44
PLANNING AND DESIGN OF RADIO LINK FOR TERRESTRIAL MICROWAVE COMMUNICATION NETWORK ( CIPEUNDEUY – NAGREK AND CIPENDEUY – TASIKMALAYA ) 1. General Microwave communicaton is a communication system that uses radio frequency band with frequency range from 2 to 60 GHz. According to the IEEE, the electromagnetic waves between 30 up to 300 GHz, called millimeter wave (millimeter wave, MMW) rather than the wavelength of microwaves as approximately from 1 to 10 mm. It would become as an integral part of the public networks of almost all countries. There are several advantages in the implementation of a radio link ; s mall effects of natural disasters, the trend towards smaller unintentional, radio link through the mountains or rivers is economically more feasible, Installation, maintenance, and security are single point, deployment is fast, as an example for the regions that suffered the disaster in which PSTN telecommunications infrastructure suffered destruction. Microwave link design is a process that is methodical, systematic and sometimes long including ; the calculation of loss / attenuation, f ading and fade margin calculation, calculation of interference and frequency planning (frequency planning), and calculation of quality and availability. On planning and design of the radio link system that will be build

Lap Psr Irmn

Embed Size (px)

Citation preview

Page 1: Lap Psr Irmn

PLANNING AND DESIGN OF RADIO LINK

FOR

TERRESTRIAL MICROWAVE COMMUNICATION NETWORK

( CIPEUNDEUY – NAGREK AND CIPENDEUY – TASIKMALAYA )

1. General

Microwave communicaton is a communication system that uses radio frequency band with

frequency range from 2 to 60 GHz. According to the IEEE, the electromagnetic waves

between 30 up to 300 GHz, called millimeter wave (millimeter wave, MMW) rather than the

wavelength of microwaves as approximately from 1 to 10 mm. It would become as an

integral part of the public networks of almost all countries. There are several advantages in the

implementation of a radio link ; small effects of natural disasters, the trend towards smaller

unintentional, radio link through the mountains or rivers is economically more feasible,

Installation, maintenance, and security are single point, deployment is fast, as an example for

the regions that suffered the disaster in which PSTN telecommunications infrastructure

suffered destruction.

Microwave link design is a process that is methodical, systematic and sometimes long

including ; the calculation of loss / attenuation, fading and fade margin calculation, calculation

of interference and frequency planning (frequency planning), and calculation of quality and

availability. On planning and design of the radio link system that will be build between

Cipendeuy – Nagrek and Cipendeuy - Tasikmalaya with various design specification that have

been specify. The design of radio link is using software Radio Mobile. It can prosessing and

calculating parameters of radio link desain so give the data of the contours from the path that

will passed by radio system until to find the conditions for line of sight between site tower to

facing tower. On this planning system of network digital radio link microwave, author is doing

some of work, such as site survey, survey field path, path profile designing, calculation path

and profile using radio mobile simulation software. For this time, we use terrestrial radio link

for transmission data because more simple and faster than cable transmission because if the

distance from transmitter to receiver is too long, we can add repeater along or between the link

for continue the signal transmission.

Page 2: Lap Psr Irmn

2. Scope of Work

The main objectives for this final project report is to provide a best solution for digital

microwave radio link development desain. This final project report talks about how to

realization one connection digital microwave radio link between two point that have a short

– haul distance to communicate and also have many obstacles. In this case Cipendeuy site

will be main site to design and implementing. The step of planning and design radio link

Cipendeuy - Nagrek and Cipendeuy - Tasikmalaya are including :

- Determine site name, facing name and coordinate which used for Radio link design.

- Determine radio link frequency from site to facing.

- Determine of the antenna type, antenna height, and another link radio supporting

equipments type

- Making the path profile using radio mobile software simulation

- Making analysis from the simulation result

- Making the budget link calculation

Page 3: Lap Psr Irmn

3. Methodology

START(Preliminary Network Design and Plan)

Frequency Planning( Interference analysis )

Sites Selection and Propose

Sites Survey( information about site such as

address,coordinate, etc )

Detail Desain( determine antenna type, antenna height, and

another of the link radio supporting equipments type )

Making Path Profile by software radio mobile version 9.8.0 for window

LOS Condition?

