11
Pergamon Building and Environment, Vol. 32, No. 3, pp. 245-255, 1997 0 1997 Elsewer Scmm Ltd. All rights reserved Printed in Great Bntain 0360-1323197 117.00+0.00 PII: SO360-1323(96)00052-2 Life Cycle Assessment of Flooring Materials: Case Study A. JijNSSON* A-M. TILLMAN* T. SVENSSON* (Received 2 June 1995; accepted 26 September 1996) The environmental impact of the three frooring materials linoleum, vinyl flooring and solid wood flooring during their life cycles was assessed and compared through life cycle assessment (LCA). The scenarios used describe a Swedish situation. Only impacts on the natural environment were studied. The quantitative results of the inventory analysis were evaluated by using three different assessment methods. According to the results, solid wood flooring proved to be clearly the most environmentally sound flooring. Linoleum was ranked as more environmentally sound than vinyl flooring, although this was less evident in comparison with ranking the solid woodflooring. 0 1997 Elsevier Science Ltd. INTRODUCTION THE consequences of the human impact on the environ- ment have become increasingly clear in recent years. A number of previously unknown environmental problems have emerged at local, regional and global levels, in spite of considerable efforts to decrease environmental emis- sions from identified point sources. Consequently, demands are now being made on the environmental soundness of products. From industry there is a demand for methods of improving products from the environ- mental point of view, both for internal use and for mar- keting purposes. Authorities need methods which can be used to assess the environmental consequences of product related decisions. Life cycle assessment (LCA) is becom- ing an increasingly important method for making prod- uct related environmental assessments. Until recently, the LCA method has primarily been applied to products with short lifetimes, such as pack- aging. When applying LCA to building materials and components, special methodological problems arise because of the relatively long lifetime and the complex purpose of these products. Therefore, a project entitled “Environmental Assessment of Buildings and Building Materials” has been initiated at the Department of Tech- nical Environmental Planning of Chalmers University of Technology (CTH). The case study of flooring materials presented in this article constitutes the first step in this project. All results, background data and complete refer- ences have been published and can be found in [ 11. Another LCA of flooring materials has been performed by Potting et al. [2], and some of the background data for the Swedish study have been taken from there. *Technical Environmental Planning, Chalmers University of Technology, S-412 96 Gothenburg, Sweden. OBJECTIVE The environmental impact of three flooring materials during their life cycles was assessed and compared using the LCA method. The objective was to make a specific comparison between the environmental impacts of the life cycle of some flooring materials and to develop a methodology for LCA of building materials. METHODOLOGICAL FRAMEWORK The methodology of LCA generally consists of four steps [3] as follows. Goal definition and scoping This component consists of defining the purpose of the study and its scope, establishing the functional unit and establishing a procedure for quality assurance of the