99
STRUCTURAL DESIGN REPORT – LABONE OFFICE LABONE 3-STOREY OFFICE PROJECT STRUCTCON LTD.

Labone Office Complex Structural Design Report Rev.01

Embed Size (px)

DESCRIPTION

Structural design report

Citation preview

  • STRUCTURAL

    DESIGN REPORT

    LABONE OFFICE LABONE 3-STOREY OFFICE PROJECT

    STRUCTCON LTD.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    1

    DOCUMENT VERIFICATION LABONE 3-STOREY OFFICE PROJECT

    REVISION DATE FILE NAME STRUCTURAL DESIGN

    REPORT LABONE OFFICE

    COMPLEX

    REV.01 02/11/2015

    Report outlining project, site

    investigations carried out and

    findings, structural

    characteristics,

    basis of design, load cases and

    analysis results

    Prepared by: Checked & Approved by:

    Name Patrick Oppong Richard Okyere Nketia

    Signature

    Disclaimer

    The report is produced for the sole and exclusive use of the client

    in response to the request for the structural design of the proposed

    building and takes into account the particular instructions and

    Requirements of the client.

    Structcon

    Structural Engineering

    Consultants.

    Giffard Road

    Accra

    By:

    Patrick Oppong

    Richard Nketia Okyere

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    2

    Contents OJBECTIVES ........................................................................................................................... 4

    SCOPE OF WORKS................................................................................................................. 4

    STRUCTURAL DESIGN CHECKLIST .................................................................................. 5

    INTRODUCTION ......................................................................................................................... 6

    Design Parameters And Description ................................................................................. 6

    Site Description ................................................................................................................. 6

    DESIGN PHILOSOPHY ................................................................................................................ 7

    DESIGN CONCEPT ...................................................................................................................... 8

    DESIGN CODES AND STANDARD REFERENCES ....................................................... 9

    Design Codes .................................................................................................................... 9

    References ........................................................................................................................ 9

    CONCEPTUAL DESIGN ............................................................................................................. 10

    DESIGN STRUCTURAL LOADS .................................................................................................. 11

    Dead loads;- ........................................................................................................................ 11

    Live loads;- .......................................................................................................................... 12

    Wind Loads;- ....................................................................................................................... 12

    Seismic Loads;- .................................................................................................................... 12

    LOAD CASES ............................................................................................................................ 13

    Loads Cases and Limits States Combination Types ......................................................... 13

    CODE COMBINATION COMPONENTS ................................................................................. 14

    GENERAL NOTES AND SPECIFICATIONS .................................................................................. 23

    STRUCTURAL ANALYSIS ........................................................................................................... 24

    MODAL ANALYSIS................................................................................................................ 25

    Dynamic Analysis Results ................................................................................................ 25

    Mode Shapes .................................................................................................................. 27

    RESPONSE SPECTRUM ANALYSIS ........................................................................................ 30

    SEISMIC ANALYSIS RESULTS STOREY FORCES .................................................................. 32

    WIND ANALYSIS ............................................................................................................. 33

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    3

    SERVICEABILITY & DAMAGE LIMITATION ................................................................................ 35

    SERVICEABILITY .................................................................................................................... 35

    Design Service Life ........................................................................................................... 35

    DAMAGE LIMITATION .......................................................................................................... 35

    INTER-STOREY DRIFT ....................................................................................................... 35

    P-DELTA CHECK (SECOND ORDER EFFECT) .............................................................................. 37

    INTERNAL FORCES DIAGRAMS ................................................................................................ 38

    STRENGTH AND RESISTANCES DESIGN TO EC8 & EC2 ............................................................. 41

    RAFT FOUNDATION DESIGN ................................................................................................ 41

    Ground pressure distribution under raft foundation ...................................................... 41

    Ground pressure distribution under Elastic T-foundation Beams................................... 41

    Seismic Ultimate Bearing Capacity Seismic Loads. ........................................................ 43

    Design calculation for Raft foundation ................................................................................ 43

    Design Calculation for T-Beam Foundation ....................................................................... 50

    Design Calculations for Columns Sample Members ............................................................ 67

    Design Calculation Sample for Beams ................................................................................. 75

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    4

    OJBECTIVES The structural design process is intended to produce a professional design and

    establish the adequacy of the structural design approach, its execution, and the

    documentation. It evaluates the construction documents to determine whether the

    structural systems appear complete, consistent, and in general compliance with

    relevant code and design requirements. And finally to check the economic feasibility

    and cost implications of the design approach adopted for the labone three storey

    office complex project.