Making Budget Link Calculation

Installations( Radio Link Desain can be realized )

Finish

Yes

No

Page 4: Lap Psr Irmn

4. Design Specification

4.1 Antenna

Cipendeuy - Nagrek

Brand : Andrew

Antenna type : FPX8-17

Antenna gain : 30.4 dBi

Impedance : 50 ± 1 Ω

Return loss : 26.4 dB

VSWR : 1.1

Cipendeuy – Tasikmalaya

Brand : Andrew

Antenna type : KP13F-17

Antenna gain : 35.3 dBi

Impedance : 50 ± 1 Ω

Return loss : 26.4 dB

VSWR : 1.1

4.2 Cable Feeder

Brand : Rosenberger – Leoni

Type : Flexline 7/8” R Flexible

Type Number : (optional)

V45466 – B23 – C26 Standard Polyethylene Jacket

V45466 – B23 – C36 Flame Retardant, Non Corrosive Jacket

V45466 – B23 – C126 Flame Retardant, Non Corrosive Jacket, UL CATVR

Attenuation :

5.45 dB/100m at 1700 MHz

5.63 dB/100m at 1800 MHz

Impedance : 50 ± 1 Ω

Return Loss : 26 dB

VSWR : 1.105

Permissable temperature range, operation : -55 ºC to + 85 ºC or 67 °F to + 185 °F

4.3 Connector

Brand : Rosenberger – Leoni

Type : Flexline N Connector

Page 5: Lap Psr Irmn

Type Number : male straight V45250-Z5077-A 25-A

Frequency range: DC to 11 GHz

Insertion Loss : 0.1 dB

Impedance : 50 Ω

Return Loss :

≥ 30 dB at 1GHz – 2.7GHz

≥ 35 dB at under 1GHz

VSWR : 1.065

Permissable temperature range, operation : -45 ºC to + 85 ºC

4.4 Jumper

Brand : Rosenberger – Leoni

Type : Flexline ½” S

Frequency range: 800 MHz to 2700 MHz

Insertion Loss :

0.16 dB/m (cable)

0.05 dB/ft

+ 0.10 dB (connectors)

Impedance : 50 Ω

Return Loss : 28 dB at 1000MHz – 2200MHz

VSWR : 1.105

Permissable temperature range, operation : – 40 °C to + 80 °C (– 40 °F to +176 °F)

4.5 Digital Microwave Radio NOKIA DR240

Data rate : 2 x 8 Mbps (240 channels), standard E1 (2048 Kbps), CCITT

PCM30, G703

System Gain : 119 dB

Modulation type : 4 PSK

Receiver Minimum Threshold Level : - 86 dBm @ BER 1x10-3

Page 6: Lap Psr Irmn

5. Topographical Data and Environment

5.1 Cipendeuy - Nagrek

Site Name Facing Name

R28 Cipendeuy

Latitude : 107° 53` 20”

Longitude : 7° 1` 43”

Elevation : 879 m

Environment dense – sub urban

R27 Nagrek

Latitude : 108° 5` 11”

Longitude : 7° 4` 59”

Elevation : 996 m

Environment dense – sub urban

5.2 Cipendeuy - Tasikmalaya

Site Name Facing Name

R28 Cipendeuy

Latitude : 107° 53` 20”

Longitude : 7° 1` 43”

Elevation : 879 m

Environment dense – sub urban

R29 Tasikmalaya

Latitude : 108° 13` 17”

Longitude : 7° 19` 17”

Elevation : 354 m

Environment sub urban

Page 7: Lap Psr Irmn

Gambar 5.1 Topographical link radio site Nagrek, Cipendeuy and Tasikmalaya

6. Path Profile Design

6.1. Link Cipendeuy to Nagrek

Picture 6.1 Path profile link of Cipendeuy to Nagrek

Picture 6.2 Path profile receiver threshold range of Cipendeuy to Nagrek

Page 8: Lap Psr Irmn

Picture 6.3 Path profile distribution parameter link of Cipendeuy to Nagrek

6.2. Link Cipendeuy to Tasikmalaya

Picture 6.4 Path profile link of Cipendeuy to Tasikmalaya

Picture 6.5 Path profile receiver threshold range of Cipendeuy to Tasikmalaya

Page 9: Lap Psr Irmn

Picture 6.6 Path profile distribution parameter link of Cipendeuy to Tasikmalaya

7. Budget Link Caculation

7.1. Free Space Loss

Free Space Loss is a kind of losses that cause form the free space aspect. With

calculate the distance value and frequency in used into equation below, so Free Space Loss

value can be find

FSL=92 . 4+20 log d (Km )+20 log f (GHz )…………………………………(equation.1)

where:

d = distance pass in free space (path distance)

f = frequency in used (GHz)

7.2. Received Signal Level

Received Signal Level is a minimum signal power level that can be accept by receiver. This

power level value can get with calculate value of transmitter power output level add to all of gain

value and minus all of losses value on path. Here is below the equation of Received Signal Level:

RSL=( PTX +GTX+GRX )−( LTX+LRX+LCONN+LDC

+LEQ+FSL+LDIFF )(equation.2)

where :

RSL =Received Signal Level LRX = Feeder Loss in RX

LCONN = Connector Loss PTX = Transmiter Power Output

LD/C = Divider/Combiner Loss GTX = Transmiter Gain antena

a. For link of Cipeundeuy to Nagrek

FSL (dB)