study. Inventory analysis In the inventory analysis, the systems studied and their system boundaries are defined and process flow charts are drawn. Once the system has been subdivided into its component sub-systems, the data are gathered. The data gathered comprise production, resource use, energy use, emissions to air and water, and waste generation. Impact assessment The impact assessment is a quantitative and/or quali- tative process to characterise and assess the effects of the environmental burdens quantified in the inventory analysis. The process may be divided into three steps: classification, characterisation and valuation. The results should be presented in a manner that is consistent with the objective of the study. 245

LCA Case Study

Embed Size (px)

DESCRIPTION

lsa

Citation preview

Pergamon BuildingandEnvironment,Vol.32,No.3,pp.245-255,1997 01997ElsewerScmmLtd.Allrightsreserved PrintedinGreatBntain 0360-1323197117.00+0.00 PII: SO360-1323(96)00052-2 LifeCycleAssessmentofFlooring Materials:CaseStudy A.JijNSSON* A-M.TILLMAN* T.SVENSSON* (Received2 J une1995;accepted26September1996) Theenvironmentalimpactofthethree frooringmaterialslinoleum,vinyl flooringandsolidwood flooringduringtheirlifecycleswas assessedandcomparedthroughlifecycleassessment(LCA). ThescenariosuseddescribeaSwedishsituation.Onlyimpactsonthenaturalenvironmentwere studied.Thequantitativeresultsoftheinventoryanalysiswereevaluatedbyusingthreedifferent assessmentmethods.Accordingtotheresults,solidwood flooringprovedtobeclearlythemost environmentallysound flooring.Linoleumwas rankedasmoreenvironmentallysoundthanvinyl flooring,althoughthis was less evidentin comparisonwith rankingthe solid woodflooring.01997 ElsevierScienceLtd. INTRODUCTION THEconsequencesofthehumanimpactontheenviron- menthavebecomeincreasinglyclearinrecentyears.A numberofpreviouslyunknownenvironmentalproblems haveemergedatlocal,regionalandgloballevels,inspite ofconsiderableeffortstodecreaseenvironmentalemis- sionsfromidentifiedpointsources.Consequently, demandsarenowbeingmadeontheenvironmental soundnessofproducts.Fromindustrythereisademand formethodsofimprovingproductsfromtheenviron- mentalpointofview,bothforinternaluseandformar- ketingpurposes.Authoritiesneedmethodswhichcanbe usedtoassesstheenvironmentalconsequencesofproduct relateddecisions.Lifecycleassessment(LCA)isbecom- inganincreasinglyimportantmethodformakingprod- uctrelatedenvironmentalassessments. Untilrecently,theLCAmethodhasprimarilybeen appliedtoproductswithshortlifetimes,suchaspack- aging.WhenapplyingLCAtobuildingmaterialsand components,specialmethodologicalproblemsarise becauseoftherelativelylonglifetimeandthecomplex purposeoftheseproducts.Therefore,aprojectentitled EnvironmentalAssessmentofBuildingsandBuilding MaterialshasbeeninitiatedattheDepartmentofTech- nicalEnvironmentalPlanningofChalmersUniversityof Technology(CTH).Thecasestudyofflooringmaterials presentedinthisarticleconstitutesthefirststepinthis project.Allresults,backgrounddataandcompleterefer- enceshavebeenpublishedandcanbefoundin[ 11.Another LCAofflooringmaterialshasbeenperformedbyPotting etal.