    SCOPE OF WORKS

    The scope of works of the structural design include but are not limited to:

    1. Adopt the design criteria, loads, including loads imposed by components designed

    by other disciplines and loads from adjacent structures, and performance requirement

    2. Check geotechnical report requirements and sub-grade properties;

    3. Ensure the concept and integrity of the gravity and lateral load resisting system;

    4. Ensure the continuity of load paths for both gravity and lateral loads;

    5. Check the structural plans and supporting documents to determine whether they are

    sufficient to identify the essential components of the structural system, and provide

    sufficient information to guide the construction of the structure;

    6. Perform design calculations on representative sample of structural elements to

    determine whether the analysis, design and detailing generally comply with the

    appropriate codes and standards;

    8. Provide a formal record of the structural design processes.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    5

    STRUCTURAL DESIGN CHECKLIST

    The structural design process is briefed under the following.

    1. Design code and Standards used

    2. Structural Loadings

    2. Material specifications and geotechnical recommendations.

    3. Concept and integrity of the gravity load resisting system.

    4. Concept and integrity of the lateral load resisting system.

    5. Structural Regularity and Structural Analysis Method.

    6. Behaviour Factor

    7. Damage Limitation and Storey Drift Sensitivity analysis

    8. Drawing completeness and continuity of load paths.

    9. Design check of representative structural elements.

    10. Appendix Computer Model/Simulation Results.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    6

    INTRODUCTION

    Design Parameters and Description This statement summarizes the design loading criteria and approach for the structural

    design of the Labone three storey office complex. These have been established as

    being the most appropriate for this project based on our experience, established

    industry best practices, site constraints and the project brief for the design.

    The structural design presented is based on the information available to us in

    adequate time to undertake the analysis and design. The design is meant for the

    municipal authorities to appreciate the design parameters and concept, to facilitate the

    granting of a building permit.

    The main purpose of this design report is to define the design philosophy, criteria and

    methods of analysis adopted for the structural design and also provide justification for

    the structural drawings to be used for the construction of the building.

    Site Description The project site is located at Labone Cantonments Accra. It lies on the southern side

    of the 8th Avenue towards the Castle Road. It is slightly close to the Metropolitan

    Television Ghana and very close to the popular caf shop.

    Topographically the site appears fairly level but generally slopes towards the back at

    a giving elevation difference of about 0.50m

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    7

    DESIGN PHILOSOPHY The purpose of the design is to achieve acceptable probabilities that the structure

    would not become unfit for use during its design life. Based on this the limit state

    design method is used in the analysis making sure that;

    1. The structure is safe under the worst loading condition. The whole structure

    should not collapse or overturn when subjected to the design loads.

    2. During normal working conditions the deformation of structural members

    does not detract from the appearance, durability or performance.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    8

    DESIGN CONCEPT The concept employed for carrying gravity/vertical loads in the superstructure is a 1-

    way spanning precast slab system (Trassaco Fast floor). The concept employed for

    carrying horizontal loads in the superstructure is the core-wall and peripheral shear

    walls distributed around the structure. The concept employed for transferring the

    buildings loads to the ground is a raft foundation structure with increased thicknesses

    in shear-critical areas.

    Our concept took the structure as a ductile wall equivalent system structure. Based

    on this, our walls were designed as medium class ductile walls and our columns

    designs also took ductility considerations into account.

    In accordance with the Eurocode 8, the design equations relevant for a medium

    ductility structures were used.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    9

    DESIGN CODES AND STANDARD REFERENCES

    Design Codes

    The design process has been carried out in accordance with the following recognized

    international Standards and Codes of Practice including but not limited to the

    following;

    Ref Criteria Publisher Doc. No. Title

    1 Design Basis Eurocode EN1990 Basis of Structural Design

    2 Loading Eurocode EN1991 Actions on structures

    3 Concrete Eurocode EN1992 Design of concrete structures

    4 Steel Eurocode EN1993 Design of steel structures

    5 Composite Eurocode EN1994 Design of composite steel and concrete structures

    6 Timber Eurocode EN1995 Design of timber structures

    7 Masonry Eurocode EN1996 Design of masonry structures

    8 Geotechnical Eurocode EN1997 Geotechnical design

    9 Seismic Eurocode EN1998 Design of structures for earthquake resistance

    10 Aluminum Eurocode EN1999 Design of aluminum structures

    11 Concrete

    Spec

    Eurocode EN206 Concrete - Part 1: Specification, performance,

    production and conformity

    References

    *1 Reference: Designers Guide to EN 1998-1 and EN 1998-5 Eurocode 8: Design of structures

    for earthquake resistance. General rules, seismic actions, design rules for buildings,

    foundations and retaining structures. Thomas Telford, London.

