sum of t he i nput si gnal and i t si nt egral .

    The desi gnat i on l ag appl i ed t o t hi s networ k i s based on t hest eady- st at e si nusoi dal r esponse. The si nusoi dal r esponse E2 wi t h a

    si nusoi dal i nput E1.

    I ni t i al condi t i ons ar e consi der ed t o be zer o.

    sT1

    sT!

    sC)RR(1

    sCR1

    )RR) (s(I

    )R) (s(I=

    )s(E

    )s(E

    2

    1

    112

    11

    s1C1

    12

    s1C1

    1

    1

    2

    ++

    =++

    +=

    ++

    +

    ; wher e T1 = R1C1 and T2 = ( R1+R2) C1

    =T/1s+1

    T/1s+1=

    T/1s

    1

    T/1s1 1

    2

    1

    12

    1+

    +

    +( 10. 1)

    wher e T1 < T2

    sl ope - 1 +1

    T sl ope - 1 0

    Fr eq. 1/ T2 1/ T1

  • 7/27/2019 Lead &Lag Compensators

    3/17

    221 Compensator.

    Sever al general ef f ect s of l ag compensat i on ar e:

    1. The bandwi dt h of t he syst em i s usual l y decr eased.

    2. The predomi nant t i me const ant of t he system i s usual l yi ncreased, produci ng a more sl uggi sh syst em.

    3. For a gi ven r el at i ve st abi l i t y, t he val ue of t he er r or const ant i si ncr eased.

    4. For a gi ven val ue of er r or const ant , r el at i ve st abi l i t y i si mproved.

    Example 10. 2 - 1:

    The open- l oop t r ansf er f unct i on of t he or i gi nal syst em and t heper f or mance speci f i cat i ons are gi ven as f ol l ows:

    100k;

    )s2.1) (s1.1(s

    k=)s(G 1vp=

    ++

    sec ( 10. 2)

    r el at i ve dampi ng r at i o = . 707

    )10s) (5s(sk50=)s(Gp ++

    ( 10. 3)

    The r oot l ocus of compensat ed syst em, f or kv = 100, k = 100 ,whi ch corr esponds t o an unst abl e syst em:

  • 7/27/2019 Lead &Lag Compensators

    4/17

    222 Compensator.

    ( 10. 4))( k100=k=kl i m=)s(Gsl i m=k v0s

    0s

    v

    Char act er i st i c equat i on i s:

    s( s+5)( s+10) + 50k = 0. ( 10. 5)

    The graph i s shown bel ow i n ( Fi g 10. 2- 2) :

    Fig 10.2-2

    When k = 1. 635 ; t he uncompensat ed char act er i st i c equat i on r ootsar e: - 11. 118 , - 1. 91+j 1. 91 and - 1. 91- j 1. 91, whi ch cor r esponds t o ar el at i ve dampi ng r at i o of . 707.

    The compensat or equat i on:

    Ts1aTs1=

    sT1

    sT1=G

    2

    1c +

    +++

    ( 10. 6)

    21

    221 RR

    R=aandaTT;1

  • 7/27/2019 Lead &Lag Compensators

    5/17

    223 Compensator.

    01.s6135.s. 01635=

    )01.s(100

    )6135.s(635.1=

    s1001s635.11=)s(G

    ++

    ++

    ++

    and the open l oop t r ansf er f unct i on of t he compensated syst em i s:

    100=kwher e;)01.s) (10s) (5s(s

    )6135.s(k815.=)s(G)s(G=)s(G pc +++

    +

    When k = 100 , t he r oots of t he compensat ed char act er i st i c

    equat i on ar e at - 11. 13, - 1. 198, - 1. 341 j 1. 397. The r el at i vedampi ng r at i o of t he compl ex r oot s i s sl i ght l y l ess t han 0. 7. Thi scan be i mproved by sel ect i ng a smal l er val ue f or a or a l arge T.

    Fig 10.2-1: Uni t st ep r esponse of t he syst emwi t h phase- l ag cont r ol .