FSL=92 . 4+20 log d (Km )+20 log f (GHz ) = 92.4+ 20 log 22.6 + 20 log 1.808

= 92.4 + 27.1 + 5.1

= +124.6 dB

a. For link of Cipeundeuy to Tasikmalaya

FSL (dB)

FSL=92 .4+20 log d (Km )+20 log f (GHz ) = 92.4 + 20 log 30.4 + 20 log 1.850

= 92.4 + 29.7 + 5.3

= +127.4 dB

Page 10: Lap Psr Irmn

LEQ = Loss Equip Tolererance GRX = Receiver Gain antena

FSL = Free Space Loss LTX = Feeder Loss in TX

LDIFF = Difraction Loss

Page 11: Lap Psr Irmn

For link between this three sites (Nagrek – Cipendeuy - Tasikmalaya), there is value of LD/C

LEQ. and LDIFF = 0. The value can be given because in through of link we cant find any obstacle

To get the Received Signal Level value, we must to calculate feeder losses both transmitter and

receiver. With use the equation.3, we can find this value.

LTX=(T XL×LX )100 m

(equation. 3)

where :

TRL = Feeder distance (m)

LX = Feeder Loss (dB/100m)

Value of TRL can be find from add the height of antenna with a spare value (tolerance)

about 10m, so we can get :

Feeder distance = antenna height + spare value [10 m typically]

- Connector Loss = LCON = 0.25 dB/ Connector ,because in both link design use about

four connector so LCON = 0.25 dB x 4 = 1 dB.

- Loss feeder = 5.75 dB/100 m

For value of PTX, GTX, GRX can can be seen in list below

- TX Power level = +30.5 dBm

- Gain antena link Cipendeuy to Nagrek = +30.4 dBi

- Gain antena link Cipendeuy to Tasikmalaya = +35.3 dBi

For your information, all of data that used in this report based on data sheet.

a. For link of Cipeundeuy to Nagrek

LTX=(T XL×LX )100 m = (110 x 5.75) / 100 m = 6.325 dB (transmitter)

LTX=(T XL×LX )100 m = (70 x 5.75) / 100 m = 4.025 dB (receiver)

Here is below the RSL calculation of link Cipeundeuy to Nagrek :

RSL=( PTx+GTx+GRx )−(LTX+LRx+Lconn+LD /C+LEQ+ FSL+Ldiff )RSL = (30.5+30.4+30.4)+2.5 – (6.325 + 4.025 + 1 + 0 + 0 + 124.6 + 0)-2

RSL = - 44.2 dBm

Page 12: Lap Psr Irmn

b. For link of Cipeundeuy to Tasikmalaya

LTX=(T XL×LX )100 m = (110 x 5.75) / 100 m = 6.325 dB (transmitter)

LTX=(T XL×LX )100 m = (110 x 5.75) / 100 m = 6.325 dB (receiver)

Here is below the RSL calculation of link Cipeundeuy to Tasikmalaya:

RSL=( PTx+GTx+GRx )−(LTX+LRx+Lconn+LD /C+LEQ+ FSL+Ldiff )RSL = (30.5+35.3+35.3) – (6.325 + 6.325 + 1 + 0 + 0 + 127.4 + 0)-3.2-2

RSL = - 45.2 dBm

7.3. Effective Isotropic Radiated Power (EIRP)

Effective Isotropically Radiated Power (EIRP), is a power output radiation from the antenna

based on isotropic standard. The value can be find with calculate this equation :

EIRP=( PTX+GTX+GRX )−( LTX+LRX+LCONN+LDC

+LEQ )

(equation.4)

a. For link of Cipeundeuy to Nagrek

EIRP=( PTx+GTx+GRx )−(LTX +LRx+Lconn+LD /C+LEQ)EIRP = (30.5+30.4+30.4) – (6.325 + 4.025 + 1 + 0 + 0)

EIRP = 79.95 dBm

b. For link of Cipeundeuy to Tasikmalaya

EIRP=( PTx+GTx+GRx )−(LTX +LRx+Lconn+LD /C+LEQ)EIRP = (30.5+35.3+35.3) – (6.325 + 6.325 + 1 + 0 + 0 )

EIRP = 87.45 dBm

7.4. Thermal Fade Margin

To know the value of thermal fade margin , we must to know value of Received Signal Level

(RSL) and Receiver Level Threshold.. Fading is defined as the variation of the strength of a

received radio carrier signal due to atmospheric changes and/or ground and water reflections

in the propagation path.Four fading types are considered while planning links.They are all

Page 13: Lap Psr Irmn

dependent on path length and are estimated as the probability of exceeding a given

(calculated) fade margin. With a simplified understanding of the thermal fade margin

considered by ratio Received Signal Level (RSL) and Receiver Level Threshold. Here is below

this equation:

FM (dB)=RSL( dBm)−Cmin(dBm )………..(equation. 5)

where :

FM = Fade Margin

Cmin = Receiver Level Threshold (dBm)

Error rate = 10- 6

Based on specification, the radio equipment have threshold input level -86 dBm and BER 10 - 6

. Type of modulation is 4PSK.

a. For link of Cipeundeuy to Nagrek

FM (dB)=RSL( dBm)−Cmin(dBm)

FM (dB) = (-44.2) – (-86)

FM (dB) = + 41.8 dBm

b. For link Cipendeuy to Tasikmalaya

FM (dB)=RSL( dBm)−Cmin(dBm )

FM (dB) = (-45.2) – (-86)

FM (dB) = + 40.8 dBm

7.5. Performance Objective

7.5.1 Quality

The main purpose of the quality and availability calculations is to set up reasonable

quality and availability objectives for the microwave path. The quality of radio link

communication can be seen and consider of many parameters. FSL (Free Space Loss),

Received Signal Level (RSL), fade margin, availability, outage time system is a kind

of these parameters. Based on the ITU-T recommendations G.801, G.821 and G.826

define error performance and availability objectives. The objectives of digital links

are divided into separate grades: high, medium and local grade.

Page 14: Lap Psr Irmn

7.5.2 Availability

A system availability define as p that representation a quality of link hop and ratio of

available time comparing to total available time in service, where is for certain of

distance and BER quality same or better than the minimum objective value. Typically

for BER 10- 6 at annual time periode. Availability show percentage (p) total of

servive time and link length at traffic where BER System equal or mor than

minimum quality objective

7.5.2.1 Availability between link of Cipendeuy – Nagrek

FM (dB) for this 41.8

FM (dB) = 30 log d(Km) + 10 log [6 A B f(GHz)] – 10 log (1-p) - 70

41.8 dB = 30 log 22.6 + 10 log [6 x 1 x ¼ x 1.7485] – 10 log (1-p) -

70

10 log (1 - p) = 40.6 + 4.2 – 41.8 – 70

10 log (1 – p) = -67

1 – p = 1.995262315 x 10-7

p = 0,9999998005

7.5.2.1 Availability between link of Cipendeuy – Tasikmalaya

FM (dB) for this 40.8

FM (dB) = 30 log d(Km) + 10 log [6 A B f(GHz)] – 10 log (1-p) - 70

40.8 dB = 30 log 30.38 + 10 log [6 x 1 x ¼ x 1.7905] – 10 log (1-p) -

70

10 log (1 - p) = 44.5 + 4.3 – 40.8 – 70

10 log (1 – p) = -62

1 – p = 6.309573445 x 10-7

p = 0,999999369

a. For link of Cipeundeuy to Nagrek, value of the availability is 99.99998005%

(p = 99.999%) and value of the unavailability is.0.00001995%

b. For link of Cipeundeuy to Tasikmalaya, value of the availability is

99.9999369% (p = 99.999%) and value of the unavailability is 0.0000631%

Page 15: Lap Psr Irmn

7.5.3 Outage Time

The outage time is a parameter that can be represent outage time on link hop.

a. For lik of Cipendeuy to Nagrek, value of the outage time is (365.25 day/year)

x 24 hour/day x 60 minutes/hour x (0,00001995/100) = 0.105 minutes

outage per year.

b. For lik of Cipendeuy to Tasikmalaya, value of the outage time is (365.25

day/year) x 24 hour/day x 60 minutes/hour x (0,0000631/100) = 0.332

minutes outage per year

7.6. Table of Link Budget Calculation

7.6.1. Table of Link Budget Calculation Cipendeuy to Nagrek

Ref.

NO

DESCRIPTION UNIT REMARK

1 2 3 4 5

1

Site Name : R28 Cipendeuy

Altitude : 879 m

Latitude : 7 4 59 S

Longitude : 108 5 11 E

Sesuai dengan

tugas yang

diberikan.

2

Facing Name : R27 Nagrek

Altitude : 996 m

Latitude : 7 1 43 S

Longitude : 107 53 20 E

Sesuai dengan

tugas yang

diberikan

3

Site A Antenna Height (AGL)

Above ground level, ini

diperlukan untuk menentukan

path inclination

100 m

Diperoleh dari

hasil simulasi

dengan

menggunakan

Global Mapper.

4

Site B Antenna Height (AGL)

Above ground level, ini

diperlukan untuk menentukan

path inclination

40 m

Diperoleh dari

hasil simulasi

dengan

menggunakan

Global Mapper.

Page 16: Lap Psr Irmn

5

Antenna Type

Masukan tipe dan jenis antena,

size

, untuk keperluan radio link ini

kita menggunakan jenis antenna

grid parabolic (lihat pada data

sheet antenna).