    *2 Reference: Institution of Structural Engineers/SECED/AFPS (2009) Manual for the Seismic

    Design of Steel and Concrete Buildings to Eurocode 8. (In preparation.)

    *3 Reference: Concrete Buildings Scheme Design Manual by O. Brooker, page 27, Table

    2.10

    *4 Reference: RC Designer's Handbook, 10th Edition by Reynolds and Stedman, page 111,

    Chart 2

    *4 Reference: Structural Engineers Pocket Book by Fiona Cobb, page 41 *5 Reference: http://www.eng-tips.com/viewthread.cfm?qid=335659

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    10

    CONCEPTUAL DESIGN

    The first step towards structural design is to propose an appropriate structural system

    to support the initially submitted architectural drawings and subsequently resulting into

    the general arrangement drawings for the system. Members were selected to ensure that

    their dimensions would become suitable to support the expected design loads on the

    structure and to prevent excessive deflection or any sort of failure.

    Capacity design requirements were taken into account in the member sizing. The

    capacity design philosophy states that the capacity of the bearing members must be

    stronger than the capacity of the supported members. As an example, the columns and

    walls must be stronger than the beams.

    Preliminary sizing of structural members was done to ensure conformity to the

    architectural drawings. The columns were sized to limit the normalized design axial

    load ratio to 0.65 whereas for the walls a normalized axial load ratio of 0.4 was adapted.

    However, in some situations, the limits on structural member sizes and positions were

    found to pose some challenges to the structural design or necessitate a structural design

    which, although workable in theory, could not be feasibly implemented by the available

    construction technology for the project. In such instances, the difficulties were

    discussed with the architect and a mutually satisfactory compromise worked out.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    11

    DESIGN STRUCTURAL LOADS

    All the loads used in the design were as specified in the relevant Eurocode specifically

    EC1. The loads were multiplied by the appropriate safety factors and combined in a

    number of combinations to generate the worst possible load scenario likely to be

    experienced in the design life of the building. The loads are categorized into

    vertical/gravity loads and horizontal loads.

    These loads are:

    Permanent Actions (Dead Loads)

    Variable Actions (Live Loads)

    Permanent Action (Self-weight and Super Dead)

    Wind Loads

    Seismic Loads (Earthquake)

    Dead loads;-

    AREA LOAD TYPES LOAD INTENSITY

    Office Suspended ceiling 0.30 kN/m2

    Services 0.30 kN/m2

    50mm Screed 1.2 kN/m2

    Floor tiles plus bedding 1.0 kN/m2

    TOTAL SUPER-DEAD LOADS 2.80 kN/m2

    200mm LIGHT WEITH BLOCKS 5.0 kN/m

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    12

    Live loads;-

    AREA LOAD TYPES LOAD INTENSITY

    Office General Office space 2.5 kN/m2

    Stair 4.0 kN/m2

    Lift Lobby 4.0 kN/m2

    Roof Live 1.5 kN/m2

    TOTAL

    Movable dry light weight Partition 1.0 kN/m2

    TOTAL

    Wind Loads;-

    In absence of design guidance for wind loading in Ghana, EC1 has been adopted

    and implemented on the model for analysis and design. After research and

    analysis of meteorological data, it was concluded that the basic wind speed to be

    adopted for the site in question should be that of 30 m/s2

    Seismic Loads;-

    Seismic loading has been assessed and determined in accordance with EN 1998

    1: 2004.This was agreed by the client following consultation with the

    geotechnical consultant, that the peak ground acceleration to be adopted for the

    project is of 0.2g. Results of seismic simulations and analysis carried out can be

    found in the Appendices section at the end of the document.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    13

    LOAD CASES Various cases on loads were considered and combined with different pattern and

    load arrangement to obtain the worse effects.

    Below are tables showing the various load cases and limits states considerations.