    The uni t st ep r esponse of t he syst em wi t h t he phase- l ag cont r ol l er asi s shown. The peak overshoot of t he r esponse i s appr oxi matel y 36per cent .

    10.3 Phase Lead Compensator

    The ci r cui t shown i s a l ead compensat or . t he out put si gnal i spr opor t i onal t o t he sum of t he i nput si gnal and i t s der i vat i ve. Thel ead desi gnat i on of t hi s net wor k i s based on the st eady- st at esi nusoi dal r esponse. The si nusoi dal out put E2 l eads t he si nusoi dali nput E1.

    Fig 10.3-1: Passi ve phase- l ead.

  • 7/27/2019 Lead &Lag Compensators

    6/17

    224 Compensator.

    1TT=Q&RR CRRT;CRTwher e

    T/1s1

    T/1s+1Q=

    sT1

    sT1

    T

    T=

    )s(E

    )s(E

    12

    212212221

    1

    1

    1

    22

    1

    1

    2

    1

    2

    a;T/1saT/1s

    ++

    ( 10. 8)

    wher e

    21

    21

    2

    21

    RR

    RR=Tand

    R

    RR=a

    ++

    C

    The l ead networ k provi des compensat i on by vi r t ue of i t s phase- l ead

    pr oper t y i n t he l ow t o medi um f r equency range and i t s negl i gi bl eat t enuat i on at hi gh f r equenci es.

    The l ow t o medi um f r equency r ange i s def i ned as t he vi ci ni t y of

    t he r esonant f r equency p

    Al t hough t he net wor k may be si mpl i f i ed f ur t her , and st i l l be

    r epr esent i ng a l ow- pass f i l t er by el i mi nat i ng R2 .

  • 7/27/2019 Lead &Lag Compensators

    7/17

    225 Compensator.

    Example 10.3-1:

    The bl ock di agram shown bel ow descr i bes t he components of a sum-seeker cont r ol syst em.

    Fig 10.3-1:Bl ock di agr am of a sum- seeker cont r ol syst em.

    The syst em may be mount ed on a space vehi cl e so t hat i t wi l l t r ack

    t he sun wi t h hi gh accur acy. The var i abl e r r epr esent s t he r ef erenceangl e of t he sol ar r ay and o denot es t he vehi cl e axi s. The obj ect i vef or t he sun- seeker cont r ol system i s t o mai nt ai n t he er r or bet ween r , o and near zero.

    The paramet er s of t he syst em ar e gi ven as:

    Rf = 10000

    kb = . 0125 V/rad/sec

    ki = . 0125 N.m/A

    Ra = 6. 25

    J = 10- 6 kg-m2

    ks = . 1 A/rad

    k : t o be determi nedB = 0

    n = 800

    The open- l oop t r ansf er f unct i on of t he uncompensat ed syst em i s:

    skkJ sR

    n/kkRk

    )s(

    )s(

    bi2

    a

    iFso

    +=

    ( 10. 9)

  • 7/27/2019 Lead &Lag Compensators

    8/17

    226 Compensator.

    Subst i t ut i ng t he numeri cal val ues of t he syst em paramet er s:

    )25s(sk2500

    )s(

    )s(o+

    =

    ( 10. 10)

    The speci f i cat i ons of t he syst em are gi ven as f ol l ows:

    1. The st eady- st at e val ue of ( t ) due t o a uni t r amp f unct i on i nputf or r ( t ) shoul d be l ess than or equal t o . 01 r ad per r ad/ sec oft he f i nal st eady- st at e out put vel oci t y. I n ot her wor ds, t hest eady- st ate err or due t o a r amp i nput shoul d be l ess t han orequal t o 1 percent .

    2. The peak over shoot shoul d be l ess t han 10 percent .The l oop gai n of t he syst em i s deter mi ned f r om t he st eady- st at e

    er r or r equi r ement .

