41
La#ce QCD Approach to Nuclear Physics Noriyoshi Ishii (Univ. Tsukuba) 1 Univ. Tsukuba: N.Ishii, H.Nemura, K.Sasaki, M.Yamada, F.Etminan RIKEN: T.Doi, T.Hatsuda, Y.Ikeda Nihon Univ: T.Inoue Univ. Tokyo: B.Charron YITP(Kyoto): S.Aoki, K.Murano

Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

La#ce  QCD  Approach  to  Nuclear  Physics

Noriyoshi  Ishii  (Univ.  Tsukuba)

1

Univ.  Tsukuba:      N.Ishii,  H.Nemura,  K.Sasaki,                                                              M.Yamada,  F.Etminan  RIKEN:                                    T.Doi,  T.Hatsuda,  Y.Ikeda  Nihon  Univ:                  T.Inoue  Univ.  Tokyo:                B.Charron  YITP(Kyoto):                S.Aoki,  K.Murano

Page 2: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

There  is  a  huge  gap  between  QCD  and  Tradi4onal  Nuclear  Physics (2)

Tradi4onal  Nuclear  Physics  u Input:  

u Fundamental  DOF  nucleons  

u InteracOons  nuclear  force  from  exp.  

u Output:  u Structures  of  nuclei  

[made  of  nucleons]  u their  reacOons  

QCD  (Quark/Hadron  Physics)  u Input:  

u Fundamental  DOF  quarks  and  gluons  

u InteracOons  strong  interacOon  from  QCD  

u Output:  u Structures  of  nucleons  

[made  of  quarks  and  gluons]  u their  interacOons  

Recent  development  of  la#ce  QCD  may  fill  this  gap    u La#ce  QCD  at  physical  point  

PACSCS,  BMW  u La#ce  QCD  calculaOons  of  atomic  nuclei  

PACSCS,  NPLQCD  u La#ce  QCD  calculaOons  of  nuclear  force  

HALQCD

GAP

Page 3: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  QCD  at  physical  point

(3)

Page 4: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  QCD  simula4on  at  Physical  point 4

from  Seminar  at  ICRR,  16  April  2010  by  Ukawa.

Page 5: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  QCD  simula4on  at  Physical  point 5

Fig.  from  PACSCS,  Phys.Rev.D81,074503(2010).  [L  =  3  fm]  “Physical  point  simulaOon  in  2+1  flavor  la#ce  QCD”        See  also:  l  BMW,  Science  322,  1224(2008)  l  BMW,  Phys.Leg.B701(2011)265.  [L  =  6fm]

Progress  of  LQCD  algorithm Progress  of  Supercomputer  

La#ce  QCD  simulaOon  at  Physical  point  is  now  possible.

Page 6: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  QCD  simula4on  at  Physical  point 6

To  study  mulO-­‐baryon  systems  at  physical  point,  spaOal  volume  should  be  as  huge  as  possible.    Such  a  physical  point  simulaOon  is  going  on  on  K-­‐computer  at  AICS,  RIKEN.                                          964  la#ce,  a  =  0.1  fm,  L  =  9  fm,  mpi=135  MeV    The  aims  of  the  project:  u 2+1  flavor  QCD  è  1+1+1  flavor  QCD+QED  u Various  physical  quanOOes  u  InvesOgaOon  of  resonances  u Direct  construcOon  of  light  nuclei  u DeterminaOon  of  baryon-­‐baryon  potenOals

K  computer  (the  4th  strongest  in  the  world)

11.28  PFLOPS

[Kuramashi@la#ce2013]

Page 7: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Light  Nuclei  from  LaCce  QCD

(7)

Page 8: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  calcula4on  of  light  nuclei (8)

There  are  several  obstacles  in  LQCD  calculaOon  of  atomic  nuclei    u  Signal  to  Noise  

 u  Ground  state  saturaOon  (at  large  volume)  

 u  Bound  state  ßà  scagering  state  (Volume  extrapolaOon)  

 u  CalculaOonal  cost  for  Wick  contracOon  

Page 9: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  calcula4on  of  light  nuclei (9)

Obstacle  (1)  u  Signal  to  Noise  

 u  pion  

   

u  nucleon      atomic  nuclei  with  mass  #  A  è        

For  large  nuclei,  quality  of  the  signal  is  expected  to  become  bad  rapidly.  

signalnoise

~ exp(−mπ t)exp(−2mπ t)

~ const

signalnoise

~ exp(−mNt)exp(−3mπ t)

~ exp −(mN − 3 / 2mπ )t( )

signalnoise

~ exp −A(mN − 3 / 2mπ )t( )

Page 10: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  calcula4on  of  light  nuclei (10)

Obstacle  (2)  Ground  state  SaturaOon  (at  large  volume)    We  use  two  point  correlator,  to  extract  ground  state  energy  in  large  t  region.            For  large  volume,  energy  gap  shrinks  as            Ground  state  saturaOon  becomes  more  and  more  difficult.  