Andrew

FPX8 – 17

D = 2.4 m

Ada di file

antenna system&

solution. Pilih

antenna yang

sesuai dengan

kebutuhan desain.

6 Antenna Gain

Masukan gain antena (dBi)

yang akan diinstal di site ini.

Informasi ini ada pada data

sheet antenna.

30.4 dBi

Ada di file

antenna system&

solution. Pilih

antenna yang

sesuai dengan

kebutuhan desain.

7 Transmission Line Type

Masukan tipe dan jenis saluran

(feeder line) yang digunakan,

size etc

Rosenberger –

Leoni

Flexline 7/8” R

Flexible

Ada di file pdf.

8 Transmission Line Loss

Masukan karakteristik redaman

saluran (feeder line) dari

saluran yang akan digunakan

untuk menghubungkan antena

dengan perangkat Pemancar dan

Penerimanya.

(lihat di data sheet Andrew

cable LDF5-50A).

5.75 dB/100 m

Ada di file pdf.

Tentukan

berdasarkan data

sheet.

9 Transmission Line Length

Masukan panjang saluran

feeder yang akan digunakan

untuk menginterkoneksi

perangkat Pemancar dan

Penerimanya.

160 meter

Panjang total

saluran feeder

adalah ketinggian

antenna (m) + 10

m ke perangkat.

10 Transmission Line Loss

Informasi ini berdasarkan 8.72 dB

Hitung total loss

saluran feeder,

Page 17: Lap Psr Irmn

perhitungan dari saluran yang

digunakan per spesifikasi.

Lf = (TXL x LTX) ÷ 100 , dimana

TXL = Panjang saluran feeder

(m)

LTX = Rugi-rugi saluran feeder

(dB)

saluran feeder di

Tx dan Rx.

11 Connector Loss

Masukan jumlah loss konektor

yang digunalkan. Informasi ini

ada di data sheet connector

Biasanya sampai f =3GHz, 0.25

dB/connector.

4 x 0.25 = 1 dB

Paling sedikit 2

buah connector

N-Type. Apabila

menggunakan

coaxial arrester,

jumlah total

konektor adalah 4

buah.

12

Divider/Combiner

Dalam hal sistem menggunakan

Divider/Combiner, masukan

loss dari perangkat tersebut.

Info ini ada pada data sheet

pabrik.

(not used)

dB

Karena system

radio link kita

hanya

menggunakan 1

kanal frekuensi

maka tidak perlu

divider/combiner.

13

Equipment Tolerance

Jika ada komponen lainnya

yang akan mengintrodusir loss

antara perangkat radio dan

antenna , masukan loss semua

item ini. . Info ini ada pada data

sheet pabrik.

(not used)

dB

Biasanya, coaxial

arrester,

branching

antenna.

14

Path Length

Masukan jarak antara dua site

dimana perhitungan dibuat.

22.60 Km

15

Frequency

Masukan freuensi kerja dari 1748.5 GHz

Page 18: Lap Psr Irmn

perangkat radio

16

Free Space Attenuation

Informasi ini berdasarkan

perhitungan redaman atmosfere

antara dua site.

FSL = 92.4 + 20 Log d + 20

Log f

D = jarak lintasan (Km)

F = frekuensi kerja (Ghz)

124.6 dB

17

Difraction Loss

Jika lintasan mengenai

obstruksi dan menghasilkan

difraksi pada 60% Fresnell

Zone, masukan harga tersebut.

0 dB

18

Radio Type

Masukan tipe/model perangkat

radio yang digunakan. Info ini

untuk referensi saja.

Digital

microwave radio

NOKIA DR240

Kapasitas data

rates = 2*8 Mbps

( 240 channel ),

tipe modulasi =

4PSK, E1 (2048

Kbps), CCITT

PCM30, G703

19

Transmitter Power

Masukan daya output

Pemancar. Info ini diperoleh

dari spesifikasi pabriknya.

30.5 dBm

20

Received Signal Level

Informasi ini diperoleh dari

perhitungan Level Sinyal yang

diinginkan di input radio

penerimanya.

RSL = (PTX + GTX + GRX) – (LTX

+ LRX + LCONN + LD/C + LEQ +

FSL + LDIFF).

Dimana;

- 44.2 dBm

RSL=(30.5 + 30.4

+ 30.4) -(5.995 +

2.725 + 1 + 0 + 0

+ 124.45 + 0)= -

35.07

Page 19: Lap Psr Irmn

RSL = Received Signal

Level

PTX = Daya Output

Pemancar

GTX = Gain antena

pemancar

GRX = Gain antena

penerima

LTX = Loss saluran feeder di

TX

LRX = Loss saluran feeder di

RX

LCONN = Loss konektor

LD/C = Loss

Divider/Combiner

LEQ = Loss Equip

Tolererance

FSL = Free Space Loss

LDIFF = Difraction Loss

21

Effective Isotropically

Radiated Power

Infomarsi ini berdasarkan

perhitungan daya emisi/radiasi

pancaran isotropis dari satu site

ke site lawannya. Info ini bisa

digunakan untuk tujuan

peraturan/polycy setempat.

