79
Dr.V.P. Sudeep Kumar Dr.V.P. Sudeep Kumar Sr. Sub Divisional Engineer Sr. Sub Divisional Engineer RTTC, BSNL RTTC, BSNL Latest Trends in Optical Communication

Latest Trends in Fiber Communicatio

Embed Size (px)

Citation preview

Page 1: Latest Trends in Fiber Communicatio

Dr.V.P. Sudeep KumarDr.V.P. Sudeep Kumar

Sr. Sub Divisional EngineerSr. Sub Divisional Engineer

RTTC, BSNLRTTC, BSNL

Latest Trends in Optical Communication

Page 2: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

What is meant by bandwidth?

Why infra red light is used in optical fibers?

Why the bandwidth is so high in Optical Communication?

Some Questions…

Gigabit,Terabit,Petabit,exabit zettabit and yottabit……………..

Page 3: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Basically- E/O and O/E

Page 4: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Fiber optic communication system

Transmitter

Receiver

Optical Fibre

Light ray trapped in the core of the fibre

Electrical input signal

Electrical output signal

Page 5: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

• 1960 - Invention of laser - Schawlow and Townes

• 1965- Optical fiber by Charles Kao and Hockam

• 1970- Practical optical fiber by Maurer et.al

• 1983- Optical links used for Internet(TCP/IP)

• 1993- WWW emerged

• 2000- Data traffic exceeded that of voice

• 2005- Tera bit - communication systems.

Rise and Rise of optical fibers

Page 6: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Dr.Kao

Lighting the Future

Page 7: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Fiber is not enough- huge BW is needed?

• Dramatic increase of Internet traffic

– data overcomes voice

– Data tsunami

• Impact on the network– data-centric

• access

• Core

2000 2004 20080

5

year

traffi

c (a

rb.

un

.)

voice

data

Page 8: Latest Trends in Fiber Communicatio

Data networks

BusHub

SwitchToken Ring

Page 9: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Increasing bandwidth Options in fiber

Same bit rate, more fibers

Faster Electronics(TDM) Higher bit rate, same fiber

More Fibers(FDM)

WDM

Same fiber & bit rate, more s

Page 10: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Single Wavelength Vs Multi wavelength.

MultiwavelengthTransmitter

MUX

MultiwavelengthReceiver

DMX

opticaltransmitter

opticalreceiver

optical fibreoptical fibre + –

TDM

WDM

Limits to 10 Gbps…?

4x 10 Gbps…?

Page 11: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

DWDM-How it works

Page 12: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Evolution of DWDM

Late 1990’s

1996DWDM

Early1990’s

Narrowband WDM

1980’sWideband WDM

16+ channels 100~200 GHz spacing

2~8 channels200~400 GHz spacing

2 channels1310nm, 1550nm

64+ channels25~50 GHz spacing

Page 13: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

DWDM-How it works

Page 14: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

DWDM -analogy

►STM-1STM-1 155Mb155Mb

►STM-4STM-4 622Mb622Mb

►STM-16STM-16 2.5Gb2.5Gb

►STM-64STM-64 10Gb10Gb

►STM-128STM-128 40Gb40Gb

►STM-64STM-6410Gb10Gb

►STM-16STM-162.5Gb2.5Gb

►STM-16STM-162.5Gb2.5Gb

►STM-16STM-162.5Gb2.5Gb

►STM-64STM-6410Gb10Gb

►STM-16STM-162.5Gb2.5Gb

►STM-16STM-162.5Gb2.5Gb

►STM-16STM-162.5Gb2.5Gb

Maximum=40Gb

Maximum

40Gb*8=

320Gbps

Page 15: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

DWDM- Transmission Bands

Band Wavelength (nm)

820 - 900

1260 – 1360

“New Band” 1360 – 1460

S-Band 1460 – 1530

C-Band 1530 – 1565

L-Band 1565 – 1625

U-Band 1625 – 1675

Page 16: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Centre Frequency Wavelength Centre Frequency Wavelength (THz) (nm) (THz) (nm)

195.9 1530.33 : :195.8 1531.12 : :195.7 1531.90 : :195.6 1532.68 192.6 1556.55195.5 1533.47 192.5 1557.36195.4 1534.25 192.4 1558.17195.3 1535.04 192.3 1558.98195.2 1535.82 192.2 1559.79 : : 192.1 1560.61 : : 192.0 1561.42 : : 191.9 1562.23 : : 191.8 1563.05 : : 191.7 1563.86

N.B. Channel Spacing 100 GHz (0.1 THz) or 0.8 nm.

