26
Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe

  • Upload
    topper

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth. Primordial curvature perturbations. Komatsu et.al. 2008. Proved by CMB anisotropies nearly scale invariant nearly adiabatic nearly Gaussian Generation mechanisms - PowerPoint PPT Presentation

Citation preview

Page 1: Large Primordial Non- Gaussianity  from early Universe

Large Primordial Non-Gaussianity from early UniverseKazuya KoyamaUniversity of Portsmouth

Page 2: Large Primordial Non- Gaussianity  from early Universe

•Proved by CMB anisotropies nearly scale invariant nearly adiabatic nearly Gaussian

•Generation mechanisms inflation curvaton collapsing universe (Ekpyrotic, cyclic)

Primordial curvature perturbations

0.960 0.013sn 0.16, /S

local 2NL

3( ) ( ) ( )5g gx x f x

1119 localNL

f

Komatsu et.al. 2008

Page 3: Large Primordial Non- Gaussianity  from early Universe

Generation of curvature perturbations

•Delta N formalism curvature perturbations on superhorizon scales = fluctuations in local e-folding number

0in

( , ) ' ( ', )i

ti i

tN t x dt H t x ( , ) ( )i

BN t x N t

3( )P

Starobinsky ;85, Stewart&Sasaki ‘95

Page 4: Large Primordial Non- Gaussianity  from early Universe

How to generate delta N

single field inflation multi-field inflation, new Ekpyroticisocurvature

curvaton,modulated reheating,multibrid inflation

adiabaticperturbations

entropyperturbations Sasaki. 2008

Page 5: Large Primordial Non- Gaussianity  from early Universe

•Suppose delta N is caused by some field fluctuations at horizon crossing

• Bispectrum

2

,

1( , ) ...2

iI I J

I J I I J

N Nt x

1 2 3

, , ,1 2 , , , 1 2 3

, ,

( , , )

( ) ( ) perm. ( , , )I J IJI J K IJK

I I

B k k k

N N NP k P k N N N B k k k

N N

Local type (‘classical’)(local in real space=non-local in k-space)

Equilateral type (‘quantum’)(local in k-space)

31 2 3 1 2 3 1 2 3( ) ( ) ( ) 2 ( ) ( , , )Dk k k k k k B k k k

Lyth&Rodriguez ‘05

Page 6: Large Primordial Non- Gaussianity  from early Universe

Observational constraints• local type maximum signal for

WMAP5

•Equilateral type maximum signal for

WMAP5

1k

2k 3k

1k

3k

2k

local 2NL

3( ) ( ) ( )5g gx x f x

3 1 2,k k k

1119 localNL

f

1 2 3k k k

NL

equil151 253f

Page 7: Large Primordial Non- Gaussianity  from early Universe

Theoretical predictionsStandard inflation Non-standard scenario

Single field

K-inflation, DBI inflation

Features in potentialGhost inflation

Multifield

depending on the trajectory

DBI inflation

curvaton

new Ekpyrotic (simplest model)

isocurvature perturbations (axion CDM)

local, equil ( , ) 1NLf O equil 21 / 1NL sf c

local (1)NLf O

localNL (5 / 4) / curvaton decayf

equil 2 2(1 / ) / (1 ) 1NL s RSf c T

1( 1)localNL sf n

5 310localNLf

Rigopoulos, Shellard, van Tent ’06Wands and Vernizzi ’06Yokoyama, Suyama and Tanaka ‘07

Page 8: Large Primordial Non- Gaussianity  from early Universe

Three examples for non-standard scenarios• (multi-field) K-inflation, DBI inflation

• (simplest) new ekpyrotic model

• (axion) CDM isocurvature model

Arroja, Mizuno, Koyama 0806.0619 JCAP

Koyama, Mizuno, Vernizzi, Wands 0708.4321 JCAP

Hikage, Koyama, Matsubara, Takahashi, Yamaguchi (hopefully) to appear soon

Page 9: Large Primordial Non- Gaussianity  from early Universe

K-inflation•Non-canonical kinetic term

•Field perturbations (leading order in slow-roll)

