182
Laurent Doyen LSV, ENS Cachan & CNRS Quantitative Languages: Weighted Automata and Beyond

Laurent Doyen LSV, ENS Cachan & CNRS

  • Upload
    zohar

  • View
    25

  • Download
    1

Embed Size (px)

DESCRIPTION

Quantitative Languages: Weighted Automata and Beyond. Laurent Doyen LSV, ENS Cachan & CNRS. Credits. This talk is based on joint work with…. K. Chatterjee, H. Edelsbrunner, T. A. Henzinger (IST Austria) A. Degorre, J.-F. Raskin (ULB Brussels) R. Gentilini (Uni. Perugia) - PowerPoint PPT Presentation

Citation preview

Page 1: Laurent Doyen LSV, ENS Cachan & CNRS

Laurent DoyenLSV, ENS Cachan & CNRS

Quantitative Languages: Weighted Automata and

Beyond

Page 2: Laurent Doyen LSV, ENS Cachan & CNRS

Credits

• K. Chatterjee, H. Edelsbrunner, T. A. Henzinger (IST Austria)• A. Degorre, J.-F. Raskin (ULB Brussels)• R. Gentilini (Uni. Perugia)• S. Torunczyk (Uni. Warsaw) • P. Rannou (ENS Cachan)

(CSL’08, LICS’09, FCT’09, CSL’10, Concur’10)

This talk is based on joint work with…

Page 3: Laurent Doyen LSV, ENS Cachan & CNRS

Model-Checking

Property/ Specification

Yes / No

Satisfaction Relation

Program/ System

-perhaps a proof -perhaps some counterexamples

Page 4: Laurent Doyen LSV, ENS Cachan & CNRS

Model-Checking

Property/ Specification

Yes / No

Trace inclusion

Program/ System

Formula

Every request is followed by a grant

Finite-state machine

Page 5: Laurent Doyen LSV, ENS Cachan & CNRS

Model-Checking

Property/ Specification

Yes / No

Trace inclusion

Program/ System

Model-checking is boolean

Formula

Every request is followed by a grant

- a trace is either good or bad

- a system is either good or bad

Finite-state machine

Page 6: Laurent Doyen LSV, ENS Cachan & CNRS

Quantitative Analysis

Property/ Specification

Value (R)

Quantitative Analysis

Program/ System

Formula

Every request is followed by a grant

-Measure of “fit” between system and spec

-e.g. average number of requests immediately granted

Finite-state machine

Page 7: Laurent Doyen LSV, ENS Cachan & CNRS

Distance (R)

Quantitative Analysis

Quantitative Analysis

Program/ System #1

- Comparing two implementations

e.g. cost or quality measure

Program/ System #2

Every request is followed by a grant

Finite-state machine

Page 8: Laurent Doyen LSV, ENS Cachan & CNRS

Quantitative Model-checking

Is there a Quantitative Framework with

- an appealing mathematical formulation, - useful expressive power, robustness and - good algorithmic properties ?

(Like the boolean theory of -regularity.)

Note: “Quantitative” is more than “timed” and “probabilistic”

Page 9: Laurent Doyen LSV, ENS Cachan & CNRS

A language is a boolean function:

Quantitative languages

Page 10: Laurent Doyen LSV, ENS Cachan & CNRS

A language is a boolean function:

Quantitative languages

A quantitative language is a function:

L(w) can be interpreted as:• the amount of some resource needed by the system to produce w (power, energy, time consumption),• a reliability measure (the average number of “faults” in w).

Page 11: Laurent Doyen LSV, ENS Cachan & CNRS

Is LA(w) LB(w) for all words w ?

Quantitative languagesQuantitative language

inclusion

LA(w)peak resource consumptionLong-run average response time

LB(w)resource bound a Average response-time requirement

Page 12: Laurent Doyen LSV, ENS Cachan & CNRS

Is LA(w) LB(w) for all words w ?