ITU-T Frequency Grid For WDM

For DWDM - G.692 Rec.

Page 17: Latest Trends in Fiber Communicatio

Terminal A Terminal B

Post-Amp

Pre-Amp

Line Amplifiers

MUX

DEMUX

TransponderInterfaces

TransponderInterfaces

DirectConnections

DirectConnections

MultiWavelength(DWDM)

Page 18: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

1

2 ..

32

1

:

2

32

Multiplexers

Page 19: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Multiplexing (DWDM) ?

At Ingress: Multiple Optical signals of differing wavelengthsare combined to form a single optical signal.

Page 20: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Multiplexing

Mu

ltip

lex

er 1, 2, 3, 4

1

2

3

4

Page 21: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Multiplexing

Page 22: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Demultiplexing (DWDM)

At Egress: A single Optical signals is refracted to separate multiple Optical signals of differing wavelengths.

Page 23: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Demultiplexing

De

mu

ltip

lex

er

1, 2, 3, 4

1

2

3

4

Page 24: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Bidirectional Wavelength Division Multiplexing(CWDM)

Page 25: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

A

B

WDMMux/Demux

AA

B

Receiver

Transmitter

Local Transceiver

WDMMux/Demux

B

A

B

Receiver

Transmitter

Distant TransceiverFibre

Significant savings possible with so called bi-directional transmission using WDM

This is called "full-duplex" transmission

Individual wavelengths used for each direction

Linking two locations will involve only one fibres, two WDM mux/demuxs and two transceivers

Bi-directional using WDM

Page 26: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Coarse Wavelength Division Multiplexing(CWDM)

Page 27: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

WDM with wider channel spacing (typical 20 nm)

More cost effective than DWDM

Driven by: Cost-conscious telecommunications environment

Need to better utilize existing infrastructure

Main deployment is foreseen on: Single mode fibres meeting ITU Rec. G.652.

Metro networks

CWDM

Page 28: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

1270 1290 1310 1330 1350 1370

1390 1410 1430 1450 1470 1490

1510 1530 1550 1570 1590 1610

ITU-T G.694 defines wavelength grids for CWDM Applications

G.694 defines a wavelength grid with 20 nm channel spacing: Total source wavelength variation of the order of ± 6-7 nm is assumed Guard-band equal to one third of the minimum channel spacing is sufficient.

Hence 20 nm chosen

18 wavelengths between 1270 nm and 1610 nm.

ITUCWDM

Grid(nm)

CWDM Wavelength Grid: G.694

Page 29: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Ultra Dense Wavelength Division Multiplexing(UDWDM)

Page 30: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Trend is toward smaller channel spacings, to incease the channel count

ITU channel spacings are 0.4 nm, 0.8 nm and 1.6 nm (50, 100 and 200 GHz)

Also spacings of 0.2 nm (25 GHz) and even 0.1 nm (12.5 GHz)

Requires laser sources with excellent long term wavelength stability, better than 10 pm

One target is to allow more channels in the C-band without other upgrades

Wavelength in nm

Ultra Dense Channel Spacing

0.2 nm

Page 31: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical adding and DroppingOADM

Page 32: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Transponder

DWDM Multiplexer

Power Amp

Line Amp

Receive Preamp

200 km

DWDM DeMultiplexe

r

Each wavelength still behaves as if it has it own "virtual fibre"

Wavelengths can be added and dropped as required at some intermediate location

ReceiversAdd/Drop Mux/Demux

Optical fibre

Optical Add-Drop

Page 33: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

An Optical Add-Drop Multiplexer allow access to individual DWDM signals without conversion back to an electronic domain

In the example below visible colours are used to mimic DWDM wavelengths Wavelengths 1,3 and 4 enter the OADM Wavelengths 1 and 4 pass through Wavelength 3 (blue) is dropped to a customer Wavelengths 2 (green) and a new signal on 3 (blue) are added Downstream signal has wavelengths 1,2,3 and 4

Wavelengths 1 2 3 4

1 2 3 41 2 3 4

Wavelengths 1 2 3 4

OADM

Dropped Wavelength(s) Added Wavelength(s)

Optical Add-Drop Multiplexer

Page 34: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Cross connectsOXC

Page 35: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Need reconfigurable OADM, allows change to the added and dropped wavelengths

OADM becomes an OXC (Optical Cross-Connect)

Large number of DWDM wavelengths possible means a large number of ports

Needs to be remotely configurable, intelligent

Should be non-blocking, any combination of dropped/added possible

In addition, insertion loss, physical size, polarization effects, and switching times are critical considerations.

