53
Berkeley Summer School, June 912, 2014

LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Berkeley  Summer  School,  June  9-­‐12,  2014  

Page 2: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Extrac;ng  lumpy  glue  in  the  proton-­‐IPSat  model  

rq

qz

1-z

*�

s

Entries 0

Mean 0

RMS 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

Entries 0

Mean 0

RMS 0

Ap

Bp

bs

b-ssd

s2dB�d

s2dA�d

Bartels,Golec-­‐Biernat,Kowalski  Kowalski,Teaney    Kowalski,Motyka,WaI  

µ̃2 = µ20 +

4

r?

2

Tp(b?) = e�b2?

2BG

Average  gluon  radius  of  the    proton  extracted  from  HERA  diffrac;ve    data  

Page 3: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Extrac;ng  lumpy  glue  in  the  proton-­‐IPSat  model  Very  good  agreement  of  IPSat  model  with  combined  HERA  data  

Rezaiean,Siddikov,Van  der  Klundert,RV:1212.2974  

Inclusive  DIS  off  proton   Exclusive  DIS  off  proton  

Page 4: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Lumpy  nuclei:  constrained  by  (limited)  DIS  data  Kowalski,  Lappi,  RV,  PRL  (2008)  

Page 5: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Heavy  ion  phenomenology  in  weak  coupling  Collisions  of  lumpy  gluon  ``shock”  waves  

Fµ⌫,a = @µA⌫,a � @⌫A

⌫,a + gfabcAµ,bA⌫,c

DµFµ⌫,a = �

⌫+⇢

aA(x?)�(x

�) + �

⌫�⇢

aB(x?)�(x

+)

x

± = t± z

Leading  order  solu;on:    Solu;on  of  QCD  Yang-­‐Mills  eqns  

Page 6: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Tμν  from  Yang-­‐Mills  dynamics  

Ini;al  longitudinal  pressure  is  nega;ve:    Goes  to  PL  =0  from  below  with  ;me  evolu;on  

Glasma  energy  density  and  pressure  

Page 7: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Mul;par;cle  produc;on:  lasing  gluons  

Mul;par;cle  produc;on  in  the  Glasma  naturally  gives:    

Long  range  rapidity  correla;ons  –  key  input  into  hydro      

 Nega;ve  Binomial  Distribu;ons  (NBDs):        

Output  of  model  –  no  addi;onal  parameter  unlike  ``Glauber”  Fluctua;ons  related  to  shapes  –  also  unlike  Glauber.    

k=1:  Bose-­‐Einstein  dist.;  k=∞:  Poisson  distribu;on  

Gelis,Lappi,McLerran,    arXiv:0905.3234  

Page 8: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

NBDs  in  heavy  ion  collisions  

10-5

10-4

10-3

0 500 1000 1500 2000 2500P

(dN

g/dy

)dNg/dy

Glasma centrality selection

0-5%

5-10

%

10-2

0%

20-3

0%

30-4

0%40

-50%

50-6

0%

Schenke,Tribedy,RV:  arXiv:1206.6805  

Only  model  of  heavy  ion  collisions  where    mul;plicity  dist./centrality  selec;on  Is  not  an  external  input  

Page 9: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Matching  boost  invariant  Yang-­‐Mills  to  hydrodynamics  

State  of  the  art  phenomenology:  Solve  rela;vis;c  viscous  hydrodynamic  equa;ons  with  Glasma  (Yang-­‐Mills)  ini;al  condi;ons  

Match  event  by  event  Glasma  (YM)+2+1-­‐D  viscous  hydro  

Energy  dist.  of  YM  fields   YM+hydro  

Page 10: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Matching  boost  invariant  Yang-­‐Mills  to  hydrodynamics  

Energy  density  and  (ux,uy)  from  

Page 11: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Matching  boost  invariant  Yang-­‐Mills  to  hydrodynamics  

Matching  to  viscous  hydro  is  “brutal”  :    assume  very  rapid  isotropiza;on  at  ini;al  hydro  ;me    

Large  systema;c  uncertainty:  how  does  isotropiza;on/thermaliza;on  occur  on  ;mes  <  1  fm/c  ?