[2],andsomeofthebackgrounddataforthe Swedishstudyhavebeentakenfromthere. *TechnicalEnvironmentalPlanning,ChalmersUniversityof Technology,S-412 96 Gothenburg,Sweden. OBJECTIVE Theenvironmentalimpactofthreeflooringmaterials duringtheirlifecycleswasassessedandcomparedusing theLCAmethod.Theobjectivewastomakeaspecific comparisonbetweentheenvironmentalimpactsofthe lifecycleofsomeflooringmaterialsandtodevelopa methodologyforLCAofbuildingmaterials. METHODOLOGICALFRAMEWORK ThemethodologyofLCAgenerallyconsistsoffour steps[3] asfollows. Goaldefinitionandscoping Thiscomponentconsistsofdefiningthepurposeofthe studyanditsscope,establishingthefunctionalunitand establishingaprocedureforqualityassuranceofthe study. I nventoryanalysis Intheinventoryanalysis,thesystemsstudiedandtheir systemboundariesaredefinedandprocessflowcharts aredrawn.Oncethesystemhasbeensubdividedintoits componentsub-systems,thedataaregathered.Thedata gatheredcompriseproduction,resourceuse,energyuse, emissionstoairandwater,andwastegeneration. I mpactassessment Theimpactassessmentisaquantitativeand/orquali- tativeprocesstocharacteriseandassesstheeffectsof theenvironmentalburdensquantifiedintheinventory analysis.Theprocessmaybedividedintothreesteps: classification,characterisationandvaluation.Theresults shouldbepresentedinamannerthatisconsistentwith theobjectiveofthestudy. 245 246A.Jiinssonetal. improvementassessment ThisisthecomponentofanLCAinwhichoptionsfor reducingtheenvironmentalimpactsorburdensofthe system(s)underthestudyareidentifiedandevaluated. Methodologyforthegoaldefinitionandscopingtand inventoryanalysisis,accordingtoSETAC(Societyof EnvironmentalToxicologyandChemistry)[3],defined andunderstood.Itismoredifficulttodrawupguidelines forhowtotranslateenvironmentalloadsquantifiedin theinventoryintomeasuresofenvironmentaleffects,and howdifferenttypesofeffectsaretobeweighedagainst oneanother. GOALDEFINITIONANDSCOPING Thepurposeofthestudywastoassessandcompare theenvironmentalimpactfromcradletograveforfloor coverings.Thecoveringofonesquaremetreqfjlooring duringoneyearofoperationwasthereforechosenasthe functionalunit,orbasisofcomparison. Theflooringmaterialslinoleum,vinylflooringand untreatedsolidwoodflooringwerechosentobestudied. Linoleumandvinylflooringarethemostwidelysold flooringmaterialsinSweden,andsolidwoodflooringis oftenreferredtoasthetraditionalandenvironmentally friendlyalternativetomodernflooring.Itwasofinterest toascertainwhetherornotthisviewisconfirmedby quantitativeLCA.Thestudywasdelimitedinthefol- lowingrespects(thesystemboundariesaredescribedin greaterdetailin[ 11). Flooringsfordomesticusewerestudied. ThescenariosdescribeaSwedishsituation.andthe dataareapplicabletothesituationprevailingtoday. Itwasassumedforthecalculationsthatthereisno recyclingorrecoveryoftheflooringmaterials,and thatallmaterialsareincinerated,withenergyrecovery, afteruse. Thethreestudiedproductsallhavea calorificvalueand couldalternativelybeusedasfuels.Sincetheenergy recoveredfromincinerationwasaccountedforasan energygain,thecalorificvalueofthematerialswas treatedasanenergycost. Itwasassumedthatallpigmentsusedconsistedof titaniumdioxide. Theenvironmentalimpactofmulti-outputprocesses wasallocatedinproportiontothephysicalparameter mostcloselyreflectingtheeconomicvalue,whichin mostcasesresultedinweightbeingused.Noallocation wasmadebetweenthetwofunctionsofincineration, wasteeliminationandheatproduction.Instead,the heatproducedwasreportedasausefulenergyflow leavingthesystemsanalysed. Thestudywasconfinedtoeffectsonthenatural environment(localindooreffectsonhumanhealth wereomitted). ThemethodologyofLCAdoesnotincludetherisks ofaccidentsorparametersforwhichtheenvironmental impacthasnotyetbeenthoroughlyexamined. Productionofelectricitywasnotincludedinthesys- temsanalysed,duetolackofdata.Electricityusewas