Quantitative languagesQuantitative language

inclusion

LA(w)peak resource consumptionLong-run average response time

LB(w)resource bound a Average response-time requirement

Distance:

Page 13: Laurent Doyen LSV, ENS Cachan & CNRS

Outline

• Motivation• Weighted automata

• Decision problems• Expressive power• Closure properties

• Beyond weighted automata

Page 14: Laurent Doyen LSV, ENS Cachan & CNRS

AutomataBoolean languages are generated by finite automata.

Nondeterministic Büchi automaton

Page 15: Laurent Doyen LSV, ENS Cachan & CNRS

AutomataBoolean languages are generated by finite automata.

Nondeterministic Büchi automaton

Value of a run r: Val(r)= 1 if an accepting state occurs -ly often in r 0 otherwise

Page 16: Laurent Doyen LSV, ENS Cachan & CNRS

AutomataBoolean languages are generated by finite automata.

Nondeterministic Büchi automaton

Value of a word w: sup of {values of the runs r over w}

Value of a run r: Val(r)= 1 if an accepting state occurs -ly often in r

Page 17: Laurent Doyen LSV, ENS Cachan & CNRS

AutomataBoolean languages are generated by finite automata.

Nondeterministic Büchi automaton

LA(w) = sup of {Val(r) | r is a run of A over w}

Page 18: Laurent Doyen LSV, ENS Cachan & CNRS

Weighted automataQuantitative languages are generated by weighted automata.

Weight function

Page 19: Laurent Doyen LSV, ENS Cachan & CNRS

Weighted automataQuantitative languages are generated by weighted automata.

Weight functionValue of a word w: sup of {values of the runs r over w}Value of a run r: Val(r)

where is a value function

Page 20: Laurent Doyen LSV, ENS Cachan & CNRS

Some value functions

(reachability)(Büchi)

(coBüchi)

(vi {0,1})

Page 21: Laurent Doyen LSV, ENS Cachan & CNRS

Some value functions

(reachability)(Büchi)

(coBüchi)

(vi {0,1})

Page 22: Laurent Doyen LSV, ENS Cachan & CNRS

Example: a motorSpecification

Deterministic LimAvg automaton

Page 23: Laurent Doyen LSV, ENS Cachan & CNRS

SpecificationImplementation(refined spec.)

Example: a motor

Page 24: Laurent Doyen LSV, ENS Cachan & CNRS

SpecificationImplementation(refined spec.)

Example: a motor

Page 25: Laurent Doyen LSV, ENS Cachan & CNRS

SpecificationImplementation(refined spec.)

Example: a motor

Page 26: Laurent Doyen LSV, ENS Cachan & CNRS

SpecificationImplementation(refined spec.)

Example: a motor

Page 27: Laurent Doyen LSV, ENS Cachan & CNRS

SpecificationImplementation(refined spec.)

Example: a motor

Page 28: Laurent Doyen LSV, ENS Cachan & CNRS

SpecificationImplementation(refined spec.)

Example: a motor

In the long-run, implementation has average cost cheaper than specification (for all traces).

Page 29: Laurent Doyen LSV, ENS Cachan & CNRS

Outline

• Motivation• Weighted automata

• Decision problems• Expressive power• Closure properties

• Beyond weighted automata

Page 30: Laurent Doyen LSV, ENS Cachan & CNRS

Emptiness

Given , is LA(w) ≥ for some word w ?

• solved by finding the maximal value of an infinite path in the graph of A,

• memoryless strategies exist in the corresponding quantitative 1-player games,• decidable in polynomial time for

Page 31: Laurent Doyen LSV, ENS Cachan & CNRS

Language Inclusion

Is LA(w) LB(w) for all words w ?

• PSPACE-complete for

equivalent to

Page 32: Laurent Doyen LSV, ENS Cachan & CNRS

Language Inclusion

Is LA(w) LB(w) for all words w ?

