28
ESE 271 / Spring 2013 / Lecture 9 Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign Passive sign convention V lt d l it th b tl 1 V oltage drop across real capacitor can not change abruptly because instant voltage change means instant change of accumulated charge and this, in turn, requires infinite current.

Last time energy storage elements capacitor

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Last time : energy storage elements ‐ capacitor.

Charge on plates Energy stored in the form of electric field

Passive signPassive sign convention

V lt d l it t h b tl

1

Voltage drop across real capacitor can not change abruptly because  instant voltage change means instant change of accumulated charge and this, in turn, requires infinite current.

Page 2: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Last time : capacitor charge/discharge.

Charging capacitor by practical DC source

Energy gets stored in the capacitorthe capacitor

Discharging capacitor

2

Energy previously stored in the capacitor gets dissipated in resistor

Page 3: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Energy can be stored in circuit element in the form of magnetic field.

Ampere’s law – magnetic field created by electric current in vacuum

Coil of wire can be used to store i h f f i fi ld

magnetic flux densityenergy in the form of magnetic field

Biot‐Savart law:

3

Page 4: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Magnetic flux density generated by current in the coil of wire.

Magnetic field in center generated by

Magnetic field in center generated by full coil of wire

Biot‐Savart law:

F i it l t t i i NFor circuit element containing N coils and in media with magnetic permeability

4

In every case depends on geometry but always:

Page 5: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Inductance.

Closed path for Ampere’s law calculation

Number of turns inside the closed path

Total number of turns in solenoidf

Length of solenoid

Magnetic flux density inside solenoid core:

Magnetic flux inside solenoid core:

Inductance (self‐inductance) relates the magnetic flux to the current that created it.

Depends on geometry of the circuit element.

5

Page 6: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Linear inductor.

Energy stored in inductor

Recall that in parallel plate capacitor with plate area A and spacing d:

, where volume energy density 

Volume energy density of magnetic field: Energy stored in solenoid of length l

In solenoid we just considered:

and cross‐section of the core A:

6

Page 7: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Voltage drop across ideal linear inductor.

Magnetic flux:

When DC current is flowing through ideal inductor the voltage drop across it is zero.

What happens if the current is changing with time?

Magnetic flux:

Magnetic flux change due to change of current:

F d ’ l l t ti fFaraday’s law – electromotive force:

Recall EMF in battery:

In inductor:

Change of current in inductor generates

7

inductor generates the voltage drop.

Page 8: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Voltage and current in inductor.

Passive sign convention

Voltage drop appears because the induced EMF force opposes the change of current

Assume:

moved charges in the direction opposite to the direction of current changemoved charges in the direction opposite to the direction of current change.

8

Page 9: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Inductor power and energy.

Initial current

Current in inductor implies presence of magnetic field, hence, current is associated with energy and energy can not be changed abruptly without infinite power.

Hence, current through practical inductor can not be changed abruptly since it would imply infinite voltagewould imply infinite voltage.

9

Page 10: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Let’s put the energy into inductor.

1. Simple ideal case:

2. More realistic case with practical power supply:

10

‐ Time constant of the RL‐circuit

Page 11: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Increase of current through inductor.

11

Page 12: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Increase of current through inductor by practical voltage source.

Obviously, everything is just the same since we used Thevenin form of the practicalThevenin form of the practical source and it is equivalent to Norton one used on slide 11.

12

Page 13: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Decrease of current through inductor – removal of energy.

1. Simple ideal case:

See ignition coil in cars

2. Realistic case:

coil in cars

13

Page 14: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Series connection of inductors

Physical sense:

14

Page 15: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Parallel connection of inductors

Physical sense – current divider.

15

Page 16: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 1.

A DCAssume DC steady‐state

16

Page 17: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 2.

‐ Current trough inductor in DC steady‐state

17

‐ Energy stored in inductor

Page 18: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 2 – cont.

Energy stored in inductor:

Energy dissipated in the circuit during

18

Energy dissipated in the circuit during transition from initial DC steady‐state to final DC steady‐state condition:

Page 19: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 2 – cont.

KVL:

19

Page 20: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 2 – cont.

KVL:

20

Page 21: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 2 – cont.

Find B from initial conditions:

21

Page 22: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example 2 – cont.

22

Page 23: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Superposition.

23

Page 24: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Superposition ‐ cont.

24

Page 25: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Superposition ‐ cont.

25

Page 26: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Superposition ‐ cont.

26

Page 27: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Superposition ‐ cont.

27

Page 28: Last time energy storage elements capacitor

ESE 271 / Spring 2013 / Lecture 9

Example.

DC steady‐statey

Energy stored in inductor                                                    will get dissipated in resistor.

Eventually all voltages and currents will become zero since circuit will contain no sources and there is resistor that does not store but dissipates energy. 

To find the transient values of voltage and currents we will need to solve integro‐differential equation – not an easy task, in general.

28