thusaccountedforonlyastheamountused.When interpretingtheresults,theamountofelectricityused reflectsanumberofenvironmentalimpacts,including floodedlandfromhydropower,radioactivewastefrom nuclearpowerandemissionstotheairfromfossilfuel basedelectricityproduction. Theenvironmentalimpactofcleaningandmain- tenancewasomitted.Itwasroughlyassumedthatthe cleaninghabitsareprobablyindependentofwhatfloor coveringisused.Inaddition,noreliabledatawere availableinthisarea. Theimpactofadhesiveswasassessedasbeingsimilar forlinoleumandvinylflooring.andwastherefore omitted,althoughomittingthisimpactisunfavourable tothesolidwoodflooring,forwhichonlyasmall amountofadhesivesisused. Someadditivesintheproductswereusedinsuchsmall quantitiesthattheirenvironmentalimpactwasdis- regardedinthestudy. Generaldata[4]wereusedtodescribetheenviron- mentalimpactofenergyuseandtransportation. Theload-bearingfunctionofthefloorswasnottaken intoaccount. Table1 presentssomedataandconditionsfortheprod- ucttypesthatwerechosenforthestudy.Forlinoleum andvinylflooring,specificmanufacturerswerechosenas themaindatasources.Thelinoleumstudiedwaspro- ducedintheNetherlands,whereasthetwootherfloorings wereproducedinSweden. INVENTORYANALYSIS Aflowchartwasdrawnforeachofthefloorings(Figs 1-3)andthendataonenvironmentalloadwasgathered forprocessesandtransportsofthelifecycles.Inthis study,thenecessaryinformationwasgatheredfrompro- ducingcompanies,authoritiesandtheliterature,includ- ingotherLCAstudies.Forsomedata,standardvalues wereused.Theresultsoftheinventoryanalysiswere calculatedforeachflooringslifecyclepersquaremetre, aspresentedinTables24. Thel$ecycleqflinoleum Linseedoil,whichisthemostimportantrawmaterial intheactuallinoleumpaste,actsasabinder.Theoilis catalyticallyoxidisedandpolymerisedwithairinlarge tanks.Thisproduceslinoxyn,areddish-brownhighly elasticmass.Thehnoxynisthenmixedwithresinfrom coniferoustrees,knownascolophonium.Themixedlin- oxynandresinformacement,whichislefttomature. Thecementisthenmixedwithpowderedcork,powdered wood,powderedlimestoneandpigment.Powderedwood andcorkareusedtogivethesheetingresiliance,and powderedlimestoneisusedasamineralfiller.In linoleum,titaniumdioxideisusedasthemainpigment. Afterthemixingprocess,ahomogeneouslinoleummass isobtained,whichisthenconvertedintogranules.The granulesarefusedtobacking,madefromjute,under pressureandheat.Thestillsoftsheetingishungupin longloopsindryingroomstomaturefurther,andis lefttherefortwotothreeweeks.Asthelaststageof manufacturethesheetsarecoatedwithathinlayerof acrylate.Afterthishasbeendone,thesheetingistrimmed androlled.andafterpackagingitisreadyforsale.The productionchaintakesfourtosixweeks. LifeCycleAssessmentofFlooringMaterials:CaseStudy247 TableI. Selectedproductdataforlinoleum,vinylflooringandsolidwoodflooring Marketshare[5]SpecificAssumedMaindatasources (%ofSwedishflooringweightlifetime marketin1992) (kg/m)(years) Linoleum182.325Forbo-Krommenie[6] Vinylflooring551.320HydroPlastAB[7] TarkettAB[8] Solidwoodflooring co SO2 NO, 1.6kg 1.06g 4.3g 12.8g voc solvents terpenes dust 5.87mg 3.12g 34.5mg 34.5g EmissionstowaterP oil phenol COD tot-N 2.38mg 0.034mg 6.96mg 1.14mg Waste ash sector-specificwaste hazardouswaste 555g 17.2g 238g hnoteumproduction(rawmaterial) linoleumproduction(rawmaterial) linoleumproduction(rawmaterial) linoleumproduction(rawmaterial) linoleumproduction(rawmaterial) linoleumproduction(rawmaterial) linoleumproduction(rawmaterial) linoleumproduction(rawmaterial) flaxcultivation(fertihser) flaxcultivation(fertiliser) treecultivation