Source: Master 7_7

Incoming DWDM signal

Dropped Wavelength Fibre Ports

Outgoing DWDM signal

Added Wavelength Fibre Ports

OXC

Optical Cross-Connect (OXC)

Page 36: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Key component-Fiber Grating

• In an FBG, a periodic variation in refractive index is induced along the core of an optical fiber.

• The refractive index variation is made by exposing the fiber to the UV-light with a fixed interference pattern.

Glass core

Glass cladding Plastic jacket Periodic refraction index change(Gratings)

Page 37: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Amplifiers-EDFA and Raman

Page 38: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Erbium Doped Fiber Amplifier

“Simple” device consisting of four parts:

• Erbium-doped fiber

• An optical pump (to invert the population).

• A coupler,an isolator to cut off backpropagating noise

Isolator Coupler Isolator

Erbium-DopedFiber (10–50m)

PumpLaserPumpLaser

Page 39: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Erbium Doped Fiber Amplifier

Page 40: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

ERBIUM ELECTRONSIN FUNDAMENTAL STATE

PUMP PHOTON980 nm

Optical Amplifier:Principle

1480

980

820

540

670

Ground state

Metastablestate

1550 nm

Page 41: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Amplifiers:Principle

PUMP PHOTON980 nm

ENERGY ABSORPTION

ERBIUM ELECTRONSIN EXCITED STATE

ERBIUM ELECTRONSIN FUNDAMENTAL STATE

Page 42: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Amplifiers:Principle

PUMP PHOTON980 nm

TRANSITION METASTABLE STATEEXCITEDSTATE

FUNDAMENTAL STATE

Page 43: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

PUMP PHOTON 980 nm

TRANSITIONMETASTABLE STATE

TRA

NS

ITION

ASE Photons1550 nm

Optical Amplifiers:Principle

FUNDAMENTAL STATE

EXCITEDSTATE

FUNDAMENTAL STATE

Page 44: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

PUMP PHOTON 980 nm

TRANSITION

METASTABLE STATE

SIGNAL PHOTON 1550 nm

STIMULATEDPHOTON1550 nm

Optical Amplifiers:Principle

FUNDAMENTAL STATEFUNDAMENTAL STATE

EXCITEDSTATE

Page 45: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Amplifiers:Multi-wavelength Amplification

Page 46: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

EDFA-Commercial

Page 47: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Optical Amplifiers - Applications

• In line amplifier-30-70 km-To increase transmission link

• Pre-amplifier- Low noise-To improve receiver sensitivity

• Booster amplifier- 17 dBm- TV

• LAN booster amplifier

Page 48: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Raman Amplifier

Transmission fiber

1550 nm signal(s)

Cladding pumped fiber laser

1450/ 1550 nm WDM

1453 nm pump

ErAmplifier

Raman fiber laser

Transmission fiber

Page 49: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Trends in Optical amplifier

• Rare earth-Doped Fiber AmplifiersErbium-Doped Fiber Amplifiers (EDFA) : C, L-BandThulium-Doped Fiber Amplifiers (TDFA) : S-BandPraseodymium-Doped Fiber Amplifiers (PDFA) : O-Band

• Fiber Raman AmplifiersDiscrete Raman AmplifiersDistributed Raman Amplifiers (DRA)

• Semiconductor Optical Amplifiers (SOA)conventional SOA

• Hybrid Amplification

Page 50: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

ClientOLTE

For Example :

SDH STM-16 / SONET OC-48

2.5 Gb/s on 1 fiber of 70 km

Use of Optical Amplifiers

ClientOLTE

Page 51: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

TX RX

OAOA

For Example :

SDH STM-16 / SONET OC-48

Link with 1 transmission Optical Amplifier (OA)

Point to Point Link

2.5 Gb/s on 1 fiber of 100 km

Use of Optical Amplifiers

ClientOLTE

ClientOLTE

Page 52: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

OAOA

TX RX

OAOA

For Example :

SDH STM-16 / SONET OC-48

Link with 1 transmission OA + 1 receiver OA

Point to Point Link

2.5 Gb/s on 1 fibre of 250 km

Use of Optical Amplifiers

ClientOLTE

ClientOLTE

Page 53: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

OAOA

TX RX

For Example :