4 1( , ),2

S d x gP X X

2 ,

, ,2X

sX XX

Pc

P XP

21 , 16T

ss pl

H PP r cc M P

sound speed

Amendariz-Picon et.al ‘99

Garriga&Mukhanov ‘99

Page 10: Large Primordial Non- Gaussianity  from early Universe

Bispectrum

•DBI inflation

cf local-type

2

1 2 3 1 2 3 3 3 31 2 3

( , , ) ( , , ) ,P

B k k k F k k kk k k

local local 3 3 31 2 3 NL 1 2 3

3( , , ) ( )10

F k k k f k k k

1( ) 1 2 ( ) 1 ( )( )

P X f X Vf

1 2 3 2

1( , , )s

F k k kc

1k

3k

2k

1k

2k 3k

LoVerde et.al. ‘07

Aishahiha et.al. ‘04

Page 11: Large Primordial Non- Gaussianity  from early Universe

Observational constraints• (too) large non-Gaussianity •Lyth bound

eff2

35 1108NL

s

fc

for equilateral configurations

2

2

1 6p

rM N

716 10sr c

1 4 0.04 0.013sn D3

anti-D3

inflaton

UV eff 300NLf Huston et.al ’07, Kobayashi et.al ‘08

Page 12: Large Primordial Non- Gaussianity  from early Universe

Multi-field model

•Adiabatic and entropy decomposition adiabatic sound speed

entropy sound speed

4 1( , ),2

IJ IJ I JS d x gP X X

2( ) ( ),2

IJ J II J

bP X P X X X X X X 0 0X X

2 ,

0, ,2X

adX XX

Pc

P X P

201enc bX

s

adiabatic

entropy

Arroja, Mizuno, Koyama ’08Renaux-Petel, Steer, Langlois Tanaka‘08

Page 13: Large Primordial Non- Gaussianity  from early Universe

•Multi-field k-inflation

•Multi-field DBI inflation

Final curvature perturbation

2 1enc

1( ) det( ( ) ) 1 ( )( )

IJ I JIJP X g f G V

f

2 2en adc c

( ) ( )IJP X P X

,H HS ss

* *RST S

Langlois&Renaux-Petel’08

Renaux-Petel, Steer, Langlois Tanaka‘08

Page 14: Large Primordial Non- Gaussianity  from early Universe

Transfer from entropy mode•Tensor to scalar ratio

•Bispectrum k-dependence is the same as single field case!

large transfer from entropy mode eases constraints

•Trispectrum different k-dependence from single field case?

RST

2

1161s RS

r cT

eff2 2

35 1 1108 1NL

s RS

fc T

3eff

22,NLf

2 2

3 2

1

1

RS

RS

T

T

Mizuno, Koyama, Arroja ’09

Renaux-Petel, Steer, Langlois Tanaka‘08

Page 15: Large Primordial Non- Gaussianity  from early Universe

New ekpyrotic models•Collapsing universe

•Ekpyrotic collapse

1H

ak

t t bounce

( ) ( ) , 1na t t n Khoury et.al. ‘01

Page 16: Large Primordial Non- Gaussianity  from early Universe

•Old ekpyrotic model

spectrum index for is the bounce may be able to creat a scale invariant spectrum but

it depends on physics at singularity

•New ekpyrotic model

0cV V e

22/( ) ( ) ca t t

3sn

1 1 2 21 2

c cV V e V e

212/( ) ( ) ca t t

222/( ) ( ) ca t t

22/( ) ( ) ca t t

22/2 2 2

1 2

1 1 1( ) ( ) ,ca t tc c c

Khoury et.al. ‘01

Lyth ‘03

Lehners et.al , Buchbinder et.al. ‘07

B

B2

Page 17: Large Primordial Non- Gaussianity  from early Universe

•Multi-field scaling solution is unstable entropy perturbation which has a scale invariant spectrum is converted to adiabatic perturbations