flaxcultivation linoleumproduction(44%) titaniumdioxideproduction(30%) linoleumproduction(67%) calorificvalueofflooringmaterial incineration linoleumproduction(58%) transports(80%) transports(62%) incineration(40%) transports(3 I %) linoleumproduction(20%) linoleumproduction(87%) linoleumproduction powderedwoodproduction powderedlimestoneproduction(96%) transports(65%) transports(65%) transports(65%) transports(65%) incineration hessianproduction titaniumdioxideproduction *Onlyaccountedforasresourceuse(nootherenvironmentalloadsareincluded). tAccordingtoonetitaniumdioxideproducer,6.25kgilmeniteoreisrequiredforpro- ductionof1kgtitaniumdioxide). :Woodandlinseedareincludedbothasmassandaslanduse.Thisisinasensedouble accounting,butfortheimpactassessmentwhichfollowsitisbeneficialthatbothparameters arepresented. SEmissionsoccurringatprecombustionprocessesoffossilfuels(refining,etc.). basisofSwedishenvironmentalpolicyobjectivesfor 1995. TheEcologicalScarcitymethod,developedinSwit- zerland[ 131. Ecologicalscarcityisdefinedastheratio betweentotalenvironmentalimpactandcritical impactwithinageographicallydefinedarea.Thecriti- calimpactisprimarilycalculatedonthebasisofeco- logicalconditions,whatnaturetolerates,secondly onthebasisofpoliticalobjectives.Themodelhasbeen adaptedtoSwedishconditions[ 121. Theresultsoftheimpactassessmentarepresentedin Table5.Valuesarepresentedfirstlyforthetotallifetime (total/m*),thendistributedperyearonthelifetimeof eachflooringmaterial(total/year,m).Ascanbeseen, allthemethodsidentifiedthepineflooringasthemost environmentallysound,whilsttherankingoflinoleum andvinylflooringvaried.FortheEPSmethod,useof fossilresourcesandemissionsofcarbondioxideweighed heavilyintheassessment.Thequantityofhazardous wastewasanimportantparameterintheassessmentfor theothertwomethods,especiallyfortheEcologicalScar- citymethod.Themainpartofthehazardouswastestem- medfromtheproductionoftitaniumdioxide. VALIDITYOFRESULTS Theeffectsoffeasiblechangesinthelifecyclesof theproductsontheresultoftheinventoryandimpact assessment,andontheorderinwhichtheproductsare ranked,wereanalysed.Theresultsofthisvariationanaly- sisaredescribedbelow. AsaresultofthepublicationoftheoriginalSwedish report[I],somenewdatafortheenvironmentalloadof titaniumdioxideproductionweremadeavailablebythe LifeCycleAssessmentofFlooringMaterials:CaseStudy251 Table3. Totalenvironmentalloadof1 m* vinylflooring(1.444 kg,includinglayingwaste) ParameterAmountDominantactivity Useofresources crudeoil rocksalt titaniumdioxide* glassfibre limestone sulphuricacid+ Useofenergy electricity fossilfuels calorificvalue recoveredenergy Emissionstoair CO* co SO* NO, HC2 ethylene: CH! voct mercury(Hg) EDC/EC/VCM HCl dust Emissionstowater oil6 phenol COD tot-N mercury(Hg) PVC sodiumformiate EDCjVCM Waste ash sector-specificwaste hazardouswaste 1.42kg 378g 43.3g 57.8g 86.6g 130g 18.2MJ 26.5MJ 21.3MJ -16MJ 4.14kg 0.51g 4.87g 8.36g 1.94g 57mg 3.08g 1.95g 0.057mg 0.56g 23.4g 6.79g 0.03g 0.49mg 0.65g 0.02g 0.024mg 0.048g 0.078g 0.65mg 801g 197g 121g vinylflooringproduction(rawmaterial) vinylflooringproduction(rawmaterial) vinylflooringproduction(rawmaterial) vinylflooringproduction(rawmaterial) vinylflooringproduction(rawmaterial) titaniumdioxideproduction vinylflooringproduction(53%) PVCproduction(30%) petrochemicalindustry(73%) calorificvalueofflooring