Page 12: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Heavy  ion  phenomenology  in  weak  coupling  Hydrodynamics:  efficient  transla;on  of    spa;al  anisotropy  into  momentum    anisotropy  

dN

d�=

N

2⇡(1 + 2v1 cos(�) + 2v2 cos(2�) + 2v3 cos(3�) + 2v4 cos(4�) + · · · )

MUSIC:  3+1-­‐D  event-­‐by-­‐event  viscous  rela;vis;c  hydro  model  Schenke,Jeon,  Gale  

Page 13: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Heavy  ion  phenomenology  in  weak  coupling  Results  from  the  IP-­‐Glasma  +MUSIC  model:  

AdS/CFT    bound  =  0.08  

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2

v n

pT [GeV]

narrow: �/s(T)wide: �/s=0.12

30-40%

PHENIX v2 PHENIX v3 PHENIX v4 STAR v2 STAR v3 STAR v4 STAR v5

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

�vn2 �

1/2

pT [GeV]

ATLAS 20-30%, EPnarrow: �/s(T)wide: �/s=0.2

v2 v3 v4 v5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50

�v n2 �1/2

centrality percentile

�/s = 0.2ALICE data vn{2}, pT>0.2 GeV v2

v3 v4 v5

Gale,Jeon,Schenke,Tribedy,Venugopalan,  PRL  (2013)  012302    

 RHIC  data  require  lower  average  value  of  η/s  rela;ve  to  LHC  

Page 14: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Heavy  ion  phenomenology  in  weak  coupling  

Page 15: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Heavy  ion  phenomenology  in  weak  coupling  

Remarkable  agreement  of  IP-­‐Glasma+MUSIC  with  data  out  to    fairly  peripheral  overlap  geometries…    

Schenke,Venugopalan,  arXiv:1405.3605  

Page 16: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  ridge  in  p+p  and  p+A  through  colored  glass  

Page 17: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  ridge  Tsunami  

u   What  is  the  underlying  QCD  mechanism  of  the  ridge?      

u How  far  can  can  we  extend  the  collec;ve  flow  paradigm  to  small  size  systems  –  and  do  we  see  systema;c  devia;ons?  

u Is  there  “spooky  quantum  mechanics”  at  work  a  la  photon  or  spin  entanglement  ?  

u Are  hadroniza;on  paIerns  universal  QCD  physics  or  do  they  reflect  thermal  abundances  ?  

Page 18: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

High  mul;plici;es  +  small  systems  =  gluon  satura;on  What  does  it  take  to  produce~  150  hadrons  per  5  units  of  rapidity  in  a  single  p+p  event  ?    

For  λ=0.14,  get  about  13  gluons  produced  in  5  units  ~    min.bias  hadron  mul;plicity    λ=0.3:  ~45  gluons  in  5  units,  λ=0.4:  ~90  gluons  in  5  units,  in  ball  park…    Very  rapid  growth  of  gluon  dist.  in  such  events…  

Page 19: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

High  mul;plici;es  +  small  systems  =  gluon  satura;on  What  does  it  take  to  produce~  150  hadrons  per  5  units  of  rapidity  in  a  single  p+p  event  ?    

For  λ=0.14,  get  about  13  gluons  produced  in  5  units  ~    min.bias  hadron  mul;plicity    λ=0.3:  ~45  gluons  in  5  units,  λ=0.4:  ~90  gluons  in  5  units,  in  ball  park…    Very  rapid  growth  of  gluon  dist.  In  such  events…  

π  

π  

π   π  

π  

Satura;on  regulates  this  by  adding  increasingly  “smaller”  gluons  of  size  1/Qs(x)  with  decreasing  x  (increasing  energy)  

dNprot.g

d⌘⇡ 1.1CF

2⇡2

S?Q2

S,prot.

↵S

Ng  ~  100  in  5  units  for  QS2  ~  2  GeV2  :  a  semi-­‐hard  scale  !  