ΔE = En+1 − En ~1mN

2πL

⎛⎝⎜

⎞⎠⎟2

L=3  fm L=6  fm L=12  fm …

ΔE 181.5  MeV 45.3  MeV 11.3  MeV …

C(t) = O(t)O(0)

= n O(0) 02exp(−Ent)

n∑

If  L  becomes  twice  as  large,  ΔE  becomes  4  Omes  as  small.

Page 11: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  calcula4on  of  light  nuclei (11)

Obstacle  (3)  DiscriminaOon  of  bound  state  from  scagering  state  (Volume  extrapolaOon):      ΔE  <  0  in  finite  V  means  i.  bound  state  ii.  agracOve  interacOon  in  finite  volume.  

   

It  is  necessary  to  use  several  spaOal  volumes  to  extrapolate  the  results  to  V=∞  carefully.      

volume  extrapolaOon  of  deuteron:  from  NPLQCD,  PRD85,054511(2012)  (2+1  flavor  QCD  on  anisotropic  la#ce.    mpi=390  MeV,  L=2.0,2.5,2.9,3.9  fm)

Page 12: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  calcula4on  of  light  nuclei (12)

Obstacle  (4)  ComputaOonal  cost  for  Wick  contracOon:    Number  of  Wick  contracOon:              è  Naïve  contracOon  algorithm  will  soon  go  into  trouble.    T.Yamazaki  et  al.,  PRD81,111504(2010)  reduced  these  numbers  as    •  3H/3He:    360                à  93  •  4He:                518400  à  1107    and  gave  the  first  LQCD  results  of  bound  light  atomic  nuclei.  (quenched  QCD.  mpi=0.8  GeV,  L=3.1-­‐12.3  fm)

∝ 2Nn + Np( ) ! × Nn + 2Np( ) !1H 2H 3H/3He 4He 6Li …

#(Wick  contracOon) 2 36 2880 518400 131681894400 …

Page 13: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Light  Nuclei  from  laCce  QCD (13)

pα (x)nβ (y) ⋅ p ′α ( f )n ′β ( f )

= sign(σ )σ∑ ⋅ Pα (x;ξσ (1),ξσ (2),ξσ (3) )Nβ (y;ξσ (4 ),ξσ (5),ξσ (6) ) ⋅C(ξ1,,ξ6 )

ξ1,,ξ6

∑relabeling of summation var. : ξ′1 ≡ ξσ (1),,ξ′6 ≡ ξσ (6)

= Pα (x;ξ′1,ξ′2,ξ′3)Nβ (y;ξ′4 ,ξ′5,ξ′6 )ξ ′1,,ξ ′6∑ C(ξ′

σ −1(1),,ξ′

σ −1(6))sign(σ )

σ∑⎧⎨

⎫⎬⎭

Pα (x;ξ1,ξ2,ξ3) ≡ pα (x) ⋅u (ξ1)d (ξ2 )u (ξ3)

Nβ (y;ξ4 ,ξ5,ξ6 ) ≡ nβ (y) ⋅u (ξ4 )d (ξ5 )d (ξ6 )

f :smearing function

PermutaOon  sum  associated  with  Wick  contracOon  can  be  carried  out  before  LQCD  calculaOon  starts.

ξ = (c,α )∈color ×Dirac

Efficiency  is  significantly  improved  by  •  3H/3He:      x  192  •  4He:                  x  20736    

See  also:  u W.  Detmold,  K.Orginos,  PRD87,114512(2013)  u  J.Gunter,  B.C.Toth,  L.Varnhorst,  PRD87,094513(2013)  

SystemaOc  reducOon  method  is  proposed  by  T.Doi,  M.G.Endres,  CPC184,117(2013).