incineration incineration(53%) processesandtransports(fossilfuels) processesandtransports(fossilfuels) processesandtransports(fossilfuels) processesandtransports(fossilfuels) PVCproduction vinylflooringproduction vinylflooringproduction(94%) PVCproduction PVCproduction incineration powderedlimestoneproduction(92%) processesandtransports(fossilfuels) processesandtransports(fossilfuels) PVCproduction(75%) processesandtransports(fossilfuels) PVCproduction PVCproduction PVCproduction PVCproduction incineration vinylflooringproduction(74%) rock-saltquarrying(24%) titaniumdioxideproduction(83%) *6.25kgilmeniteoreisrequiredforproductionof1 kgtitaniumdioxide. TOnlyaccountedforasresourceuse(nootherenvironmentalloadsareincluded). ITheparameternamesoverlapinsomerespects,butareneverthelessseparatedinthe table,owingtotheforminwhichthedatahavebeengivenintheinventory. Emissionsoccurringduringprecombustionprocessesoffossilfuels(refining,etc.). titaniumsuppliers.Thesedatawerevalidatthetimeof theinventory,althoughnotknowntotheauthors.When utilisingthesemorerecentdata,theimpactassessment valueswerereducedforbothlinoleumandvinylflooring. (SeeTable6.)Thechangewasmostimportantfor linoleum,whichhasahighercontentoftitaniumdioxide thanvinylflooringpersquaremetre.Whentakingthe lifetimeintoaccount,linoleumandsolidwoodflooring hadsimilarimpactvalueswiththeEnvironmentalTheme method.As theEPSmethoddoesnothaveanyELU valueforwasteandhazardouswaste,thesefigures remainedunchangedregardlessofwhetherornothazard- ouswastewastakenintoaccount.Vinylflooringgotthe highestenvironmentalimpactinallthreemethods,when thenewdatawereused. Especiallyforlinoleumproduction,mostoftheraw materialsweretransportedlongdistances.Itwasofinter- esttoseewhethertheenvironmentalperformancewas affectedbydiminishingthetransportdistances.There- fore,somerawmaterials(linseedoil,powderedwood, powderedlimestone)werereplacedinthecalculations withrawmaterialsofSwedishorigin.Thisprovedtohave nosignificanteffectonthetotalimpactbecauseofthe relativelylowimpactlevelsforrawmaterialproduction andtransportationforboththeoldandnewinventory data. Theload-bearingfunctionwasincludedinthefunc- tionalunitbyaddinga bearingfloorsheet(particleboard) tothelinoleumandvinylflooringandincreasingthe thicknessofthesolidwoodflooring.Whentheenviron- mentalconsequenceswereanalysed,theconclusionwas strengthenedthatthesolidwoodflooringisthemost environmentallysoundproduct. Theenvironmentalimpactofcleaningandmain- tenanceduringtheperiodofuseprobablyaccountsfor animportantpartofthetotalenvironmentalimpactof theflooringmaterial.However,thisimpactmaybe regardedasbeingoflittlesignificancetotheresultsof 252A. Jiinssonetal. Table4.Totalenvironmentalloadof1m2 solidwoodflooring(7.4kg,includinglayingwaste) Parameter Useofresources wood* forestland* 7.4 kg 43.9m,year Useofenergy electricity fossilfuels 8.37MJ 5.39MJ renewablefuels35.4MJ calorificvalue126MJ recoveredenergy-113MJ Emissionstoair CO, co so, 424g 36.8mg 1.89g NO, HC terpenes dust 31.6g 0.98g 3.33g 1.24g Emissionstowater oil phenol COD tot-N 2.15mg 0.03mg 6.3mg I .03mg Waste ash198g Dominantactivity rawmaterial woodcultivation sawmill transports(74%) treefellingetc.