    Appl yi ng t he f i nal - val ue t heor em t o ( t ) , we have:

    +

    ==

    )s(

    )s(1

    )s(sl i m)s(sl i m)t(l i m

    o

    r

    0s0st( 10. 11)

    For t he uni t r amp i nput :

    k01.)t(l i m

    s

    1)s(0s2

    r ==

    ( 10. 12)

    Thus f or t he st eady- st at e er r or t o be l ess t han or equal t o . 01 , kmust be gr eat er t han or equal t o 1. For k = 1, t he worst case, t hechar act er i st i c equat i on of t he uncompensated syst emi s:

    s2

    + 25s + 2500 = 0 ( 10. 13)

    Thus t he dampi ng r at i o of t he uncompensat ed syst em i s mer el y 25percent , whi ch cor r esponds t o a peak overshoot of over 44. 4 percent .

    The open- l oop t r ansf er f unct i on of t he syst em wi t h t he phase- l eadcompensator i s:

    )Ts1) (25s(s)aTs1(2500

    =)s(G++

    +( 10. 14)

    wher e ramp er r or const ant kv = 100.

    The char act er i st i c equat i on becomes:

    s( s+25) ( 1+Ts) + 2500 = 0 ( 10. 15)

    0=2500s25s

    )25s(Ts+1

    2

    2

    ++

    + ( 10. 16)

    t hi s equat i on i s of t he f or m 1+ G1( s) = 0

  • 7/27/2019 Lead &Lag Compensators

    9/17

    227 Compensator.

    The char act er i st i c equat i on of t he compensat ed syst em now becomes:

    s( s+25) ( 1+Ts) + 2500 ( 1+aTs) = 0 ( 10. 17)

    0=2500)Ts1) (25s(s

    aTs2500+1+++

    ( 10. 18)

    t hi s equat i on i s of t he f or m 1+ G2( s) = 0

    2500)Ts1) (25s(saTs2500=( s)G2 +++

    ( 10. 19)

    For ver y smal l T, t he t er m ( 1+Ts) i n t he denomi nat or can benegl ected :

    s2

    + 25( 1+100aT) s + 2500 = 0 ( 10. 20)

    Let us sel ect t he dampi ng rat i o f or t he appr oxi mat i ng second- ordersyst em t o be . 707. Then gi ves:

    = . 707 = 25aT + . 25 aT = . 0183

    I f we sel ect a val ues f or T a overshoot % char acter i st i cequat i on r oot s

    . 00588 5. 83 7. 3 - 30. 93 , - 82. 07 j 83. 73

    . 0015 12 6. 6 - 433. 6 , - 45. 68 j 28. 21

    . 0022 8 13. 8 - 460. 3 , - 32. 35 j 40. 85

    I f we sel ect i n t hi s case wi t h a = 5. 83 , t hen T = . 00588

    The t r ansf er f unct i on of phase- l ead compensat or i s:

    170s17.29s=

    )T/1(sT)a/1(s

    =)s(Gc ++

    ++

    ( 10. 21)

    10.4 Phase Lead-Lag Compensator

    The ci r cui t shown i s a l ead- l ag compensat or , whi ch combi nes t he

    char act er i st i cs of t he l ag and t he l ead compensat or s. Thi s i s cal l eda l ead- l ag net work because t he phase of t he si nusoi dal r esponse E2,

    compar ed wi t h t he si nusoi dal i nput E1, var i es f rom a l ag t o a l eadangl e as t he f r equency i s i ncreased f r om zer o to i nf i ni t y. The phaseangl e can be det er mi ned f r om t he st eady- st at e sol ut i on of t hedi f f er ent i al equat i on.