EIRP = (PTX + GTX + GRX) –

(LTX + LRX + LCONN + LD/C +

LEQ).

Dimana:

EIRP = Effective

Isotropically

Radiated Power

PTX = Daya Output

89.38 dBm RSL=(30.5 + 34.3

+ 34.3) -(5.995 +

2.725 + 1 + 0 + 0

+ 0)= 89.38

Page 20: Lap Psr Irmn

Pemancar

GTX = Gain antena

pemancar

GRX = Gain antena

penerima

LTX = Loss saluran feeder di

TX

LRX = Loss saluran feeder di

RX

LCONN = Loss konektor

LD/C = Loss

Divider/Combiner

LEQ = Loss Equip

Tolererance

22

Receiver Threshold level

Criteria

Masukan karateristik

performansi radio penerima

sebagai fungsi dari BER pada

minimum level yanag

dikehendaki.

10-3 BER

23

Receiver Threshold Level

Masukan level threshold radio

penerima yang mana

dispesifikasikan pada kriteria

threshold yang di tunjukan

pada. Informasi ini ada pada

spesifikasi pabrik radionya.

-86 dBm

24

Thermal fade Margin

Informasi ini berdasarkan

perhitungan ratio/perbedaan

antara unfaded RSL dan

Receiver level thresholdnya.

60.9 dB

]

- 96 + (- 35.07)

Page 21: Lap Psr Irmn

25

Worst Month Availability

Dihitung berdasarkan ITU-R

P.530

%

Dihitung

26

Worst Month Outage Time

Dihitung berdasarkan ITU-R

P.530

Min/Sec

Dihitung

27

Annual Availability

Dihitung berdasarkan ITU-R

P.530

99.9999

%

Dihitung

28

Annual Outage Time

Dihitung berdasarkan ITU-R

P.530

1.577 Min/Sec Dihitung

29

Bit Error rate, BER pada

kondisi NORMAL. 59.89

Dihitung

30

Bit Error rate, BER pada

kondisi TIDAK NORMAL.

(fading 40 dB)

19.89 Dihitung

7.6.2. Table of Link Budget Calculation Cipendeuy to Tasikmalaya

Ref.

NO

DESCRIPTION UNIT REMARK

1 2 3 4 5

1 Site Name : R28

Cipendeuy

Altitude : 949 m

Latitude : 7 4 59 S

Longitude : 108 5 11 E

Sesuai

dengan tugas

yang diberikan.

2 Facing Name : R27

Nagrek

Sesuai

dengan tugas

yang diberikan

Page 22: Lap Psr Irmn

Altitude : 1033.33 m

Latitude : 7 1 43 S

Longitude : 107 53 20 E

3 Site A Antenna Height

(AGL)

Above ground level, ini

diperlukan untuk menentukan

path inclination

100 m Diperoleh

dari hasil simulasi

dengan

menggunakan

Global Mapper.

4 Site B Antenna Height

(AGL)

Above ground level, ini

diperlukan untuk menentukan

path inclination

40 m Diperoleh

dari hasil simulasi

dengan

menggunakan

Global Mapper.

5 Antenna Type

Masukan tipe dan jenis

antena, size

, untuk keperluan radio link

ini kita menggunakan jenis

antenna grid parabolic (lihat pada

data sheet antenna).

Andrew

FP 12F – 12

D = 3

Ada di file

antenna system&

solution. Pilih

antenna yang

sesuai dengan

kebutuhan desain.

6

Antenna Gain

Masukan gain antena (dBi)

yang akan diinstal di site ini.

Informasi ini ada pada data sheet

antenna.

34.3 dBi

Ada di file

antenna system&

solution. Pilih

antenna yang

sesuai dengan

kebutuhan desain.

7

Transmission Line Type

Masukan tipe dan jenis

saluran (feeder line) yang

digunakan, size etc

Rosenberger

– Leoni

Flexline

Ada di file

pdf.

Page 23: Lap Psr Irmn

7/8” R Flexible

8

Transmission Line Loss

Masukan karakteristik

redaman saluran (feeder line)

dari saluran yang akan digunakan

untuk menghubungkan antena

dengan perangkat Pemancar dan

Penerimanya.

(lihat di data sheet Andrew

cable LDF5-50A).

5.45 dB/100 m

Ada di file

pdf.

Tentukan

berdasarkan data

sheet.

9

Transmission Line Length

Masukan panjang saluran

feeder yang akan digunakan

untuk menginterkoneksi

perangkat Pemancar dan

Penerimanya.