Page 14: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

LaCce  calcula4on  of  light  nuclei (14)

Several  bound  mulO-­‐baryon  states  are  reported  in  heavy  quark  mass  region  (mpi  >  390  MeV).  (Some  agree,  the  others  not.)  u H-­‐dibaryon  

u  NPLQCD:  NF=2+1:  PRL106,162001(2011)                                      NF=3:★  

u  HALQCD:  NF=3:          PRL106,162002(2011)      

u  3H/3He,  4He  u  PACSCS:  both  bound  

u  NF=0:            PRD81,111504(R)(2010)  u  NF=2+1:  PRD86,074514(2012)  

u  NPLQCD:  NF=3:  ★  u  HALQCD:  NF=3:  NPA881,28(2012).  

                                 Only  4He  bound  at  mPS=469MeV      

u Deuteron,  dineutron  u  NPLQCD:  NF=2+1:  PRD85,054511(2013)  

                                 (also  H-­‐dibaryon  and  Ξ−Ξ−  bound)                                      NF=3:  ★  

u  PACSCS:      both  bound  u  NF=0:          PRD84,054506(2011)  u  NF=2+1:  PRD86,074514(2013)  

u  HALQCD:  No  bound  states  for  both.      

u Many  others,    light  (hyper)nuclei  u  NF=3:  ★

★  NPLQCD,  PRD87,034506(2013)

Page 15: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD  (HAL  QCD  method)

(15)

Page 16: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (16)

u Nambu-­‐Bethe-­‐Salpeter  (NBS)  wave  funcOon        

u RelaOon  to  S-­‐matrix  by  reducOon  formula            

u Equal-­‐4me  restricOon  of  NBS  wave  func4on  behaves  at  long  distance  as              Exactly  the  same  funcOonal  form  as  that  of  scagering  wave  funcOons  in  quantum  mechanics  

0 T N(x)N(y)[ ] N(+k)N(−k),in

N(p1)N(p2 ),out N(+k)N(−k),in

= disc + iZ −1/2( )2 d 4∫ x1d4x2 e

ip1x1 1+mN2( )eip2x2 2+mN

2( ) 0 T N(x1)N(x2 )[ ] N(+k)N(−k),in

ψ k (x − y) ≡ lim

x0→+0ZN

−1 0 T N(x, x0 )N(y,0)[ ] N(+k)N(−k),in

eiδ (k )sin k r +δ (k)( )

k r+ as r ≡ x − y → large

[C.-­‐J.D.Lin  et  al.,  NPB619,467(2001).]

Page 17: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (17)

u Def.  of  potenOal  from  equal-­‐4me  NBS  wave  func4ons:        u U(r,r’)  is  E-­‐indep.  u U(r,r’)  reproduces  the  scagering  phase,  

because  equal-­‐Ome  NBS  wave  funcOons  behaves  at  long  distance  as        

u Existence  of  E-­‐indep.  U(r,r’)  u AssumpOon:  Linear  independence  of  equal-­‐Ome  NBS  wave  func.  for  E  <  Eth.  

è  There  exists  dual  basis:      

u Proof:

k2 /mN − H0( )ψ k (

r ) = d 3∫ ′r U(r , ′r )ψ k (′r )

ψ k (x − y) eiδ (k )

sin k r +δ (k)( )k r

+ as r ≡ x − y → large

d 3∫ rψ ′k (r )ψ

k (r ) = (2π )3δ 3(′k −k ) for E ≡ 2 mN

2 + k 2 < Eth

K k (r ) ≡ k 2 / mN − H0( )ψ

k (r )

K k (r ) = d 3 ′k

(2π )3 K ′k (r ) d 3∫ ′r ψ ′k (r )∫ ψ k (r )

= d 3∫ ′r d 3k(2π )3∫ K ′k (r )ψ ′k (′r )

⎧⎨⎩⎪

⎫⎬⎭⎪ψ

k (′r )

U (r , ′r ) ≡ d 3k′

(2π )3∫ K ′k (r )ψ ′k (r )

     does  not  depend  on  E  because  of  integraOon  of  k’.

for 2 mN2 + k2 < Eth ≡ 2mN +mπ

Page 18: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (18)

Ground  state  satura4on  is  not  needed  to  extract  the  potenOal.    u Normalized  NN  correlator  in  the  elasOc  region:  

           

u “Time-­‐dependent”  Schrodinger-­‐like  equa4on                                                                                to  extract  the  potenOal.                      Only  Elas4c  satura4on  is  required  to  derive  this  equaOon.  (Elas4c  satura4on  is  much  easier  than  ground  state  satura4on.)

