22
Last Time Ch 4 Today Ch 5 Today Chapter 5 o Using Newton’s 1 st for bodies in equilibrium o Using Newton’s 2 nd Law for accelera@ng bodies o Sta@c and kine@c fric@on o Problems involving circular mo@on Last Week Chapter 4 o Forces o Newton’s 1 st Law o Newton’s 2 nd Law o Newton’s 3 rd Law o Free body diagrams T. S@egler 10/01/2013 Texas A&M University

Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Embed Size (px)

Citation preview

Page 1: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Last  Time  Ch  4  -­‐  Today  Ch  5  

Today  •  Chapter  5  

o  Using  Newton’s  1st  for  bodies  in  equilibrium  

o  Using  Newton’s  2nd  Law  for  accelera@ng  bodies  

o  Sta@c  and  kine@c  fric@on  o  Problems  involving  circular  mo@on  

   

Last  Week  •  Chapter  4  

o  Forces  o  Newton’s  1st  Law  o  Newton’s  2nd  Law  o  Newton’s  3rd  Law  o  Free  body  diagrams  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 2: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

 

Newton’s  1st  :    If  there  is  no  net  force  on  an  object  then  there  is  no  change  in  the  object’s  mo@on  

 

Newton’s  2nd  :  If  you  apply  a  force  to  an  object  then  that  object  would  experience  an  accelera@on  in  the  direc@on  of  that  force.  This  accelera@on  was  inversely  propor@onal  to  the  mass  being  acted  on.  

 

Newton’s  3rd  :  For  every  applied  force  (ac@on)  there  is  an  equal  and  opposite  force  (reac@on)    

 

Newton’s  Laws    

!Ftot = 0!

!v(t) = !v0 = constant

!F! =m!a

!FAB = !

!FBA

(just  in  case  the  exam  made  you  forget)  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 3: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

A  toboggan  of  weight  w  (including  the  passengers)  slides  down  a  hill  of  angle  α  at  a  constant  speed.  Which  statement  about  the  normal  force  on  the  toboggan  (magnitude  n)  is  correct?  

A.  n  =  w  

B.  n  >  w  

C.  n  <  w  

D.  not  enough  informa@on  given  to  decide  

Clicker  Ques7on  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 4: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Bodies  in  equilibrium  –  Problem  Solving  Strategy  

•  A  body  in  equilibrium  is  either  at  rest  or  moving  with  constant  velocity.  •  What  this  means  in  terms  of  Newton’s  Laws:    

!F = 0!Fx = 0, Fy = 0!!Problem  Solving  Strategy  

 •  Iden@fy  the  relevant  Laws  •  Iden@fy  the  target  variables  

•  Draw  a  simple  sketch  showing  dimensions  and  angles  •  Draw  free  body  diagrams  for  each  body  (include  coordinate  axes)  •  Draw  a  force  vector  for  each  interac@on  with  the  body  (w/  magnitude  and  

direc:on)    

•  Find  the  components  of  each  force    •  Set  the  sum  of  all  x-­‐components  equal  to  zero  •  Set  the  sum  of  all  y-­‐components  equal  to  zero    •  Solve  those  equa@ons  for  the  target  variables  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 5: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Example  :  Equilibrium  

Draw  a  free  body  diagram  showing  all  the  forces  on  the  knot.  Find  the  tension  in  each  cord  in  the  figure  if  the  weight  of  the  suspended  object  is  w.  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 6: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Example  :  Equilibrium  

The  weight  w  =  60.0N  (a)  What  is  the  tension  in  the  diagonal  string?  (b)  Find  the  magnitudes  of  the  horizontal  forces  F1  and  F2  that  must  be  applied  to  hold  the  system  

in  the  posi@on  shown.  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 7: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

A  car  engine  is  suspended  from  a  chain  linked  at  O  to  two  other  chains.  Which  of  the  following  forces  should  be  included  in  the  free-­‐body  diagram  for  the  engine?  

A.  tension  T1  

B.  tension  T2  

C.  tension  T3  

D.  two  of  the  above  

E.  T1,  T2,  and  T3  

Clicker  Ques7on  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 8: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Example  –  Non-­‐zero  accelera@on  (Atwood’s  Machine)    

M2  

M1  

A  load  of  bricks  M1  hangs  from  one  end  of  the  rope  that  passes  over  a  fric@onless  pulley.  A  counterweight  M2  =  1.5  M1  is  suspended  from  the  other  end  of  the  rope  as  shown.  The  system  is  released  from  rest.    (a)  Draw  two  free  body  diagrams  one  for  each  load.    (b)  What  is  the  magnitude  of  the  upward  accelera@on  of  the  load  of  bricks?  (c)  What  is  the  tension  in  the  rope  while  the  load  is  moving?  How  does  the  tension  compare  the  the  weight  of  the  bricks  and  the  counterweight?      

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 9: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Fric7on  

•  Kine:c  fric:on  acts  when  a  body  slides  over  a  surface.    

•  The  kine:c  fric:on  force  is  fk  =  µkn.  

•  Sta:c  fric:on  acts  when  there  is  no  rela@ve  mo@on  between  bodies.  