160 meter

Panjang total

saluran feeder

adalah ketinggian

antenna (m) + 10

m ke perangkat.

10

Transmission Line Loss

Informasi ini berdasarkan

perhitungan dari saluran yang

digunakan per spesifikasi.

Lf = (TXL x LTX) ÷ 100 ,

dimana

TXL = Panjang saluran feeder

(m)

LTX = Rugi-rugi saluran

feeder (dB)

8.72 dB

Hitung total

loss saluran

feeder, saluran

feeder di Tx dan

Rx.

Page 24: Lap Psr Irmn

11

Connector Loss

Masukan jumlah loss

konektor yang digunalkan.

Informasi ini ada di data sheet

connector

Biasanya sampai f =3GHz,

0.25 dB/connector.

4 x 0.25 =

1

dB

Paling

sedikit 2 buah

connector N-

Type. Apabila

menggunakan

coaxial arrester,

jumlah total

konektor adalah 4

buah.

12

Divider/Combiner

Dalam hal sistem

menggunakan

Divider/Combiner, masukan loss

dari perangkat tersebut. Info ini

ada pada data sheet pabrik.

(not used)

dB

Karena

system radio link

kita hanya

menggunakan 1

kanal frekuensi

maka tidak perlu

divider/combiner.

13

Equipment Tolerance

Jika ada komponen lainnya

yang akan mengintrodusir loss

antara perangkat radio dan

antenna , masukan loss semua

item ini. . Info ini ada pada data

sheet pabrik.

(not used)

dB

Biasanya,

coaxial arrester,

branching

antenna.

14

Path Length

Masukan jarak antara dua

site dimana perhitungan dibuat.

22.76 ≈ 23 Km

Frequency

Masukan freuensi kerja dari

Page 25: Lap Psr Irmn

15 perangkat radio 1748.5 GHz

16

Free Space Attenuation

Informasi ini berdasarkan

perhitungan redaman atmosfere

antara dua site.

FSL = 92.4 + 20 Log d + 20

Log f

D = jarak lintasan (Km)

F = frekuensi kerja (Ghz)

124.45 dB

17

Difraction Loss

Jika lintasan mengenai

obstruksi dan menghasilkan

difraksi pada 60% Fresnell Zone,

masukan harga tersebut.

0 dB

18

Radio Type

Masukan tipe/model

perangkat radio yang digunakan.

Info ini untuk referensi saja.

Digital

microwave radio

NOKIA DR240

Kapasitas

data rates = 2*8

Mbps ( 240

channel ), tipe

modulasi =

4PSK, E1 (2048

Kbps), CCITT

PCM30, G703

19

Transmitter Power

Masukan daya output

Pemancar. Info ini diperoleh dari

spesifikasi pabriknya.

30.5 dBm

Page 26: Lap Psr Irmn

20

Received Signal Level

Informasi ini diperoleh dari

perhitungan Level Sinyal yang

diinginkan di input radio

penerimanya.

RSL = (PTX + GTX + GRX) –

(LTX + LRX + LCONN + LD/C + LEQ +

FSL + LDIFF).

Dimana;

RSL = Received Signal

Level

PTX = Daya Output

Pemancar

GTX = Gain antena

pemancar

GRX = Gain antena

penerima

LTX = Loss saluran

feeder di TX

LRX = Loss saluran

feeder di RX

LCONN = Loss konektor

LD/C = Loss

Divider/Combiner

LEQ = Loss Equip

Tolererance

FSL = Free Space Loss

LDIFF = Difraction Loss

- 35.07 dBm

RSL=(30.5 +

34.3 + 34.3) -

(5.995 + 2.725 +

1 + 0 + 0 +

124.45 + 0)= -

35.07

Page 27: Lap Psr Irmn

21

Effective Isotropically

Radiated Power

Infomarsi ini berdasarkan

perhitungan daya emisi/radiasi

pancaran isotropis dari satu site

ke site lawannya. Info ini bisa

digunakan untuk tujuan

peraturan/polycy setempat.

EIRP = (PTX + GTX + GRX) –

(LTX + LRX + LCONN + LD/C + LEQ).

Dimana:

EIRP = Effective

Isotropically

Radiated Power

PTX = Daya Output

Pemancar

GTX = Gain antena

pemancar

GRX = Gain antena

penerima

LTX = Loss saluran

feeder di TX

LRX = Loss saluran

feeder di RX

LCONN = Loss konektor

LD/C = Loss

Divider/Combiner

LEQ = Loss Equip

89.38 dBm RSL=(30.5 +

34.3 + 34.3) -

(5.995 + 2.725 +

1 + 0 + 0 + 0)=

89.38

Page 28: Lap Psr Irmn

Tolererance

22 Receiver Threshold level

Criteria

Masukan karateristik

performansi radio penerima

sebagai fungsi dari BER pada

minimum level yanag

dikehendaki.