R(t, x − y) ≡ e2mN ⋅t 0 T N(x,t)N(y,t) ⋅J NN (t = 0)⎡⎣ ⎤⎦ 0

= akk∑ exp −tΔW (k)( ) ⋅ψ k (

x − y)

14mN

∂2

∂t 2− ∂∂t

⎛⎝⎜

⎞⎠⎟R(t, r ) = ak

k∑ k2

mN

exp −tΔW (k)( ) ⋅ψ k (r )

14mN

∂2

∂t 2− ∂∂t

− H0⎛⎝⎜

⎞⎠⎟R(t, r ) = d 3∫ ′r U(r , ′r ) ⋅R(t, ′r )

An  iden4ty      

ΔW (k) ≡ 2 mN2 + k2 − 2mN

ΔW (k)2

4mN

+ ΔW (k) = k2

mN

H0 +U( )ψ k (

r ) = k2

mN

ψ k (r )

Page 19: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (19)

〈0 |T[N (x,t)N (

y,t) ⋅NN (t = 0;α )] | 0〉

= ψ n( x − y) ⋅an(α ) ⋅exp(−Ent)n∑

t = 9

VC(x)

= − H0R(t,x)

R(t, x)− (∂/ ∂t)R(t,

x)R(t, x)

+ 14mN

(∂/ ∂t)2R(t, x)R(t, x)

(Example)  Obtained  potenOal  does  not  depend  on  excited  state  contaminaOon.    u Source  funcOon  (with  a  single  real  parameter  alpha)  

     alpha  is  used  to  arrange  the  mixture  of  excited  states

( )cos(( , 2 / ) cos(2 / ) cos(2 / ), ) 1 x Lz yf L zx y Lα π π π+ += +

1S0  central  potenOal  at  LO  of  deriv.  expansion

Page 20: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (20)

General  nonlocal  potenOal  is  inconvenient.  è  We  employ  derivaOve  expansion:          Convergence  of  DerivaOve  expansion  has  to  be  checked.

U(r , ′r ) ≡ VC(r){ +Vll (r)L2 + {Vpp (r),∇

2}O(∇2 ) term

+O(∇4 )}δ (r − ′r )

The  following  agrees  at  E=0  and  45  MeV        çè  The  derivaOve  exp.  can  safely  be  truncated  up  to  LO      in  the  region

VC(r;E) ≡ E − H0ψ E (

r )ψ E (r )

U(r , ′r ) VC(

r )δ (r − ′r )

0 ≤ E ≤ 45MeV

Comment:  The  current  result  is  obtained  based  on  an  older  method.  The  result  should  be  replaced  by  the  new  method.  “Ome-­‐dependent”  Schrodinger-­‐like  eq.

Page 21: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (21)

Comparison  between  the  poten4al  method  and  Lueshcer’s  method.  

ππ  scagering  in  I  =  2  channel

Ns=16,24,32,48,  Nt=128,  a=0.115  mpi  =  940  MeV  by  Quenched  QCD  Kurth  et  al.,  arXiv:1305.4462[hep-­‐lat]

Page 22: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (22)

fromR.Machleidt,Adv.Nucl.Phys.19

central  force  

( )CV r

( )TV r

tensor  force  

2+1  flavor  config  by  PACS-­‐CS  Coll.  m(pion)  =  570  MeV,  m(N)=1412MeV

2+1  flavor  QCD  result  of  nuclear  forces  at  m(pion)=570  MeV.  QualitaOve  behaviors  are  reproduced.

Page 23: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (23)

v  QualitaOvely  reasonable  behavior.    But  the  strength  is  significantly  weak.  

           (AgracOve.  No  bound  state.)    v  AgracOon  shrinks  as  mpion  decreases.  

Reason:  The  repulsive  core  grows  more  rapidly  than  the  agracOve  pocket  in  the  region  mpion  =  411-­‐700  MeV.    

v  It  is  important  to  go  to  smaller  quark  mass  region.  

1S0  phase  shi~  from  Schrodinger  eq.

Page 24: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

v  HAL  QCD  No  bound  state  for  nn  and  deuteron                              

v  less  agracOve  for  heavier  quark  mass  v  no  bound  state  for  large  quark  mass  

v  PACSCS  &  NPLQCD  Bound  nn  and  deuteron                              

v more  agracOve  for  heavier  quark  mass  v  bound  state  for  large  quark  mass  

Nuclear  Force  from  LaCce  QCD (24)

Disagreement  for  two-­‐nucleon  bound  states  in  heavy  quark  mass  region  (mpi  >  390  MeV).

