26
Long-Baseline Neutrino Facility LBNF LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October 5-6, 2017

LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

Embed Size (px)

Citation preview

Page 1: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

Long-Baseline Neutrino FacilityLBNF

LBNF MARS Modeling for Optimized

Beamline

Nikolai Mokhov

Beam Optimization Review - FNAL

October 5-6, 2017

Page 2: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Outline

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization2

• Target Station

• Decay Channel and DS Window at Normal Operation

• Hadron Absorber at Normal Operation

• Beam Accidents

MARS LBNF Modeling Team:

N. Mokhov, I. Rakhno, D. Reitzner, S. Striganov and I. Tropin

Page 3: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

e95 = 20p mm-mrad, Np = 1.5×1014 pppBeam starts at z = -7.3 m from MC0, tilt = 0.101074

N. Mokhov | MARS Modeling for Beamline Optimization3

Scenarios & Beam Parameters

Scenario Ep (GeV) P (MW)Q (MJ)

s0 (mm)at MC0

b0 (m)at MC0

Cycle (s) × 1014

Normal 120 2.40 MW 1.7 110.8837 1.2 1.25 p/s

No-targetaccident*

120 2.88 MJ 2.4 221.03 1.2 1.5 ppp

Off-axis accident**

120 2.88 MJ 2.4 221.03 1.2 1.5 ppp

Normal 60 2.06 MW 1.7 55.44 0.7 2.14 p/s

*) On-axis

**) Beam points to absorber cooling water pipes

10/05/2017

Page 4: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Target Station Configurations

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization4

Reference Design 2016 (RD)95-cm target, first 6 cm winged

2 NuMI-type horns, Air

Optimized Design 2017 (OD)198-cm target, first 12 cm winged,

3 optimized horns, Nitrogen

Page 5: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Longer Target with Winged Fins at Upstream End

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization5

AirAl

Ti

He

Air

• In RD, 0.3% of beam miss targetentirely, giving 0.9-cm RMSon absorber (7 kW) addwinged fins on target upstream,6-cm (RD) and 12-cm (OD) long,to lower the peak EDEP

• In RD, 13% of proton beam do notparticipate in inelastic nuclearinteractions with target,experiencing just Coulomb andnuclear elastic scattering. Latterresults in a 4.9-cm RMS footprinton absorber(~300 kW) maketarget longer to lower pedestaland total power on absorber

Lines - analytical

Page 6: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP in Optimized Target/Horns (1)

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization6

Horn A Horn B Horn C

Energy Deposition (GeV/cm3/pot) vs longitudinal position (cm) in horn IC

0 50 100 150 200 250Position Along IC (cm)

0.0

0.5

1.0

1.5

2.0

2.5

ED

EP

(G

eV

/cm

3/p

) (

10

-3) Horn A IC

0 100 200 300 400Position Along IC (cm)

0.0

0.5

1.0

1.5

2.0

2.5

ED

EP

(G

eV

/cm

3/p

) (

10

-4) Horn B IC

0 50 100 150 200 2500 50 100 150 200 250Position Along IC (cm)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ED

EP

(G

eV

/cm

3/p

) (

10

-5) Horn C IC

Page 7: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

0 100 200 300 4000 100 200 300 400Position Along IC (cm)

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

ED

EP

Ratio

(12

0G

eV

/60G

eV

)

EDEP in Optimized Target/Horns (2)

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization7

Target tube: R=2.5cm, Ti

120GeV/60GeV Ratio

2.8 at peak

Horn B IC

Energy Deposition (GeV/cm3/pot)

-50 0 50 100 150 200 250-50 0 50 100 150 200 250Position Along Target Tube (cm)

0

1

2

3

4

5

0

1

2

3

4

5

ED

EP

(G

eV

/cm

3/p

) (

10

-3)

OD

~RD

OD/RD ~2 at peaks

Target tube

Page 8: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP (r) in US Decay Pipe Window: 120 vs 60 GeV

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization8

Transition from AlBeMet to Al (thinner bin)

Page 9: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP (r) in US DK Window: Nominal vs Accident

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization9

Transition from AlBeMet to Al (thinner bin)

Page 10: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP in Target Station Cooling Panels

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization10

Floor Max: 4.9×10-6 GeV/cm3/p

T-Blocks Max: 6.0×10-6 GeV/cm3/p

MARS EDEP mapsprovided to ANSYS team

Page 11: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Target Station Model: Extracting EDEP for FEA

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization11

Extracting new MARS15 EDEP results for FEA analysisEspecially for the shielding block / module / stripline block studies

Shielding block binning

Diane

Page 12: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP in Target Station Components

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization12

Component REF OPT OPT/REF

Target/horns 153.70* 193.84* 1.26

Steel blocks/elements 769.9 1,004.04 1.30

Concrete blocks 0.201 0.132 0.66

Miscellaneous 27.7 39.71 1.43

Total 951.5 1,237.72 1.30

Power dissipation (kW)

*) REF (OPT): Baffle – 0.42 (0.41), target fins -23.55 (44.45), other target components –5.62 (11.26), Horn1 – 79.66 (A: 47.42), Horn2 – 41.76 (B: 60.66, C: 26.64), tanks – 2.69 (3.00) kW