• PSPACE-complete for

• Solvable in polynomial-time when B is deterministic for and , • undecidable for nondeterministic automata. • open question for nondeterministic automata.

Page 33: Laurent Doyen LSV, ENS Cachan & CNRS

Language Inclusion

Page 34: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion gameLanguage

inclusion as a game

Discounted-sum automata, λ=3/4Is LA(w) LB(w) for all words w ?

Page 35: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion gameLanguage

inclusion as a game

Discounted-sum automata, λ=3/4Is LA(w) LB(w) for all words w ? Yes !

Page 36: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion gameLanguage

inclusion as a game

Is LA(w) LB(w) for all words w ?

• turn-based, two players;• Challenger wins iff

Page 37: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion gameLanguage

inclusion as a game

Is LA(w) LB(w) for all words w ?

• turn-based, two players;• Challenger wins iff

winning strategy

Page 38: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Tokens on the initial states

Language inclusion as a

game

Page 39: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Challenger constructs a run r1 of A,Simulator constructs a run r2 of B.Challenger wins if Val(r1) > Val(r2).

Language inclusion as a

game

Page 40: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 41: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 42: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 43: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 44: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 45: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 46: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Language inclusion as a

game

Page 47: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion game

Challenger:

Simulator:

Challenger wins since 4>2.

Language inclusion as a

game

However, LA(w) LB(w) for all w.

Page 48: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion gameThe game is blind if the Challenger cannot observe the state of the Simulator.

Challenger has no winning strategy in the blind game

if and only if LA(w) LB(w) for all words w.

Page 49: Laurent Doyen LSV, ENS Cachan & CNRS

Language-inclusion gameThe game is blind if the Challenger cannot observe the state of the Simulator.

Challenger has no winning strategy in the blind game

if and only if LA(w) LB(w) for all words w.

When the game is not blind, we say that B simulates A if the Challenger has no winning strategy.

Simulation implies language inclusion.

Page 50: Laurent Doyen LSV, ENS Cachan & CNRS

Simulation is decidable

Page 51: Laurent Doyen LSV, ENS Cachan & CNRS

Universality and Equivalence

Is LA(w) = LB(w) for all words w ?

Language equivalence problem:

Universality problem:Given , is LA(w) ≥ for all words w ?

Complexity/decidability: same situation as Language inclusion.

Page 52: Laurent Doyen LSV, ENS Cachan & CNRS

Undecidability proof

Quantitative language universality is undecidable for LimAvg automata.

Theorem

Proof:Using a reduction from the halting problem of 2-counter machines.

Page 53: Laurent Doyen LSV, ENS Cachan & CNRS

2-counter machines

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3

q6: halt

• 2 counters c1, c2

• increment, decrement, zero test

Page 54: Laurent Doyen LSV, ENS Cachan & CNRS

2-counter machines

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3

q6: halt

• 2 counters c1, c2

• increment, decrement, zero test

Page 55: Laurent Doyen LSV, ENS Cachan & CNRS

Reduction

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3

q6: halt

Reduction:Given M, construct LimAvg-automaton AM such that M halts iff AM is not universal (for threshold 0).

! • Deterministic machine• Nonnegative counters

Given M and state qhalt, decide if qhalt is reachable (i.e., M halts).

Halting problem:

Page 56: Laurent Doyen LSV, ENS Cachan & CNRS

Reductionq1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3

q6: halt

• Initial nondeterministic jump to several gadgets• Witness word (with negative value) = (#AcceptingRun)ω

Page 57: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Reminder: Witness word = #AcceptingRun#AcceptingRun#...

Gadget 1:« First symbol is # »

Page 58: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Gadget 2:« Every σ1 is followed by σ2 »

Reminder: Witness word = #AcceptingRun#AcceptingRun#...

Page 59: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Gadget 3:« Infinitely many # »

Guess: this is the last #

Reminder: Witness word = #AcceptingRun#AcceptingRun#...