Y.Kuramashi, PTPS122(1996)153. S.Beane et al., PRL97,012001(2006).

These  results  may  suggest  chiral  behaviors  of  scagering  length  (pion  may  be  too  heavy  to  say  anything)

LQCD  calculaOon  near  physical  point  is  important  and  interesOng.

Page 25: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (25)

LS  potenOal  and  nuclear  forces  in  the  parity-­‐odd  sector  are  now  possible.

3PJ  nuclear  forces

u LS  potenOal  has  great  influence  on  the  shell  model  and  the  magic  number  of  nuclei.    

u QualitaOve  behaviors  are  reproduced.  But  the  strength  is  not  enough.    

u AgracOon  in  3P2  channel  è  P-­‐wave  neutron  superfluid  in  neutron  star

[K.Murano  et  al,  arXiv:1305.2293]

Page 26: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (26)

Three  nucleon  potenOal  (on  the  linear  setup)

Ø  Few body calculations shows its relevance

Ø  Important influence on the drip line and the magic number of neutron-rich nuclei.

Ø  The more important role at the higher density. è supernova and neutron star.

Ø  Experimental information is limited

linear setup

2  flavor  gauge  config  by  CP-­‐PACS  Coll.  m(pion)  =  1136  MeV,  m(N)    =  2165  MeV

Short-­‐range  repulsive  3NF  !

[T.Doi  et  al,  PTP127,723(2012)]

Page 27: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (27)

Our  best  target  is  hyperon  force.  u  structure  of  hypernuclei  

               

u eq.  of  state  of  hyperon  mager                    

u Experimental  informaOon  is  limited  due  to  their  short  life  Ome.  

J-PARCExploration of multi-strangeness world

J.Schaffner-Bielich, NPA804(’08)309.

Page 28: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (28)

Ø Repulsive core is surrounded by attraction like NN case.

Ø  Strong spin dependence of repulsive core.

quark mass dependence

Repulsive core grows with decreasing quark mass. No significant change in the attraction.

Nemura, Ishii, Aoki, Hatsuda,PLB673(2009)136.

ΞN(I = 1)

Page 29: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (29)

Ø  Repulsive core is surrounded by attraction like NN case.

Ø  These two potentials looks similar, which may be due to small flavor SU(3) breaking. They are not necessarily equal.

Ø  N-Lambda belongs to 27+8s rep. in flavor SU(3) limit.

Ø  N-Sigma belongs to 27 rep. in flavor SU(3) limit.

ΛN ΣN(I = 3 / 2)

1S0

2+1  flavor  config  by  PACS-­‐CS  Coll.  m(pion)  =  570  MeV,  m(N)=1412MeV

[Nemura,PoS(LAT2011)]

Page 30: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (30)

ΛN ΣN(I = 3 / 2)

3S1 −3 D1

u N-­‐Lambda  p  Repulsive  core  is  surrounded  by  agracOon  p  The  agracOon  is  deeper  than  1S0  case  p Weak  tensor  force  (no  one-­‐pion  exchange  is  allowed)  

 u N-­‐Sigma  

p  Repulsive  core  at  short  distance  p  No  clear  agracOve  well  

(Repulsive  nature  is  consistent  with  the  naïve  quark  model)  p  Strength  of  tensor  force:      N-­‐N  >  N-­‐Sigma  >  N-­‐Lambda  

2+1  flavor  config  by  PACS-­‐CS  Coll.  m(pion)  =  570  MeV,  m(N)=1412MeV

[Nemura,PoS(LAT2011)]

Page 31: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (31)

Hyperon  PotenOals  in  flavor  SU(3)  limit  to  see  a  general  trend

8⊗ 8 = 27⊕ 8S ⊕1symmetric ⊕10⊕10⊕ 8A

anti-symmetric

[T.Inoue et al, PTP124,591(2010)] Ø  Strong flavor dependence

(1) All distance attraction for flavor 1 representation. (2) Strong repulsive core for flavor 8S representation. (3) Weak repulsive core for flavor 8a representatin. Ø  These short distance behaviors are consistent with quark Pauli blocking picture.

u d+ u d s+ +

3  flavor  con

fig.  

gene

rated    by  

 HAL  QCD

 Coll.  

m(PS)  =  469  M

eV  

m(B)      =  1161  MeV

Page 32: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (32)

EnOrely  agracOve  potenOal  in  flavor  1  channel  leads  to  a  bound  H-­‐dibaryon

As  quark  mass  decreases,  the  potenOal  becomes  more  agracOve.  çè  The  binding  energy  decreases  because  of  the  increase  of  kineOc  energy.    