10-3 BER

23 Receiver Threshold Level

Masukan level threshold

radio penerima yang mana

dispesifikasikan pada kriteria

threshold yang di tunjukan pada.

Informasi ini ada pada spesifikasi

pabrik radionya.

-96 dBm

24

Thermal fade Margin

Informasi ini berdasarkan

perhitungan ratio/perbedaan

antara unfaded RSL dan Receiver

level thresholdnya.

60.9 dB

]

- 96 + (-

35.07)

25

Worst Month Availability

Dihitung berdasarkan ITU-R

P.530

%

Dihitung

26

Worst Month Outage Time

Dihitung berdasarkan ITU-R

Min/Sec

Dihitung

Page 29: Lap Psr Irmn

P.530

27

Annual Availability

Dihitung berdasarkan ITU-R

P.530

99.9999 %

Dihitung

28

Annual Outage Time

Dihitung berdasarkan ITU-R

P.530

1.314 Min/Sec Dihitung

29

Bit Error rate, BER pada

kondisi NORMAL. 54.01

Dihitung

30

Bit Error rate, BER pada

kondisi TIDAK NORMAL.

(fading 40 dB) 14.01

Dihitung

8. Analysis and Conclution

8.1. Analysis

The system of radio link microwave need some planning and carefully analysis before we

come in to installation progress. For this problem in progress to implement radio link Nagrek

– Cipendeuy – Tasikmalaya (Cipendeuy as a main site) we can get information :

Nagrek Site

Longitude : 107 ° 53’ 20 ‘’

Latitude : 7 ° 1’ 43 ‘’

Altitude : 1033.33 meters

Environment : Dense – sub urban

Cipendeuy Site

Longitude : 108 ° 5’ 11’’

Latitude : 7 ° 4’ 59’’

Altitude : 949 meters

Environment : Dense – sub urban

Tasikmalaya Site

Page 30: Lap Psr Irmn

Longitude : 108 ° 13’ 17’’

Latitude : 7 ° 19’ 17’’

Altitude : 454.44 meters

Environment : Sub urban

From the list data above we can know type of terrain, altitude for each site and etc.

In generally, three sites above have a altitude mountain categories, its very challenges to

determine a specification. And for this case based on data above we can define antenna heigh

for Nagrek site is 40 m, Cipendeuy site 100 m and Tasikmalaya site 100 m. this value can

provide the required of design specification where LOS (line of sight) and clearance 60% is

required.

If we see the path profile picture in chapter 6 we can get information that, for link of Cipendeuy

to Nagrek with antenna height is given (Nagrek site is 40 m, Cipendeuy site 100 m), we can get

the minimum clearance value is 85.7 m and for link of Cipendeuy to Tasikmalaya with antenna

height is given (Cipendeuy site 100 m , Tasikmalaya site 100 m) we can get the minimum

clearance value is 33.2 m. Its value good enough to anticipated a worst propagation condition on

the path link.

After we determine all of values that requirement in this calculation, we can make link budget

calculation for both link communication (Cipendeuy to Nagrek and Cipendeuy to Tasikmalaya).

In this part we can get free space loss value, for link of Cipendeuy to Nagrek the free space loss

value is 124.45 dBm and for link of Cipendeuy to Tasikmalaya is 127.05 dBm.

Next progress after we find the FSL value as a total path loss, so we can find received signal

level value. For received signal level (RSL) link of Cipendeuy to Nagrek have a -35.07 dBm for

RSL value and for link of Cipendeuy to Tasikmalaya have a 40.95 dBm for RSL value.

As we know that in design specification list a requirement that value of fading margin should be

ratter than 40 dB value. For this application, fading margin can be find with a ratio Received

Signal Level (RSL) and Receiver Level Threshold. for link of Cipendeuy to Nagrek the result of

fading margin value is 60.9 dB and for link of Cipendeuy to Tasikmalaya the result of fading

margin value is 55.05 dB. From this result we can know that both of link design was completed

the requirement of fading margin value required (40 dB).

8.2. Conclution

In generally from this design report we can get conclution for reference other design, that

1. In radio microwave link communication design the requirement of line of sight must be

completed

Page 31: Lap Psr Irmn

2. Height of antenna and K factor both influence the obstruction in path link. We can set the

height of antenna and K factor to solve the obstruction problems.

3. Fresnel zone as a represent electromagnetics field must be clearance.

4. Required of the availability value as good as posible

Reference

1. Sutrisno, Digital Microwave Radio System. 2009

2. Sutrisno, Perencanaan Jaringan Radio Microwave. 2009

3. Digital Modulation in Communication System – An introduction, Application Note 1298,

Hewlet – Packard

4. Presentation Microwave Design, TCIL Bhawan. 2005