Page 60: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Gadget 4:« Counter correctness »

Check zero tests on c

# # # #...

-1 -1 -1 -1

Page 61: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Gadget 4:« Counter correctness »

Check zero tests on c

# # # #...

-1 -1 -1 -1cheat? ≥1

cheat? ≥1

cheat? ≥1

Page 62: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Gadget 4:« Counter correctness »

Check zero tests on c

Check non-zero test on c

Page 63: Laurent Doyen LSV, ENS Cachan & CNRS

Gadgets

Gadget 4:« Counter correctness »

Check zero tests on c

Check non-zero test on c

Page 64: Laurent Doyen LSV, ENS Cachan & CNRS

Correctnessq1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3

q6: halt

• If M halts, then (#AcceptingRun)ω is a witness word (with LimAvg value -1/Length(AcceptingRun).• If there exists a witness word, then # occurs infinitely often, and finitely many cheats occur. Hence, M has an accepting run.

Page 65: Laurent Doyen LSV, ENS Cachan & CNRS

Outline

Page 66: Laurent Doyen LSV, ENS Cachan & CNRS

Outline

• Motivation• Weighted automata

• Decision problems• Expressive power• Closure properties

• Beyond weighted automata

Page 67: Laurent Doyen LSV, ENS Cachan & CNRS

ReducibilityA class C of weighted automata can be reduced to a class C’ of weighted automata iffor all A C, there is A’ C’ such that LA = LA’.

Page 68: Laurent Doyen LSV, ENS Cachan & CNRS

ReducibilityA class C of weighted automata can be reduced to a class C’ of weighted automata iffor all A C, there is A’ C’ such that LA = LA’.

E.g. for boolean languages:• Nondet. coBüchi can be reduced to nondet. Büchi• Nondet. Büchi cannot be reduced to det. Büchi (nondet. Büchi cannot be determinized)

Page 69: Laurent Doyen LSV, ENS Cachan & CNRS

ReducibilityA class C of weighted automata can be reduced to a class C’ of weighted automata iffor all A C, there is A’ C’ such that LA = LA’.

NBW

DBW DCW=NCW

Page 70: Laurent Doyen LSV, ENS Cachan & CNRS

Some easy facts

and cannot be reduced to and

and can define quantitative languages with infinite range, and cannot.

Page 71: Laurent Doyen LSV, ENS Cachan & CNRS

Some easy factsFor discounted-sum, prefixes provide good approximations of the value.

For LimSup, LimInf and LimAvg, suffixes determine the value.

and cannot be reduced to

cannot be reduced to and

Page 72: Laurent Doyen LSV, ENS Cachan & CNRS

Büchi does not reduce to LimAvg

“infinitely many ’’Deterministic Büchi automaton

Assume that L1 is definable by a LimAvg automaton A.Then, all -cycles in A have average weight 0.

Page 73: Laurent Doyen LSV, ENS Cachan & CNRS

Büchi does not reduce to LimAvg

Hence, the maximal average weight of a run over any word in tends to (at most) 0 when

“infinitely many ’’Deterministic Büchi automaton

All -cycles in A have average weight 0.

Page 74: Laurent Doyen LSV, ENS Cachan & CNRS

Büchi does not reduce to LimAvg

Let We have where for sufficienly large

“infinitely many ’’Deterministic Büchi automaton

Page 75: Laurent Doyen LSV, ENS Cachan & CNRS

where for sufficienly large Hence,

Büchi does not reduce to LimAvg

Let We have

and A cannot exist !

“infinitely many ’’Deterministic Büchi automaton

Page 76: Laurent Doyen LSV, ENS Cachan & CNRS

(co)Büchi and LimAvg

cannot be reduced to By analogous arguments, cannot be reduced to

“finitely many ’’Deterministic coBüchi automaton

Page 77: Laurent Doyen LSV, ENS Cachan & CNRS

(co)Büchi and LimAvgDet. coBüchi automaton

L2 is defined by the following nondet. LimAvg automaton:

Page 78: Laurent Doyen LSV, ENS Cachan & CNRS

(co)Büchi and LimAvgDet. coBüchi automaton

L2 is defined by the following nondet. LimAvg automaton:

Hence, cannot be determinized.