SDH STM-16 / SONET OC-48

Link with 1 transmission OA + 1 receiver OA + With line OA

Point to Point Link

2.5 Gb/s on 1 fiber of 500- 600 km

Use of Optical Amplifiers

ClientOLTE

ClientOLTE

OAOAOAOA

Page 54: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

TDM Solutions for 600 Kms

SDH SDH3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R

SDH SDH3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R

SDH SDH3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R

SDH SDH3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R

SDH SDH3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R

SDH SDH3R 3R 3R 3R 3R 3R 3R 3R 3R 3R 3R

32 Clients => 64 Fibers + 704 3R SDH / SONET Regenerators

Page 55: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

WDM Solution for 600 Kms

SDH SDH

SDH SDH

SDH SDH

SDH SDH

SDH SDH

SDH SDH

OM /

OA

OA /

OD

OA OA OA

32 Clients => 2 Fibers + 5 Optical Amplifiers

Page 56: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Manufacturer Channel Count Total Capacity

Lucent 82 3.28 Terabits/sec

Alcatel 128 5.12 Terabits/sec

NEC 160 6.4 Terabits/sec

Siemens 176 7.04 Terabits/sec

Alcatel 256 10.2 Terabits/sec

NEC 273 10.9 Terabits/sec

Recent DWDM capacity records

Exploiting the Full Capacity of Optical Fibre

NTT-1046 lamda 25 Tbps

Page 57: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Fiber Communication systems

Intra 2Km

Short 15 Km

Long LR1 40 Km

Long LR2 80Km

Very 120 Km

Ultra 160 Km

Long Up to 600 km

Very 600-1000 Km

Ultra 1000-2000 Km

Terrestrial Submarine

Page 58: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

A1 Nodes - 5

A2+A3 Nodes - 9

A4 Nodes - 10

B1 + B2 Nodes - 47

Jullundar

Jaipur

Pune

Ahmedabad

Indore

Lucknow

Patna

Noida

Kolkata

ChennaiBanglore

Mumbai

Ernakulam

Hyderabad

Chandigarh

Manglore

SiSi

Bhubneshwar

SiSi

Ranchi

Allahabad

SiSi

Coimbtore

Madurai

Trichy

Palghat

Trivandrum

Trichur

Kalikat

SiSi

Vijaywada

Rajmundary

Vizag

Tirupati

Durgapur

Siliguri

Dimapur

SiSi

Guwahati

Kalyan

Panjim

Aurangabad

Kolhapur

Nashik

SiSi

Nagpur

Bhopal

Gwalior

Mehsana

Ambala Faridabad Gurgaon

Meerut

Agra

Dehradun

Ludhiana

Ferozpur

Shimla

Amritsar

SiSi

SiSi

Ajmer Jodhpur

MysoreHubli

Jamshedpur

Surat

Vadodara

Rajkot

Jabalpur

Shilong

Ghaziabad Noida

Varanasi Kanpur

Pondicherry

Belgaum

SiSi

Raipur

SiSi

Page 59: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Undersea Optical communication

Page 60: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

The first decade of subsea fiber optics

–1986; First international subsea optical cable between U.K. and Belgium

–1988: TAT-8 becomes the first transoceanic optical cable–1992: TAT-9 and TAT-10 with 565mb capacity each –1993: TAT-11 with 2x565mb, the first gigabit level transoceanic cable!

–1994: Cantat-3 with 5gig!–1998: Atlantic Crossing 1 with 840 gig design capacity!–Then came the terabit years

Page 61: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Ten years later (end 2008)

• Approx. 25 Terabit capacity under the atlantic • 13 Terabit circling South America• 23 Terabit under the Pacific• 33Tb East and North-East Asia• 2.5Tb Europe-Asia; another 14.3Tb for 2009-2010

(IMEWE, EIG, MENA)• Only 0.355 Terabit circling the west part of the

African continent, nothing on the east-side but that will change considerably over the next three years starting with Seacom later this year.