Page 33: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (33)

Coupled  channel  extension  for        is  possible  by  employing  the  triple                    Argument  parallel  to  the  single-­‐channel  NN  case  leads  a  coupled-­‐channel  Schrodinger  eq.    

ΛΛ− NΞ− ΣΣ

Ψn (x − y) ≡

0 Λ(x)Λ(y) n,in

0 N(x)Ξ(y) n,in

0 Σ(x)Σ(y) n,in

⎢⎢⎢⎢

⎥⎥⎥⎥

pΛΛ2

2µΛΛ

+ 2µΛΛ

⎛⎝⎜

⎞⎠⎟ψ ΛΛ (

r;n)

pNΞ2

2µNΞ

+ 2µNΞ

⎛⎝⎜

⎞⎠⎟ψ NΞ(

r;n)

pΣΣ2

2µΣΣ

+ 2µΣΣ

⎛⎝⎜

⎞⎠⎟ψ ΣΣ (

r;n)

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

= d 3∫ ′r

UΛΛ;ΛΛ (r , ′r ) UΛΛ;NΞ(

r , ′r ) UΛΛ;ΣΣ (r , ′r )

UNΞ;ΛΛ (r , ′r ) UNΞ;NΞ(

r , ′r ) UNΞ;ΣΣ (r , ′r )

UΣΣ;ΛΛ (r , ′r ) UΣΣ;NΞ(

r , ′r ) UΣΣ;ΣΣ (r , ′r )

⎢⎢⎢⎢

⎥⎥⎥⎥

⋅ψ ΛΛ (

r ′;n)ψ NΞ(

r ′;n)ψ ΣΣ (

r ′;n)

⎢⎢⎢

⎥⎥⎥

E ≡ 2 mΛ2 + pΛΛ

2

= mN2 + pNΞ

2 + mΣ2 + pNΞ

2

= 2 mΣ2 + pΣΣ

2

[S.Aoki  et  al.,  Proc.Japan  Acad.B87(2011)509.]

MS��[MeV]

MK��[

MeV

]

24 Î Talk by K.Sasaki (Thu.)

Coupled channel study is essential

B.E.

SU(3) lat

120MeV

30MeV

Physical point

?

Î [HAL] T.Inoue (Wed.)

Î [NPL] K.Orginos (Wed.)

H-dibaryon (uuddss, I=0,1S0)

(DerivaOon  is  parallel,  but  notaOon  is  quite  lengthy.)

Page 34: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (34)

The  numerical  calculaOon  is  tough.  But  it  is  doable.  (work  in  progress)      

[K.Sasaki@La#ce2012]  

diagonal  part off-­‐diagonal  part

2+1  flavor  gauge  config  by  CP-­‐PACS/JLQCD  Coll.  m(pion)  =                875  MeV  m(K)              =                916  MeV  m(N)            =                1806  MeV  m(Lambda)  =    1835  MeV  m(Sigma)          =    1841  MeV  m(Xi)                        =    1867  MeV  

Page 35: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (35)

Parity-­‐odd  hyperon  potenOals  in  the  flavor  SU(3)  limit.

VBB =VC;S=0 (r)P(S=0) +VC;S=1(r)P(S=1) +VT(r) 3(r̂ ⋅σ 1)(r̂ ⋅

σ 2 )−

σ 1 ⋅σ 2( )

+VSLS(r)L ⋅S+ +VALS(r)

L ⋅S− +O(∇

2 )

[N.Ishii@La#ce  2013]

27rep ~ NN( ) 10rep

8rep

u Repulsive  core  for  27  and  10^*  rep.  

u No  repulsive  core  for  10  and  8  rep.  (consistent  with  quark  model)      

u  Weak  tensor  potenOal  (8  rep)  u  Weak  symmetric  LS  potenOal  

(8  rep)  u  Strong  anO-­‐symmetric  LS  

potenOal  (8  rep)    

10rep ~ NN( )

Page 36: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

The  gap  is  being  filled. (36)