Page 79: Laurent Doyen LSV, ENS Cachan & CNRS

Reducibility relations

Page 80: Laurent Doyen LSV, ENS Cachan & CNRS

Reducibility relations

Page 81: Laurent Doyen LSV, ENS Cachan & CNRS

Reducibility relations

Page 82: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

is not reducible to .

Page 83: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

Store the value

AB

Page 84: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

AB

Key: can take finitely many different values.

in the example,

Store the value

Page 85: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

AB

Page 86: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

AB

Page 87: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

AB

Page 88: Laurent Doyen LSV, ENS Cachan & CNRS

is reducible to .

Expressive power of {0,1}-automata

BA

Page 89: Laurent Doyen LSV, ENS Cachan & CNRS

Therefore for

is reducible to .

Expressive power of {0,1}-automata

A B

for all

Page 90: Laurent Doyen LSV, ENS Cachan & CNRS

Reducibility relations

What about Discounted Sum ?

Page 91: Laurent Doyen LSV, ENS Cachan & CNRS

Last result

cannot be determinized.

λ=3/4

Page 92: Laurent Doyen LSV, ENS Cachan & CNRS

This automaton can be determinized for λ ≤ 1/2,

not for rational λ > 1/2.

Discλ cannot be determinized

Page 93: Laurent Doyen LSV, ENS Cachan & CNRS

This automaton can be determinized for λ ≤ 1/2,

not for rational λ > 1/2.

Discλ cannot be determinized

Page 94: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinizedValue of a word :

disc. sum of ’s

disc. sum of ’s

Page 95: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 96: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 97: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 98: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 99: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 100: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 101: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 102: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 103: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

Page 104: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

If

then

Page 105: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Let

If

then

Page 106: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Page 107: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

Page 108: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

How many different values can take ?

Page 109: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

How many different values can take ?

infinitely many if for all

Page 110: Laurent Doyen LSV, ENS Cachan & CNRS

Discλ cannot be determinized

How many different values can take ?

infinitely many if for all

By a careful analysis of the shape of the family of equations, it can be proven that no rational can be a solution.

Page 111: Laurent Doyen LSV, ENS Cachan & CNRS

Last result

cannot be determinized.

λ=3/4

Page 112: Laurent Doyen LSV, ENS Cachan & CNRS

Reducibility relations

Page 113: Laurent Doyen LSV, ENS Cachan & CNRS

Outline

• Motivation• Weighted automata

• Decision problems• Expressive power• Closure properties

• Beyond weighted automata

Page 114: Laurent Doyen LSV, ENS Cachan & CNRS

Operations

Operations on quantitative languages:

• shift(L1,c)(w) = L1(w) + c• scale(L1,c)(w) = c·L1(w) (c>0)

Page 115: Laurent Doyen LSV, ENS Cachan & CNRS

Operations

Operations on quantitative languages:

• shift(L1,c)(w) = L1(w) + c• scale(L1,c)(w) = c·L1(w) (c>0)• max(L1,L2)(w) = max(L1(w),L2(w)) • min(L1,L2)(w) = min(L1(w),L2(w)) • complement(L1)(w) = 1-L1(w)

Page 116: Laurent Doyen LSV, ENS Cachan & CNRS

Operations

Operations on quantitative languages:

• shift(L1,c)(w) = L1(w) + c• scale(L1,c)(w) = c·L1(w) (c>0)• max(L1,L2)(w) = max(L1(w),L2(w)) • min(L1,L2)(w) = min(L1(w),L2(w)) • complement(L1)(w) = 1-L1(w)• sum(L1,L2)(w) = L1(w) + L2(w)

Page 117: Laurent Doyen LSV, ENS Cachan & CNRS

Closure propertiesAll classes of weighted automata are closed under shift and scale.