2

2 20

c Hs

1

22 2 2

1 22

T

sc H

c c

B

B

B2

B: B2:

ss

B2

Koyama, Mizuno & Wands’ 07

Page 18: Large Primordial Non- Gaussianity  from early Universe

•Delta-N formalism

22

2

12

dN d NN s sds ds

sB

B2

s

logN a

log HN

B

B2

Page 19: Large Primordial Non- Gaussianity  from early Universe

•Predictions

•Generalizations changing potentials conversion to adiabatic perturbations in kinetic

domination

2 21 2

local 2 1NL 1

1 11 4 0

05 5 ( 1)

12 3

s

s

nc c

r

f c n

Koyama, Mizuno, Vernizzi & Wands’ 07

Buchbinder et.al 07

Lehners &Steinhardt ‘08

Page 20: Large Primordial Non- Gaussianity  from early Universe

Non-Gaussianity from isocurvature perturbations

• (CDM) Isocurvature perturbations are subdominant

•Non-Gaussianity can be large

0.067 ( 1)

0.008 ( 1.5) <0.001 ( 2)

SS

S

S

S

P nP P

nn

Boubekeur& Lyth ‘06, Kawasaki et.al ’08, Langlois et.al ‘08

Page 21: Large Primordial Non- Gaussianity  from early Universe

Axion CDM•Massive scalar fields without mean

•Entropy perturbations

•Dominant nG may come from isocurvature perturbations

2 2CDM m

2 234

CDM rg g

CDM r

S

3

3/22(1)

SO

S

32

3 3eff 52

2 1/22 2

1 10NL

Sf

Linde&Mukhanov ‘97, Peebles ’98, Kawasaki et.al‘08

Page 22: Large Primordial Non- Gaussianity  from early Universe

Bispectrum of CMB from the isocurvature perturbation

Adiabatic (fNL=10)

Equilateral triangle

SN

2

Il1l2l32 bl1l2l3

2

Cl1Cl2Cl3

l1l2l32l1l2l3

Noise: WMAP 5-year

The isocurvature perturbations can generate large non-Gaussianity (fNL~40)

adi iso

S SN N

3/2eff 41

0.067NLf

Page 23: Large Primordial Non- Gaussianity  from early Universe

•Minkowski functional measures the topology of CMB map (=weighted some of bispectrum)

no detection of non-G from isocurvature perturbations and get constraints

comparable to constraints from power spectrum

WMAP5 constraints -Minkowski functional

0.070 ( 1)

0.042 ( 1.5)

0.0064 ( 2)

n

n

n

Hikage, Koyama, Matsubara, Takahashi, Yamaguchi ‘08

Page 24: Large Primordial Non- Gaussianity  from early Universe

Theoretical predictionsStandard inflation Non-standard scenario

Single field

K-inflation, DBI inflation

Features in potentialGhost inflation

Multifield

depending on the trajectory

DBI inflation

curvaton

new Ekpyrotic (simplest model)

isocurvature perturbations (axion CDM)

local, equil ( , ) 1NLf O equil 21 / 1NL sf c

local (1)NLf O

localNL (5 / 4) / curvaton decayf

1( 1)localNL sf n

5 310localNLf

equil 2 2(1 / ) / (1 ) 1NL s RSf c T

Page 25: Large Primordial Non- Gaussianity  from early Universe

Conclusions•Power spectrum from pre-WMAP to post-WMAP

•bispectrum WMAP 8year Planck

Do everything you can now!

Page 26: Large Primordial Non- Gaussianity  from early Universe

Axion CDM

Classical mean of axion quantum fluctuations if

a aa f

inf / 2a af H

2inf / 2a H

2

inf*

*

,2

a

a

a Haa

cdm

0.82 22 *

12 11 2cdm

,

0.111.8 1010 GeV 10 GeV

a a

a

a

S r r

F arh