 

Lappi:    arXiv  0711.3039  

Page 20: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Ini;al  state  collima;on  from  jet+Glasma  

Quan;ta;ve  modeling  of  these  ini;al  state  correla;ons  gives  good  descrip;on  of    p+p  high  mul;plicity  correla;on  data  and  features  of  p+A  correla;on  data  

(Next  talk  by  Kevin  Dusling)  Dusling,  Venugopalan,  arXiv:1210.3701,  arXiv:1211.3701,  arXiv:1302.7018  

Page 21: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

High  mul;plicity  events:    two  par;cle  correla;ons  

u  Full  YM+JIMWLK  evolu;on  –  not  available  yet  

u  Approxima;ons:    I)  BK  Gaussian  trunca;on  approxima;on  -­‐evolu;on  but  no  rescaIering      II)  YM  results  for  MV  model:  rescaIering  but  no  evolu;on    

Dusling,Gelis,Lappi,RV:0911.2720;  Lappi,Srednyak,RV:0911.2068;    Kovchegov,Wertepny:  1212.1195  

Gelis,Lappi,RV  arXiv:0804.2630  [hep-­‐ph];  arXiv:0807.1306  [hep-­‐ph]  

Page 22: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Glasma  graphs    RG evolution:

+ + … Keeping  leading  logs  to    all  orders  (NLO+NNLO+…)    

=  LO  graph  with  evolved  sources    avg.  over  sources  in  each  event    and  over  all  events  gives  correla;on  

Dumitru,Gelis,McLerran,RV: 0804.3858 Gelis, Lappi, RV, arXiv: 0807.1306

Page 23: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Glasma  graphs    RG evolution:

+ + … Keeping  leading  logs  to    all  orders  (NLO+NNLO+…)    

=  LO  graph  with  evolved  sources    avg.  over  sources  in  each  event    and  over  all  events  gives  correla;on  

Dumitru,Gelis,McLerran,RV: 0804.3858 Gelis, Lappi, RV, arXiv: 0807.1306

From  solns.  of  Yang-­‐Mills  eqns.with  two  light  cone  sources  Includes  all  mult.  scat.  contribu;ons  (gρ1)n  and  (gρ2)n  

Page 24: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Glasma  graphs  

Correla;ons  are  induced  by  color  fluctua;ons  that  vary  event  to  event  –  for  Gaussian  weight  func;onals  in  ρ,    have  color  screening  radius  ~  1/QS      

Page 25: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Glasma  graphs  

Correla;ons  are  induced  by  color  fluctua;ons  that  vary  event  to  event  –  for  Gaussian  weight  func;onals  in  ρ,    have  color  screening  radius  ~  1/QS      

Glasma  graphs    generate  long  range  rapidity  correla;ons…    

Page 26: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Glasma  graphs  

Correla;ons  are  induced  by  color  fluctua;ons  that  vary  event  to  event  –  for  Gaussian  weight  func;onals  in  ρ,    have  color  screening  radius  ~  1/QS      

Glasma  graphs    generate  long  range  rapidity  correla;ons…      Glasma  graphs  are  suppressed  rela;ve  to  “jet”  graphs  for  QS  <<  pT    by  powers  of  αS  AND  NC    (At  high  pT,  large  x  or  large  impact  parameters)    

Page 27: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Glasma  graphs  

Correla;ons  are  induced  by  color  fluctua;ons  that  vary  event  to  event  –  for  Gaussian  weight  func;onals  in  ρ,    have  color  screening  radius  ~  1/QS      

 Glasma  graphs  enhanced  by  1/αS

8  for  high  occupancy  fields  (factor  of  105  !)  (central  impact  parameters,  small  x,  low  pT,  large  nuclei)    

Glasma  graphs    generate  long  range  rapidity  correla;ons…      Suppressed  for  QS  <<  pT    by  powers  of  αS  AND  NC    (At  high  pT,  large  x  or  large  impact  parameters)    

Page 28: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Angular  structure  from  (mini-­‐)  Jet  radia;on  

GBFKL  

p  

q  

Cdijet(p,q) / �A ⌦ �B ⌦GBFKL

NLO  in  the  dense-­‐dense  framework  but…  unsuppressed  in  NC  

Caveat:  does  not  include  mul;ple  scaIering  contribu;ons  which  may  be  significant  for  kT  <  QS      

Page 29: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Quan;ta;ve  descrip;on  of  pp  ridge  Dusling,RV:PRL108  (2012)262001  

A(�p, �q) = ⇥(|�p � �q|���min

) ⇥(��max

� |�p � �q|)

Dependence  on  transverse    area  cancels  in  ra;o…  

Rarer  and  rarer    gluon  configura;ons    probed  in  the  proton  

Page 30: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Systema;cs  of  p+p  correlated  yield  Data  from  CMS  collabora;on  Fits:  Dusling,RV,  arXiv:1302.7018  