All classes of nondeterministic weighted automata are closed under max.

Page 118: Laurent Doyen LSV, ENS Cachan & CNRS

Closure properties

Page 119: Laurent Doyen LSV, ENS Cachan & CNRS

Closure properties

Analogous results for boolean languages.

Page 120: Laurent Doyen LSV, ENS Cachan & CNRS

Closure propertiesThere is no nondeterministic LimAvg automaton for the language Lm = min(La,Lb).

Page 121: Laurent Doyen LSV, ENS Cachan & CNRS

Closure propertiesThere is no nondeterministic LimAvg automaton for the language Lm = min(La,Lb).

Assume that Lm = min(La,Lb) is definable by a LimAvg automaton C.

Page 122: Laurent Doyen LSV, ENS Cachan & CNRS

Closure propertiesThere is no nondeterministic LimAvg automaton for the language Lm = min(La,Lb).

Assume that Lm = min(La,Lb) is definable by a LimAvg automaton C.Then, some a-cycle or b-cycle in C has average weight >0.(consider the word for large)

Page 123: Laurent Doyen LSV, ENS Cachan & CNRS

Closure properties

Then, some a-cycle (or b-cycle) in C has average weight >0.Then, some word gets value >0…

There is no nondeterministic LimAvg automaton for the language Lm = min(La,Lb).

Assume that Lm = min(La,Lb) is definable by a LimAvg automaton C.

Page 124: Laurent Doyen LSV, ENS Cachan & CNRS

Closure propertiesThere is no nondeterministic LimAvg automaton for the language Lm = min(La,Lb).

There is no nondeterministic Discounted automaton for the language Lm = min(La,Lb).

Proof: analogous argument.

Page 125: Laurent Doyen LSV, ENS Cachan & CNRS

Closure properties

Page 126: Laurent Doyen LSV, ENS Cachan & CNRS

Closure properties

min(L1,L2) = 1-max(1-L1,1-L2)

Page 127: Laurent Doyen LSV, ENS Cachan & CNRS

Closure properties

By analogous arguments (analysis of cycles).

Page 128: Laurent Doyen LSV, ENS Cachan & CNRS

Outline

• Motivation• Weighted automata

• Decision problems• Expressive power• Closure properties

• Beyond weighted automata

Page 129: Laurent Doyen LSV, ENS Cachan & CNRS

Alternating weighted automata

Weight function

Alternating transition relation

Page 130: Laurent Doyen LSV, ENS Cachan & CNRS

Value of word outcome of two-player game:

Maximizer choosesMinimizer chooses

Alternating weighted automata

Page 131: Laurent Doyen LSV, ENS Cachan & CNRS

Value of word outcome of two-player game:

Maximizer choosesMinimizer chooses

Alternating weighted automata

2

Page 132: Laurent Doyen LSV, ENS Cachan & CNRS

Value of word outcome of two-player game:

Alternating weighted automata

2

-1

Page 133: Laurent Doyen LSV, ENS Cachan & CNRS

LimAvg Automata

Page 134: Laurent Doyen LSV, ENS Cachan & CNRS

LimAvg Automata

Page 135: Laurent Doyen LSV, ENS Cachan & CNRS

LimAvg Automata

Page 136: Laurent Doyen LSV, ENS Cachan & CNRS

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton ExpressionsLimAvg-automaton expressions are defined by:

E.g.: max(A1 + A2, min (A3, A4))

where A is a deterministic Lim{sup/inf}Avg-automaton.