Page 13: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Double-Walled Steel Decay Pipe EDEP vs DK

Length: Optimized Design

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization13

350 kW total over entire length

ANSYS analysis was already performed using this as input

Page 14: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

DK Concrete EDEP in First 50cm Radially vs DK

Length

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization14

EDEP maps for entire DK including DS window are available in DUNE-doc-3303-v2 for ANSYS analysis

Page 15: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP and Star Density in DK Concrete for OD

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization15

For heat load & ground-water activation analysesat two longitudinal maxima and DK-averaged

Design limit

Page 16: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP (kW/m3) in DK DS Steel Window and Frame

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization16

3.42-mm Steel window 12.7-mm Steel frame

The peak value at the beam axis:RD: 190 kW/m3 in 3.42-mm stainless steel

90 kW/cm3 in 6.35-mm aluminumOD: 45 kW/m3 in 3.42-mm stainless steel

The peak value in 12.7-mm steel frame:RD: 26.5 kW/m3 at r=55 cmOD: 24.0 kW/m3 at r=55 cm

Peak OD/RD = 0.24

Page 17: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP in DK and DS Stainless Steel Window

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization17

Element REF OPT OPT/REF

Double-walled steel decay pipe

291 350 1.20

Concrete 158.3 189.3 1.20

SS window 0.08 0.06 0.75

Steel frame 2.7 2.8 1.04

Total 452.08 542.16 1.20

Power dissipation (kW)

Page 18: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Hadron Absorber Configurations

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization18

Ref. Hadron Absorber (RHA)Non-uniformity, sculpting needed for RDwith a 30% safety margin

Uniform Hadron Abs (UHA)No sculpting, larger uniform masks, largercore blocks (60”->67”), 1/16” windows on maskblocks, simpler cooling and interface to hadronmonitor with a large safety margin for OD

Page 19: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Proton and Energy Flux at Hadron Absorber

System at Normal Operation

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization19

Total Power: 854 kW (RD)and 436 kW (OD) OD/RD = 0.50Peak: OD/RD = 0.17

Lines - analytical

Eth=115 GeV

Page 20: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Power Density (mW/cm3) in Hadron Absorber

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization20

RD Peak: 1.6 W/cm3 Peak: 0.24 W/cm3OD

Thanks to longer target and longer wings in OD, instantaneous (EDEP)and accumulated (DPA) peaks are down by a factor of 6.7 and totalheat load is down by a factor of 2 (for normal operation ) !

Page 21: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP (mW/cm3) in Reference Hadron Absorber

for RD and OD Beams

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization21

Axial Lateral

Page 22: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

EDEP in Reference Hadron Absorber Components (OD)

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization22

No Component kW

1 Spoiler 47.52

2 Masks 1-5 139.42

3 Al sculpted blocks 60.58

4 Al solid blocks 7.07

5 Steel core blocks 1-4 3.78

6 Steel shielding 134.5

7 Concrete 2.7

8 Miscellaneous 4.0

9 Total 400.0

1

23

4 5 6

66

6

7

7

7

Page 23: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

2.4-MW LBNF EDEP (kW) in OD vs RD

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization23

System RD OD OD/RD

Target Station 951.5 1,237.7 1.30

Decay Channel 452.1 542.2 1.20

Hadron Absorber 786.0 400 0.51

4-p Neutrino power 66 69 1.05

Misc: infrastructure,binding energy & sub-threshold ptcls

144.4 151.1 1.05

Total 2400 2400

Page 24: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

DS DK Window, Hadron Monitor and Spoiler

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization24

Peak EDEP (J/cm3) per 1.5×1014 ppp no-target accident:80 3.42-mm stainless steel window48 Hadron monitor (aluminum)235 Spoiler downstream (aluminum)

Page 25: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

DK DS Window at Beam Accident: EDEP & DT

per 1.5×1014 ppp

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization25

sx = sy = 2.4 mm at the missed targetentrance3.42-mm Stainless Steel windowT0 = 27 0CPeak DT = 23 0C

Page 26: LBNF MARS Modeling for Optimized Beamline · LBNF Long-Baseline Neutrino Facility LBNF MARS Modeling for Optimized Beamline Nikolai Mokhov Beam Optimization Review - FNAL October

LBNF

Summary

10/05/2017 N. Mokhov | MARS Modeling for Beamline Optimization26

• EDEP is well under control

• Hadron absorber system – EDEP, muon monitoring and radiological - is

under thorough optimization MARS calculations (uniform absorber etc.)

• The Optimized Design vs Reference Design: 30% n-flux improvement,

increase of heat and radiation loads in Target Station (30%) and Decay

Channel (20%), substantial mitigation of EDEP problems in Hadron

Absorber system

• Thorough search and elimination of differences in

MARS15LBNF and G4LBNF models were

performed (#3408): geometry, materials, magnetic

fields etc. n-fluxes at Far Detector calculated with

MARS15 and Geant4 now agree within 10%. The

code related uncertainties were reduced to the

differences in the event generators, especially for

K- and K0 mesons (need data!)