Page 31: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

0.00

0.10

0.20

0.301 < pT

trig < 2 GeV1 < pT

asc < 2 GeV2 < pT

trig < 3 GeV 3 < pTtrig < 4 GeV 4 < pT

trig < 5 GeV 5 < pTtrig < 6 GeV

0.00

0.04

0.08

0.12 2 < pTasc < 3 GeV

0.00

0.01

0.03

0.043 < pT

asc < 4 GeV

0.00

0.01

0.02

0.03 4 < pTasc < 5 GeV

0.000

0.003

0.006

0.009

0 1 2 3 6q

5 < pTasc < 6 GeV

0 1 2 3 6q

0 1 2 3 6q

0 1 2 3 6q

0 1 2 3 6q

Dusling,RV,    PRD  87,  051502  (R)  (2013);  arXiv:1302.7018                                            

Page 32: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

What  about  p+A  ?    

Ridge  much  bigger    than  p+p  for  the    same  mul;plicity    

p+A  ridge  nearly  as  large    as  peripheral  Pb+Pb  

Page 33: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Systema;cs  of  p+Pb  associated  yield  Dusling,  RV:  1211.3701                                                  1302.7018  

0

0.02

0.04

0 1 2 3 4 5 6pT

trig=pTasc [GeV]

Associated Yield

p+Pb: CMS datap+p: CMS data

Page 34: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

“Jet  subtracted”  p+Pb  ridge  

Similar  subtrac;on  in  RHIC  d+Au  to    extract  ridge    

Page 35: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  v3  surprise  in  LHC  pA  collisions  CMS  1305.0609  

v3  >  0  not  obviously  obtained  from    Glasma  graphs    in  kT  factoriza;on  approxima;on      

Only  even  moments  obtained…    

Page 36: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

CMS  summary  talk  at  Quark  MaIer  

Page 37: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

CMS  summary  talk  at  Quark  MaIer  

Also  from  ini;al  state  Universal  hadroniza;on  paIern?  

Reflects  more  underlying  stringy  picture  

Not  obvious  in  hydro-­‐see  later  slides  

HBT  radii  same  in  pp  at  same  Nch  &  v2  smaller      

??

Page 38: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Recall  IP-­‐Glasma+MUSIC  model  in  A+A  

Remarkable  agreement  of  IP-­‐Glasma+MUSIC  with  data  out  to    fairly  peripheral  overlap  geometries…    

Schenke,Venugopalan,  arXiv:1405.3605  

Page 39: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

IP-­‐Glasma  model:  mul;plicity  distribu;ons  Schenke,Tribedy,Venugopalan,  arXiv  1311.3636  

p+Pb  5.02  TeV  

Color  charge  fluctua;ons:  different  color    configura;ons  for  same  gluon  number    But  gluon  #  in  wave  func;ons  can  fluctuate  too.    Required  to  explain  tails  of  mul;plicity  distribu;ons.  

Page 40: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

IP-­‐Glasma  model:  system  size  Bzdak,  Schenke,Tribedy,Venugopalan,  arXiv  1304.3403  

ε  

r  

System  size  in  IP-­‐Glasma  nearly  the  same  in  p+p  and  p+Pb      

Page 41: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

IP-­‐Glasma  model:  system  size  Schenke,  Venugopalan:  1405.3605  

ε  

r  

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Rin

v, K

rm

ax

[fm

]

!Nch"1/3

#min = $QCD4

solid: m=0.2 GeV, K=1.25

dashed: m=0.1 GeV, K=1.15

ALICE Pb+Pb 2.76 TeV ALICE p+Pb 5.02 TeV ALICE p+p 7 TeV

m  regulates  the  tail    of  gluon  distribu;ons  

Results  for  system  size  in  the  Glasma    clearly  leaves  room  for  flow  in  Pb+Pb    Flow  not  necessary  in  p+p  to  explain  data  up  to  quite  rare  Nch  =  27.    In  p+Pb,  whether  there  is  room  for  flow  in  rare  events    is  sensi;ve  to  how  the  tail  of  the  gluon  distribu;on  is  regulated…  

Page 42: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Schenke,  Venugopalan,  arXiv:1405.3605  

Page 43: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  ridge:  flow  in  p+p  and  p+Pb  ?  Bzdak,Schenke,Tribedy,Venugopalan:  1304.3403  

p+p  at  b=0    

IP-­‐Glasma+  MUSIC  (hydro)  gives  much    less  v2    than  Glauber  models  that  have  significantly    larger  spa;al  sizes  and  shapes  

Bozek,Torrieri,Broniowski,  arXiv:  1307.5060  Kozlov,Luzum,Denicol,Jeon,Gale,  arXiv:1405.3976    

Page 44: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  ridge:  flow  in  p+Pb?  