Page 137: Laurent Doyen LSV, ENS Cachan & CNRS

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton ExpressionsLimAvg-automaton expressions are defined by:

where A is a deterministic Lim{sup/inf}Avg-automaton.Closure properties:

• Closed under max, min, sum• Deterministic automata are closed under complement• -max(E1,E2) = min(-E1,-E2)• -min(E1,E2) = max(-E1,-E2)• -sum(E1,E2) = sum (-E1,-E2)

Page 138: Laurent Doyen LSV, ENS Cachan & CNRS

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton ExpressionsLimAvg-automaton expressions are defined by:

Closure properties:

where A is a deterministic Lim{sup/inf}Avg-automaton.

Page 139: Laurent Doyen LSV, ENS Cachan & CNRS

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton ExpressionsLimAvg-automaton expressions are defined by:

Expressive power:

where A is a deterministic Lim{sup/inf}Avg-automaton.

Page 140: Laurent Doyen LSV, ENS Cachan & CNRS

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton ExpressionsLimAvg-automaton expressions are defined by:

Decision problems: all questions reduce to quant. emptiness

where A is a deterministic Lim{sup/inf}Avg-automaton.

Given , is LE(w) ≥ for some word w ?

Page 141: Laurent Doyen LSV, ENS Cachan & CNRS

Value setSolve decision problems using the value set:

E.g.: max(A1 + A2, min (A3, A4))

Value set = { (LA1(w),LA2(w),LA3(w),LA4(w)) | w Σω} R4

How to compute this set ?

Page 142: Laurent Doyen LSV, ENS Cachan & CNRS

Solve decision problems using the value set:

E.g.: max(A1 + A2, min (A3, A4))

A1 A2 A3 A4

Synchronized product is deterministicWeights are vectors in R4

Value set

Page 143: Laurent Doyen LSV, ENS Cachan & CNRS

Solve decision problems using the value set:

E.g.: max(A1 + A2, min (A3, A4))

A1 A2 A3 A4

Synchronized product is deterministicWeights are vectors in R4

Alur/Degorre/Maler/Weiss/09. On Omega-Languages Defined by Mean-Payoff Conditions.

Value set

Page 144: Laurent Doyen LSV, ENS Cachan & CNRS

where A1 and A2 are LimInfAvg-automata.

Value set

Page 145: Laurent Doyen LSV, ENS Cachan & CNRS

Value set

Page 146: Laurent Doyen LSV, ENS Cachan & CNRS

Consider a ‘crazy’ word:

Value set

Page 147: Laurent Doyen LSV, ENS Cachan & CNRS

Accumulation points

sum is 1 !

Value set

Page 148: Laurent Doyen LSV, ENS Cachan & CNRS

Accumulation points

sum is 1 !

Value set

Page 149: Laurent Doyen LSV, ENS Cachan & CNRS

Accumulation points

According to E = A1+A2, value is 0

sum is 1 !

sum is 0 !

Value set

Page 150: Laurent Doyen LSV, ENS Cachan & CNRS

• [ADMW09] considers accumulation points• we need individual limits

Value set

Page 151: Laurent Doyen LSV, ENS Cachan & CNRS

• [ADMW09] considers accumulation points• we need individual limitsThe two notions coincide for lasso-

words !

Value set

Page 152: Laurent Doyen LSV, ENS Cachan & CNRS

Accumulation set

Corners of accumulation set correspond to simple cycles in A1 A2

E = A1+A2

Value set

Page 153: Laurent Doyen LSV, ENS Cachan & CNRS

≠Accumulation set Value

set

E = A1+A2

Corners of accumulation set correspond to simple cycles in A1 A2

Value set

Page 154: Laurent Doyen LSV, ENS Cachan & CNRS

≠Accumulation set Value

set

E = A1+A2

Points in value set are fmin(points in accumulation set) where fmin(x,y,z,…) = u if ui = min(xi,yi,zi,…) 1 ≤ i ≤ n

Corners of accumulation set correspond to simple cycles in A1 A2

Value set

Page 155: Laurent Doyen LSV, ENS Cachan & CNRS

≠Accumulation set Value

set

E = A1+A2

Points in value set are fmin(points in accumulation set) where fmin(x,y,z,…) = u if ui = min(xI,yi,zi,…) 1 ≤ i ≤ n

Corners of accumulation set correspond to simple cycles in A1 A2

Conjecture: Corners in value set are fmin(corners in accumulation set).