Page 62: Latest Trends in Fiber Communicatio

ALCATEL OALC4 - 17mm Cable

Cables

Page 63: Latest Trends in Fiber Communicatio

• Do not regenerate, amplify

• Erbium-doped fiber amplifier

• Well adapted to WDM

• Direct monitoring

3 m

Page 64: Latest Trends in Fiber Communicatio

Multiple channels in a fiber

Page 65: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Under sea cable

Page 66: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Cable routes Survey

Page 67: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Under sea

Page 68: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Under sea cable

Page 69: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Under Sea communication

• More than 650000km

• Production 150000 km/yr

• More than 140 cable laying ships

• Domestic and international

• Depth 1000m to 2000m at a burial depth of 3m

Page 70: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Page 71: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Page 72: Latest Trends in Fiber Communicatio

SEA-ME-WE 3

JAPAN

Okinawa

S. KOREA

Keoje

UK

CHINA

Shanghai

Shantou

TAIWAN

Taipei

Toucheng

Fangshan

HONG KONG

Deep Water Bay

PHILIPPINES

Batangas

VIET NAM

Danang

THAILAND

Satun

MALAYSIA

Mersing SINGAPORE

Tuss

Tungku

INDONESIA

Jakarta

Medan

INDIA

Cochin

Munbai

MYANMAR

Pyayyypon

PAKISTANOMAN

U.A.E.

DJIBOUTI

SAUDI ARABIA

TURKEY

CYPRUS

GREECE

FRANCE

PORTUGAL

MORACCO

ITALY

Penang

20 Gbps (STM-128) 2.5 Gbps x 4 Wavelengths x 2 Fiber PairsSubmarine Cable Network

Branch Unit

Type: Consortium

EGYPT

Page 73: Latest Trends in Fiber Communicatio

DWDM-China-US

US

Bandon, OR

San Luis Obispo, CA

CHINA

Chongming

Shantou

GUAM

80 Gbps / 2XSTM-2562.5 Gbps x 8 Wavelengths x 4 Fiber Pairs

JAPAN

Chikura

Okinawa

S. KOREA

Pusan

TAIWAN

Fangshan

Active

16,000 Route miles

Type: Consortium

Page 74: Latest Trends in Fiber Communicatio

DWDM PC - 1

US

Harbour Pointe, WA

JAPAN

Ajigaura

Initial 160 Gbps capacity, 2.5 Gbps (STM-16) x 8 Wavelengths x 4 fiber pairs(Upgradeable to 640 Gbps using DWDM technology)

Shima

Grover Beach, CA

Type: Private (Global Crossing)

640 Gbp/s SDH Ring Design

In Service

November 2000

12,600 Route miles

Page 75: Latest Trends in Fiber Communicatio

Japan-US

JAPAN

Kita-Ibaraki

Maruyama

HAWAII

Makaha Beach, Oahu

US

Manchester, CA

Shima

Moro Bay / San Luis Obispo, CA

640 Gbp/s SDH Ring10 Gbps x16 Wavelengths x 4 Fiber Pairs

12,00 Route miles

Page 76: Latest Trends in Fiber Communicatio

Southern Cross

Branch Unit

USA

Nedonna, OR

San Luis Obispo, CA

HAWAII

Kahe Point

Spencer Beach

NEW ZEALAND

Takapuna

Whenuapal

AUSTRALIA

Belrose, Sidney

Rosebery, Sidney

FIJI

Suva

160 Gbp/s SDH Ring Design

80 Gbp/s SDH Ring Design

Backhaul & cable sys interface: STM-1

November 2000

November 2000

November 2000

January 2001

Page 77: Latest Trends in Fiber Communicatio

FLAG Pacific-1

Type: Private (FLAG Telecom)

JAPAN

Misaki

Chikura

HAWAII

Honolulu

US

Washington

ALASKA

Aleutians

CANADA

Vancouver Is.

Bay Area - North

Bay Area - South

Tokyo / Yokahama Loop

22,000 Route miles

Supplier is Alcatel

10 Gbps x 64 Wavelengths x 8 Fiber Pairs

Repeatered Repeatered

Repeatered

Repeatered

Repeatered

Vancouver / Seattle Loop

San Francisco / Los Angeles

Loop

Page 78: Latest Trends in Fiber Communicatio

S. Korea

Pusan

TAIWAN

Toucheua

MALAYSIA

Kuan Tan

JAPAN

Kitaibaraki

Chikura

CHINA

Shanghai

Shantou

SINGAPORE

Katoug

HONG KONG

LantauPHILIPINES

Batangas

2.56 Tbp/s SDH Ring Design

10 Gbps x 64 Wavelengths x 4 Fiber Pairs

ASIA PAC CABLE NETWORK 2___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Page 79: Latest Trends in Fiber Communicatio

Regional Telecom Training centreBSNL

Questions ???Questions ???