  • 7/27/2019 Lead &Lag Compensators

    10/17

    228 Compensator.

    221431

    21

    1

    2

    sTTs)TTT(1

    )sT1) (sT1(=

    )s(E

    )s(E

    ++++

    ++

    +

    +

    +

    +

    41

    32

    s1s1

    s1s1

    = ( 10. 22)

    wher e T1 = R1C1 ; T2 = R2C2 ; T3 = R1C2 , and T4 = R2C1

    1

    4

    +1

    3

    +1

    2

    - 1

    11

    2 s1s1s1s1=)s(E

    )s(E

    +

    +

    +

    +

    = Gc ( s) ( 10. 23)

  • 7/27/2019 Lead &Lag Compensators

    11/17

    229 Compensator.

    +

    + 222

    111

    2

    2

    1

    1c CR=bT

    CR=aT

    )sT1(

    )sbT+( 1

    )sT1(

    )saT+( 1=)s(Gor ( 10. 24)

    lead lag

    T1T2 = R1R2C1C2 ; abT1T2 = R1R2C1C2

    ab = 1.

    whi ch means t hat a and b can t be speci f i ed i ndependent l y.

    Design Sample:

    1- Gi ven t he bl ock di agr am:

    The speci f i cat i ons are:

    i ) Asympt ot i cal l y stabl e.

    i i ) kv 1000

    i i i ) c 200 rad/sec

    Tkd v

    = = 1 11000

    10 3 ( 10. 25)

    Tpc

    = =3 3200

    0015

    . ( c = p ) ( 10. 26)

  • 7/27/2019 Lead &Lag Compensators

    12/17

    230 Compensator.

    Desi gn pr ocedures:

    1- Bode pl ot

    G( s) = 111000

    s110s1

    s1000

    +

    + ( 10. 27)

    cr ossover 1000

    10 103

    sl ope - 1 - 1 - 1

    -1 -2 -3

    When, we have sl ope = - 2 t he syst em i s unst abl e, so we shoul dmake i t st abl e.

    Gc( s)G( s) =211

    1000s1

    50s1

    10s1

    s1000

    +

    +

    +

    + ( 10. 28)

    1000s+1

    50s+1

    =1000

    s150s1)s(G

    11

    c

    +

    +

    += ( 10. 29)

  • 7/27/2019 Lead &Lag Compensators

    13/17

  • 7/27/2019 Lead &Lag Compensators

    14/17

    232 Compensator.

    . 0292-=c1)-c+c( q. 0898=c2q

    2. 3887=1+c-q 22

    2

    Hence 2. 3887 2

    + . 0898 - . 0292 = 0.

    Sol vi ng = . 09336 i s posi t i ve r oot .

    b =

    2/12c

    1c

    c

    = 3. 295

    and t he t r ansf er f unct i on i s obt ai ned as :

    . 3076+s. 3076+s09336.=

    b+s

    b)+( s=)s(Gc

    10.5 Digital Implementation of Compensators

    Si nce di gi t al cont r ol syst ems have many advant ages overcont i nuous- dat a syst ems, compensat ors t hat are desi gned i n t he anal ogdomai n are i mpl ement ed di gi t al l y.

    The bl ock di agram of t he anal og PI D cont r ol l er , where PI D st andsf or Pr opor t i onal , I nt egr al , and Der i vat i ve, i s shown bel ow.

    Fig 10.5-1: PI D Cont r ol l er .

    kp i s i mpl ement ed di gi t al l y by a gai n el ement . Si nce a di gi t alcomput er or pr ocessor al ways has a f i ni t e di gi t al word l engt h. Mostdi gi t al comput ers are based on t he bi nar y- number syst em.

    The t i me der i vat i ve of a f unct i on f ( t ) at t = kT can beappr oxi mat ed numer i cal l y by use of t he val ues of f ( t ) measur ed at t =kT and t = ( k+1) T , t hat i s

    1)T)]-f ( ( k-[ f (kT)T1

    dt)t(df

    kTt=

    =( 10. 31)

  • 7/27/2019 Lead &Lag Compensators

    15/17

    233 Compensator.

    To f i nd t he z- t r ansf er f unct i on of t he der i vat i ve oper at i ondescr i bed numer i cal l y above we take t he z- t r ansf orm on both si des, wehave:

    Z )z(FTz1z=)s(F)z-( 1T1=dt)t(df

    1-kTt

    = ( 10. 32)

    Thus, t he z- t r ansf er f unct i on of t he di gi t al di f f erent i at or i swr i t t en:

    GD( z) = KD Tz1z ( 10. 33)

    Wher e KD i s t he pr opor t i onal const ant of t he der i vat i ve

    compensator . Repl aci ng z by eTs

    . So when the sampl i ng per i od T

    appr oaches zero, GD( z) appr oaches KD s , whi ch i s t he t r ansf erf unct i on of t he anal og der i vat i ve compensator.