Value set

Page 156: Laurent Doyen LSV, ENS Cachan & CNRS

Lemma: Fmin(conv(S)) is a convex set.

Points in value set are fmin(points in accumulation set)

Conjecture: Corners in value set are fmin(corners in accumulation set)

ValueSet = Fmin(AccSet) where

Fmin(A) = {fmin(x1,…,xn) | x1,…,xn A} for A Rn

Conjecture: Fmin(conv(S)) = conv(Fmin(S))

Value set

Page 157: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))This holds in two dimensions (R2),

conv(S)

Page 158: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))This holds in two dimensions (R2),

conv(S)

Page 159: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))This holds in two dimensions (R2),

conv(S)

Page 160: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))This holds in two dimensions (R2),

conv(S)

Page 161: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))This holds in two dimensions (R2), but it is false in R3 !

Counter-example:S = {q,r,s} with q=(0,1,0) r=(-1,-1,1) s=(1,1,1)fmin(r,s) = rfmin(q,r) = fmin(q,r,s) = t = (-1,-1,0)fmin(q,s) = qFmin(S) = {q,r,s,t}

Page 162: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))This holds in two dimensions (R2), but it is false in R3 !

Counter-example:S = {q,r,s} with q=(0,1,0) r=(-1,-1,1) s=(1,1,1)Fmin(S) = {q,r,s,t}Let p = (r+s)/2 = (0,0,1)fmin(p,q) = (0,0,0) Fmin(conv(S)) but (0,0,0) conv(Fmin(S))

Page 163: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))

How to compute Fmin(conv(S)) ? (given finite set S)

conv(S)

Page 164: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))

How to compute Fmin(conv(S)) ? (given finite set S)

conv(S)

Page 165: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))

How to compute Fmin(conv(S)) ? (given finite set S)

conv(S)

Set of points that agree with some p conv(S) on one coordinate, and have other coordinates smaller

pu

Page 166: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))Conjecture: Fmin(conv(S)) = conv(Fmin(S))

How to compute Fmin(conv(S)) ? (given finite set S)

conv(S)

Page 167: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 168: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 169: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 170: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 171: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 172: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 173: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 174: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 175: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 176: Laurent Doyen LSV, ENS Cachan & CNRS

Fmin(conv(S))

conv(S)

Page 177: Laurent Doyen LSV, ENS Cachan & CNRS

EmptinessSolve decision problems using the value set:

E.g.: E =max(A1 + A2, min (A3, A4))

Value set = { (LA1(w),LA2(w),LA3(w),LA4(w)) | w Σω} R4

LE(Σω) = { max(x+y, min(z,t)) | (x,y,z,t) Value Set}is a union of intervals.Find maximum of LE to solve emptiness

Page 178: Laurent Doyen LSV, ENS Cachan & CNRS

Distance

Page 179: Laurent Doyen LSV, ENS Cachan & CNRS

LEF(Σω) = { (LE(w),LF(w)) | w Σω}

Distance

and maximize |x-y| in this set.

Page 180: Laurent Doyen LSV, ENS Cachan & CNRS

LimAvg Automaton Expressions

Page 181: Laurent Doyen LSV, ENS Cachan & CNRS

Conclusion• Quantitative generalization of languages to model programs/systems more accurately.

• Decision problems, expressive power, closure properties.• Mean-payoff automaton expressions: robust and decidable. Distance computable.• Other results (not shown): probabilistic extension, cut-point languages, stability/robustness.

• Outlook: open questions for discounted sum synthesis question quantitative logic

Page 182: Laurent Doyen LSV, ENS Cachan & CNRS

Thank you !

Questions ?

The end