(26%) sawmill(dryingprocess) calorificvalueofflooringmaterial incineration transports(74%) sawmill(96%) sawmill(56%) transports(24%) incineration(64%) transports(85%) woodproduction transports(48%) sawmill(36%) transports(74%) transports(74%) transports(74%) transports(74%) incineration(75%) sawmill(25%) *Woodisincludedbothasmassandasland.Thisisinasensedoubleaccounting,butfor theimpactassessmentwhichfollowsitisbeneficialthatbothparametersarepresented. tEmissionsoccurringduringprecombustionprocessesoffossilfuels(refining,etc.). thisreportastheimpactsinacomparativestudycancel oneanotherout,providedthattheflooringsaremain- tainedinasimilarway. Thethreeflooringtypesareallusedalsoinpublic areas,althoughwithachangeinproportionalcom- positionandspecificweight.Inaddition,thepineflooring isgenerallyvarnished.Aroughestimatewasmadeof theenvironmentalperformanceofpublic-areafloorings, basedontheinventoryresults.Mostparametersranked thewoodflooringasthemostenvironmentallysound andvinylflooringastheleastenvironmentallysound product.Therankingorderwasmoreevidentforpublic thanfordomesticfloorings.However,theenvironmental impactofcleaningandmaintenancemaybesupposedto 200; 180j 1601 1401 1201 ml00i 80/ 601 401 I. Wlinoleum 0vinylflooring n solidwoodflooring Fig.4.Resourceuseperfunctionalunit(yearandm)flooringmaterial. LifeCycleAssessmentof FlooringMaterials:CaseStudy 253 800 700 600 500 400 300 Fig.5.Energyuseperfunctionalunit(yearandm)flooringmaterial. r-7r Wlinoleum q vinylflooring n solidwoodflooring co2 so2NO* dustWx (9) (mg)(mg) (mg)(mg) Fig.6.Emissionstoairperfunctionalunit(yearandm)flooringmaterial 451 40, 35 30 1 T 25 w in 20 L / 15i 10 5 0 ash specificwaste waste Fig.7.Wastegenerationperfunctionalunit(yearandm)flooringmaterial. 254A.Jhzssonetal. Table5.Comparativeenvironmentalassessmentoflinoleum, vinylflooringandsolidwoodflooringaccordingtothreeassess- mentmethods.Thevaluesarepresentedinrelationtothosefor wood VinylSolidwood ImpactassessmentmethodLinoleumflooringflooring EPSmethod total/m4.212.51 total/year,m26.7251 Environmentalthememethod total/m1.91.91 total/year,m*3.13.81 Ecologicalscarcitymethod total/m223.313.51 total/year,m*37.3271 beevengreaterforpublicthanfordomesticfloorings, whichmayinfluencetherankingorderwhentakeninto consideration.Inaddition,aspublicflooringsarepro- fessionallycleanedandmaintained,itcannolongerbe assumedthatthecleaninghabitsareprobablyinde- pendentofwhatfloorcoveringisused. DISCUSSIONANDCONCLUSIONS Theconclusiondrawnfromthefindingsofboththe inventoryandtheimpactassessmentwasthatthesolid woodflooringunderthegivenconditionsisclearlythe mostsuitablealternativeofthethreematerialsstudied, fromtheenvironmentalpointofview.Basedsolelyon thequantitativeinventoryresults,nodefiniteconclusions couldbedrawnastowhetherlinoleumorvinylflooring ispreferable.Whentakingintoaccountalsotheassess- mentofenvironmentallyhazardoussubstancesinthelife cyclesoftheflooringmaterialsandthefindingsofthe impactassessment,itwasconcludedthatlinoleumis probablypreferabletovinylflooringfromtheenviron- mentalpointofview. Therearegapsindataintheinventorydocumentation. Theshortageofdatais consideredgreatestforproduction oflongdistancerawmaterialsforlinoleum,suchasresin, juteandcork.Inthecaseofvinylflooring,theenviron- Table6.Comparativeenvironmentalassessmentsoflinoleum, vinylflooringandsolidwoodflooringaccordingtothreeassess- mentmethods,providednohazardouswasteisgeneratedinthe productionoftitaniumdioxide.Thevaluesarepresentedin relationtotheflooringwiththelowestvalue VinylSolidwood ImpactassessmentmethodLinoleumflooringflooring EPSmethod total/m24.212.51 total/year,mz6.725I Environmentalthememethod