•  The  sta:c  fric:on  force  can  vary  between  zero  and  its  maximum  value:  fs  ≤  µsn.  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 10: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Fric7on  –  Sta@c  and  Kine@c  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 11: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

T.  S@egler                10/01/2013            Texas  A&M  University  

 In  both  cases  shown  a  box  is  sliding  across  a  floor  with  the  same  kine@c  coefficient  of  fric@on  and  the  same  ini@al  velocity.  The  only  difference  between  the  two  cases  is  the  mass  of  the  box.    In  which  case  will  the  box  slide  the  furthest  before  coming  to  rest?  a)  Case  1  b)  Case  2  c)  Same    

Prelecture:  Ques7on  1  

Page 12: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Prelecture:  Ques7on  2  and  Clicker  Ques7on  

 A  box  of  mass  m  sits  at  rest  on  an  inclined  plane  that  makes  and  angle  θ  with  the  horizontal.  It  is  prevented  from  sliding  by  sta@c  fric@on.  The  coefficient  of  sta@c  fric@on  between  the  box  and  the  ramp  is  μs.    What  is  the  magnitude  of  the  sta@c  fric@onal  force  ac@ng  on  the  box?  a)  mg  sinθ      b)  μs  mg  cosθ  c)  μs  mg    

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 13: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Prelecture:  Ques7on  2  

What  is  the  magnitude  of  the  sta@c  fric@onal  force  ac@ng  on  the  box?  a)  μs  mg    b)  μs  mg  cosθ    c)  mg  sinθ    

(a)  (c)  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 14: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Checkpoint  Ques7on  1  

A  box  sits  on  the  horizontal  bed  of  a  moving  truck.  Sta@c  fric@on  between  the  box  and  the  truck  keeps  the  box  from  sliding  around  as  the  truck  drives.    

 

 

 

If  the  truck  moves  with  constant  accelera@on  to  the  lej  as  shown,  which  of  the  following  diagrams  best  describes  the  sta@c  fric@onal  force  ac@ng  on  the  box:  

A   B   C  

µS

a

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 15: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

A  box  sits  on  a  horizontal  table.  A  string  with  tension  T  pulls  to  the  right,  but  sta@c  fric@on  between  the  box  and  the  table  prevents  the  box  from  moving.                        What  is  the  magnitude  of  the  sta:c  fric:onal  force  ac@ng  on  the  box?  a)  0  b)  T  c)  Mg  d)  μMg    

Check  Point  Ques7on  2  and  Clicker  Ques7on  

(c)   (d)   (b)   (a)  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 16: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Checkpoint  Ques7on  3  

A  block  slides  on  a  table  pulled  by  a  string  akached  to  a  hanging  weight.  In  case  1  the  block  slides  without  fric@on  and  in  case  2  there  is  kine@c  fric@on  between  the  sliding  block  and  the  table.    In  which  case  is  the  tension  in  the  string  the  biggest?    a)  Case  1    b)  Case  2    c)  Same    

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 17: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Checkpoint  Ques7on  3  -­‐  Math  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 18: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Example  :  Fric@on    A  10.0  kg  box  of  kikens  rests  on  a  loading  ramp  that  makes  an  angle  α  with  the  horizontal.  The  coefficient  of  kine@c  fric@on  is  μk  =  0.25  and  the  coefficient  of  sta@c  fric@on  is  μs  =  0.35.  a)  As  the  angle  α  is  increased  find  the  minimum  angle  at  which  the  box  has  begun  to  move.    b)  At  this  angle  find  the  accelera@on  once  the  box  has  begun  to  move.  c)  At  this  angle  how  fast  will  the  box  be  moving  ajer  it  has  slid  5.0  m  along  the  ramp?  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

α

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Exam III Formulae

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 19: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Example  –  Fric@on  cont.    b)  At  this  angle  find  the  accelera@on  once  the  box  has  begun  to  move.  c)  At  this  angle  how  fast  will  the  box  be  moving  ajer  it  has  slid  5.0  m  along  the  ramp?  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

α

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Exam III Formulae

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 20: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

When  released,  the  cart  accelerates  up  the  ramp.  

Which  of  the  following  is  a  correct  free-­‐body  diagram  for  the  cart?  

A.   B.   C.   D.  

m1a   m1a  w1   w1   w1   w1  

T   T   T   T  n   n   n   n  

A  cart  (weight  w1)  is  akached  by  a  lightweight  cable  to  a  bucket  (weight  w2)  as  shown.  The  ramp  is  fric@onless.    

Clicker  Ques7on  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 21: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

Fluid  Resistance  and  terminal  speed  

•  The  fluid  resistance  on  a  body  depends  on  the  speed  of  the  body.  

•  A  falling  body  reaches  its  terminal  speed  when  the  resis@ng  force  equals  the  weight  of  the  body.  

•  The  figures  at  the  right  illustrate  the  effects  of  air  drag.  

T.  S@egler                10/01/2013            Texas  A&M  University  

Page 22: Last%TimeCh4%-%Today Ch%5people.physics.tamu.edu/tyana/PHYS218/files/Lect_10_10-1-14_post.pdf · Last%TimeCh4%-%Today Ch%5 Today& • Chapter&5& o Using&Newton’s&1stforbodiesin

For  a  human  body  falling  through  air  in  a  spread-­‐eagle  posi@on  the  numerical  value  of  the  constant  D  in  the  equa@on  below  is  about  0.25  kg/m.  Find  the  terminal  speed  for  a  lightweight  50  kg  skydiver.      

Example  -­‐    Fluid  Resistance      

fFR = Dv2 (High Speed)

T.  S@egler                10/01/2013            Texas  A&M  University