Tradi4onal  Nuclear  Physics  u Input:  

u Fundamental  DOF  nucleons  

u InteracOons  nuclear  force  from  exp.  

u Output:  u Structures  of  nuclei  

[made  of  nucleons]  u their  reacOons  

QCD  (Quark/Hadron  Physics)  u Input:  

u Fundamental  DOF  quarks  and  gluons  

u InteracOons  strong  interacOon  from  QCD  

u Output:  u Structures  of  baryons,  

[made  of  quarks  and  gluons]  u their  interacOons  

u Tight  connecOon  will  be  established  soon  !  u For  this,  we  need,  

u Physical  point  LQCD  calculaOon  of  light  nuclei  and  nuclear  forces  employing  huge  spaOal  volume  

u Agreement  of  results  among  different  groups  

Page 37: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

The  gap  is  being  filled. (37)

Tradi4onal  Nuclear  Physics  u Input:  

u Fundamental  DOF  nucleons  

u InteracOons  nuclear  force  from  exp.  

u Output:  u Structures  of  nuclei  

[made  of  nucleons]  u their  reacOons  

QCD  (Quark/Hadron  Physics)  u Input:  

u Fundamental  DOF  quarks  and  gluons  

u InteracOons  strong  interacOon  from  QCD  

u Output:  u Structures  of  baryons,  

[made  of  quarks  and  gluons]  u their  interacOons  

u Tight  connecOon  will  be  established  soon  !  u For  this,  we  need,  

u Physical  point  LQCD  calculaOon  of  light  nuclei  and  nuclear  forces  employing  huge  spaOal  volume  

u Agreement  of  results  among  different  groups    

u Tight  connecOon  can  be  extended  to  hyperon  sector.  (This  will  be  one  of  the  best  applicaOons  of  LQCD.)  

Hyper  Nuclear  Physics  u Input:  

u Fundamental  DOF  hyperons  

u InteracOons  less  established  

u Output:  u Structures  of  hypernuclei  

[made  of  hyperons]  u their  reacOons  

Page 38: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Summary (38)

u The  gap  between  QCD  and  tradiOonal  nuclear  physics  is  being  filled  by  recent  progress  of  LQCD    u LQCD  simulaOon  at  physical  point  

u SpaOal  volume  is  becoming  huge  (for  mulO-­‐baryon  system)    

u LQCD  calculaOon  of  light  nuclei  u LQCD  calculaOons  are  accumulaOng  at  heavier  quark  mass  region.  u New  techniques  are  being  developed.  

 u LQCD  calculaOon  of  nuclear  forces    

u The  method  does  not  need  ground  state  saturaOon  u Wide  range  of  applicaOon  to  baryon  interacOon  

NN,  NY,  YY,  NNN,  negaOve  parity,  LS  potenOals,  etc.    

u To  establish  a  Oght  connecOon,  we  need  u Huge  volume  LQCD  calculaOon  at  physical  point  of  

light  nuclei  and  nuclear  forces  u Agreement  of  the  results  of  different  groups  

 u Tight  connecOon  should  be  extended  to  hyper  nuclear  physics.  

Page 39: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

backup  slides

(39)

Page 40: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (40)

Similar  behavior  is  seen  in  NF=3  calculaOon  (flavor  SU(3)  limit)  v  agracOon  shrinks  as  decreasing  quark  mass  for  mPS=672-­‐1171  MeV.  v  agracOon  starts  to  increase  at  a  point  between  mPS=469  MeV-­‐672  MeV.  

                           

v We  expect  similar  thing  happens  for  NF=2+1  calculaOon  at  smaller  pion  mass,  because  nuclear  force  for  NF=3  is  generally  more  agracOve  than  nuclear  force  for  NF=2+1.  

Page 41: Lace&QCD&Approach&to&Nuclear&Physicsmenu2013.roma2.infn.it/talks/plenary_thursday/5-Ishii_menu2013.pdf · LaCce%QCD%simula4on%at%Physical%point 4 from&Seminar&atICRR,&16&April&2010&by&

Nuclear  Force  from  LaCce  QCD (41)

It  is  easy  to  see  whether  Luescher’s  condiOon                                                      is  saOsfied  or  not.  NOTE:  HAL  QCD  method  is  derived  from  the  method  to  examine  Luescher’s  condiOon  by  using  Bethe-­‐Salpeter  wave  funcOon.  (See  CP-­‐PACS,  PRD71,094504(2005).)

R < L / 2