In  contrast  to  A+A,  both  shape  and  magnitude  of    IP-­‐Glasma+MUSIC  p+Pb  results  completely  off  from  data  

Schenke  and  Venugopalan,  arXiv:1405.3605  

Page 45: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  ridge:  flow  in  p+Pb?  

In  contrast  to  A+A,  both  shape  and  magnitude  of    IP-­‐Glasma+MUSIC  p+Pb  results  completely  off  from  data  

Schenke  and  Venugopalan,  arXiv:1405.3605  

Maybe  shapes  are  treated  incorrectly  in  IP-­‐Glasma  ?  Note  they  seem  off  even  for    mul;plicites  where  the  IP-­‐Glasma  mul;plicity  distribu;on  agrees  with  the  data…    

Alterna;ve:  hydro  shouldn’t  work  for  small  size  systems?  

Page 46: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

IP-­‐Glasma  model:  mul;plicity  distribu;ons  Schenke,Tribedy,Venugopalan,  arXiv  1311.3636  

p+Pb  5.02  TeV  

Color  charge  fluctua;ons:  different  color    configura;ons  for  same  gluon  number    But  gluon  #  in  wave  func;ons  can  fluctuate  too.    Required  to  explain  tails  of  mul;plicity  distribu;ons.  

Large  x  quarks  in  proton  can  have  “eccentric”  shapes.        

Is  this  feasible  for  radiated  gluons  that  pack  the  proton      within  constraints  from  confinement,  causality  &  unitarity…?  

G.  A.  Miller,  arXiv:0802.3731  

Page 47: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Addi;onal  puzzles  for  the  collec;vity  picture  in  p+A  

•  Why  is  there  no  sign  of  “mini-­‐jet”  quenching  in  p+A  ?    •  Why  is  v2  unchanged  up  to  pT  of  9  GeV  

•  Why  is  v2  much  smaller  in  p+p  than  p+A  for  the  same  Nch  and  HBT  radius  ?  

•  Why  is  mass  ordering  in  <pT>  seen  even  at  Nch  =  6  ?      

Page 48: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

ALICE Overview – Jan Fiete Grosse-Oetringhaus 48

And the Jet at low pT?

•  No modification at high pT •  Double ridge at low pT

•  Spectra modified at low pT?

•  Ridge-subtracted jet-like yields •  Ridge and jet seem additive in 2PC •  Constant jet yields for ~60%

of p-Pb cross-section à no modification even at low pT

•  Consistent with a picture of minijets in p-Pb collisions from superposition of NN collisions with incoherent fragmentation

à L. Milano (Tue PM)

Δϕ (rad)

yield vs multiplicity class

What happens to the "jet" at low pT?

high Nch low Nch

p-Pb

Page 49: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Significant  vn  moments  in  p+Pb  out  to  large  pT  

Page 50: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Mass  ordering  seen  down  to  low  Nch  

ALICE,  1307.6796  

Page 51: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

Hydro  in  small  size  systems:  sensible  or  not  ?  

Two  frequently  used  measures:  Reynolds  #  and  Knudsen  #    

Bzdak,Schenke,Tribedy,Venugopalan,  arXiv:1304.3403   Denicol,  Niemi,  arXiv:1404.7327  

Hydro  good  for  Kn  <  0.5,  marginal  for    K  <  1  transient  regime;    K  >  1  free  streaming  

Page 52: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

The  “boIom-­‐up”  thermaliza;on  process  

Blaizot,Dominguez,  Iancu,Mehtar-­‐Tani  

Berges,Boguslavskii,Schlich;ng,Venugopalan  

A  recent  es;mate  in  this  picture  gives  tequilibrium  <  1  fm  Kurkela,Lu,  arXiv:1405.6318  

Turbulent    regime  characterized    by  universal  exponents  

Page 53: LBL raju lectureIInxu/group/talk14/07raju2.pdfExtrac;nglumpyglueintheproton IPSatmodel’ r q q z 1-z * s Entries 0 Mean 0 RMS 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6

BACKUP  SLIDES