total/m12.21.7 total/year,mz12.81.1 Ecologicalscarcitymethod total/m214.11 total/year,m21.681 mentalloadswereomittedforanumberofadditives.It wasconsiderablymoredifficulttoobtaindataforthe processeswhichtakeplaceoutsideSwedenthanforpro- cesseswithinSweden. Whenimpactassessmentmethodsareused,theresult ispartlygovernedbyhowaparameterisdefined.The classesofimpactcategoriesarebroadatpresent.Further developmentneedstobecarriedout,forexampleto produceeffectweightingfactors(indices)formorepar- ameters.Itisimportantthattheresultsoftheinventory arepresentedinconnectionwiththeimpactassessment, sothatusersthemselvescanexaminewhatisdecisivein thevaluationmethod.Boththeinventoryandtheimpact assessmentshouldbeastransparentaspossible,to assistawideapplicationoftheresult. Infurtherdevelopmentofknowledgeontheenviron- mentalimpactofflooringmaterials,itisregardedvery importanttostudytheenvironmentalimpactofcleaning, careandmaintenanceduringtheperiodofuse. Thelifetimeofflooringmaterialsaffectstheirtotal environmentalimpact.Whetherornotalonglifetimeis advantageousispartlygovernedbyhowcleaningand maintenanceprocedureschangeovertheyears.Another areaconsideredimportanttostudymorecloselyisthe long-termenvironmentaleffectsofthelandfillingof buildingwaste. 1. 2. 3. 4. 5. 6. 7. 8. 9. REFERENCES Jiinsson,A.,Tillman,A-M.andSvensson,T.,Liascykeluna[~~satgolvrnateriul(Life-CycleAssessment ofFlooringMaterials).ReportR30:1994,BFR(SwedishCouncilforBuildingResearch),Stockholm, 1994[inSwedish;anEnglishtranslationwillshortlybeavailablefromtheSwedishCouncilfor BuildingResearch]. Potting,J.andBlok,K.,Demilieugerichtelevensyklusanal~ysevanviertypenvloerbedekking(The EnvironmentalLifeCycleAssessmentofFourTypesofFloorCovering).P-UB-93-4,Coordination pointscienceshops,Utrecht,1993[inDutch]. GuidelinesforLife-CycleAssessment:ACodeqfPractice.SETAC(SocietyofEnvironmental ToxicologyandChemistry),Brussels/Pensacola,1993. Tillman,A-M.,Baumann,H..Eriksson,E.andRydberg,T.,PackagingandtheEnvironment.SOU 1991:77,Gothenburg,1991. InformationfromGBR(SwedishNationalFlooringTradesAssociation),Stockholm,1993. Forbo-Krommenie,Krommenie,Netherlands,1993-94. HydroPlastAB,Stenungsund,1993-94. TarkettAB,Ronneby,1993-94. Milj@arliga&nnen-Exempellistaochvetenskapligdokumentation(EnvironmentallyHazardousSub- stances-ExampleListandScientificDocumentation).Kern1(SwedishNationalChemicalsInspec- torate)ReportIOj89,Stockholm,1989[inSwedish]. LifeCycleAssessmentofFlooringMaterials:CaseStudy 10.Steen,B.andRyding,S-O.,TheEPSEnviro-AccountingMethod.AnApplicationofEnvironmental AccountingPrinciples forEvaluationandValuationofEnvironmentalI mpactin ProductDesign.IVL reportB1080,IVL(SwedishEnvironmentalResearchInstitute),Goteborg,1992. 11.Heijungs,R.,Guinee,J.G.,Huppes,G.,Lankreijer,R.M.,UdodeHaes,H.A.,WegenerSleeswijk, A.,Ansems,A.M.M.,Eggels,P.G.,vanDuin,R.andDeGoede,H.P.,EnvironmenralLifeCycle Assessmentof Products-BackgroundsandEnvironmentalLifeCycleAssessmentof Products-Guide. CML,TNO,B&G,Leiden,1992. 12.Miljomiissigaskillnadermellandtervinningldteranvdndningochfijrbriinningjdeponering(Environ- mentalDifferencesBetweenRecovery/ReuseandIncineration/LandFilling).CTH,CIT,IVL,SI. ReforskFoUno.79,January1993[inSwedish]. 13.Ahbe,S.,Braunschweig,A.andMuller-Wenk,A.,MethodikfurOekobilanzenaufderBasisdko- log&herOpfimierung(MethodologyforEco-balancesBasedonEcologicalOptimisation).BUWAL SchriftenreiheUmweltNr133,Bern,October1990[inGerman]. 255