    For t he i ntegr ator , we normal l y have a number of choi ces ofdi gi t al appr oxi mat i on. Thi s appr oxi mat i on i s equi val ent t o t hesampl e- and- hol d ( zero or der) oper at i on. The bl ock di agr amr epr esent at i on of r ect angul ar i nt egr at i on.

    (a) Rect angul ar i nt egr ati on.

    (b) Equi val ent r ect angul ar i nt egr ati on wi t h sampl e-and- hol d.

    Fig 10.5-2: ( a) & ( b)

    The z - t r ansf er f unct i on of t he di gi t al i nt egrat or can be wr i t t en

    GI ( z) = Kz . Z 1z

    Tk=

    s1

    se1 ITs

    ( 10. 34)

    Agai n, as T appr oaches zero, GI ( z) appr oaches KI / s , t he t ransf erf uncti on of t he anal og i nt egr al cont r ol l er .

  • 7/27/2019 Lead &Lag Compensators

    16/17

    234 Compensator.

    I n pr act i ce, t her e ar e other numer i cal i nt egr at i on r ul es. Such ast he t r apezoi dal i nt egr at i on, Si mpson s r ul e, and so on.

    The bl ock of a di gi t al PI D cont r ol l er i s shown bel ow:

    Fig 10.5-3: Bl ock di agr amof a di gi t al PI D compensator .

    Once t he t r ansf er f unct i on of a di gi t al compensat or i sdet ermi ned, t he compensat or can be i mpl ement ed by a di gi t al processoror comput er. The oper at or z- 1 i s i nt er pr eted as a t i me del ay of Tseconds, where T i s t he sampl i ng peri od. The t i me del ay i si mpl ement ed by st or i ng a var i abl e i n some conveni ent st oragel ocat i on i n t he comput er and t hen t aki ng i t out af t er T has cl asped.For t he di gi t al di f f erent i at or, t he t ransf er f uncti on i s wr i t t en:

    GD( z ) = )z1(T

    K 1D ( 10. 35)

    f or t he di gi tal i ntegrator , i t i s :

    GI ( z ) = 1

    1I

    z1

    TzK

    ( 10. 36)

    Any cont i nuous dat a compensat or can be made i nto a di gi t alcompensator si mpl y by addi ng sampl e and hol d uni t s at t he i nput andt he out put t er mi nal s. The sampl i ng per i od T shoul d be suf f i ci ent l ysmal l so t hat t he dynami c char act er i st i c of t he cont i nuous- dat acompensat or ar e not l ost t hr ough the di gi t i zat i on. The syst em shownbel ow actual l y suggest s t hat gi ven t he cont i nuous- dat a compensat or

    G ( s), t he equi val ent Gc( z) can be obt ai ned as shown.c

    Fig 10.5-4: Real i zat i on of di gi t al cont r ol l er by an anal og cont r ol l er wi t hsampl e- and- hol d.

  • 7/27/2019 Lead &Lag Compensators

    17/17

    235 Compensator.

    Fig 10.5-5: Di gi t al programr eal i zat i on.

    Consi der t hat t he cont i nuous- data compensat or i s r epr esent ed byt he t r ansf er f unct i on:

    Gc( s ) = 61.1s1s

    ++ ( 10. 37)

    The t r ansf er f unct i on Gc( z) i s wr i t t en:

    Gc( z) = ( 1- z- 1) Z

    2.z5.z=

    )61.1s(s1s

    ++ ( 10. 38)