    Loads Cases and Limits States Combination Types

    Case Label Case name Nature Analysis type

    1 DL1 Self-weight Structural Static - Linear

    2 DL2 Imposed Dead Load Structural Static - Linear

    3 LL1 Imposed Live Load live Static - Linear

    4 LR1 Roof Live Load live Static - Linear

    5 MOD5 Modal Modal

    6 SEI_X6 Seismic EC 8 Direction_X seismic Seismic-EC 8

    7 SEI_Y7 Seismic EC 8 Direction_Y seismic Seismic-EC 8

    8 SPE_NEW8 1 * X 0.3 * Y seismic Linear Combination

    9 SPE_NEW9 1 * X -0.3 * Y seismic Linear Combination

    10 SPE_NEW10 0.3 * X 1 * Y seismic Linear Combination

    11 SPE_NEW11 0.3 * X -1 * Y seismic Linear Combination

    12 WIND1 Wind Simulation X+ 30 m/s (variable) wind Static - Linear

    13 WIND2 Wind Simulation Y+ 30 m/s (variable) wind Static - Linear

    14 WIND3 Wind Simulation X- 30 m/s (variable) wind Static - Linear

    15 WIND4 Wind Simulation Y- 30 m/s (variable) wind Static - Linear

    16 ULS Linear Combination

    17 ULS+ Linear Combination

    18 ULS- Linear Combination

    19 SLS Linear Combination

    20 SLS+ Linear Combination

    21 SLS- Linear Combination

    22 SLS:CHR Linear Combination

    23 SLS:CHR+ Linear Combination

    24 SLS:CHR- Linear Combination

    25 SLS:FRE Linear Combination

    26 SLS:FRE+ Linear Combination

    27 SLS:FRE- Linear Combination

    28 SLS:QPR Linear Combination

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    14

    29 SLS:QPR+ Linear Combination

    30 SLS:QPR- Linear Combination

    31 ACC Linear Combination

    32 ACC+ Linear Combination

    33 ACC- Linear Combination

    34 ACC:SEI Static - Linear

    35 ACC:SEI+ Static - Linear

    36 ACC:SEI- Static - Linear

    37 FIRE Static - Linear

    38 FIRE+ Static - Linear

    39 FIRE- Static - Linear

    CODE COMBINATION COMPONENTS

    Number Combinations/Comp. Definition

    1 ULS/\t1 DL1*1.350 + DL2*1.350 + LL1*1.500 + LR1*1.500

    2 ULS/\t2 DL1*1.350 + DL2*1.350 + LL1*1.500 + LR1*1.500 + WIND1*0.900

    3 ULS/\t3 DL1*1.350 + DL2*1.350 + LL1*1.500 + LR1*1.500 + WIND2*0.900

    4 ULS/\t4 DL1*1.350 + DL2*1.350 + LL1*1.500 + LR1*1.500 + WIND3*0.900

    5 ULS/\t5 DL1*1.350 + DL2*1.350 + LL1*1.500 + LR1*1.500 + WIND4*0.900

    6 ULS/\t6 DL1*1.350 + DL2*1.350

    7 ULS/\t7 DL1*1.350 + DL2*1.350 + LL1*1.500

    8 ULS/\t8 DL1*1.350 + DL2*1.350 + LL1*1.500 + WIND1*0.900

    9 ULS/\t9 DL1*1.350 + DL2*1.350 + LL1*1.500 + WIND2*0.900

    10 ULS/\t10 DL1*1.350 + DL2*1.350 + LL1*1.500 + WIND3*0.900

    11 ULS/\t11 DL1*1.350 + DL2*1.350 + LL1*1.500 + WIND4*0.900

    12 ULS/\t12 DL1*1.350 + DL2*1.350 + LR1*1.500

    13 ULS/\t13 DL1*1.350 + DL2*1.350 + LR1*1.500 + WIND1*0.900

    14 ULS/\t14 DL1*1.350 + DL2*1.350 + LR1*1.500 + WIND2*0.900

    15 ULS/\t15 DL1*1.350 + DL2*1.350 + LR1*1.500 + WIND3*0.900

    16 ULS/\t16 DL1*1.350 + DL2*1.350 + LR1*1.500 + WIND4*0.900

    17 ULS/\t17 DL1*1.000 + DL2*1.000 + LL1*1.500 + LR1*1.500

    18 ULS/\t18 DL1*1.000 + DL2*1.000 + LL1*1.500 + LR1*1.500 + WIND1*0.900

    19 ULS/\t19 DL1*1.000 + DL2*1.000 + LL1*1.500 + LR1*1.500 + WIND2*0.900

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    15

    20 ULS/\t20 DL1*1.000 + DL2*1.000 + LL1*1.500 + LR1*1.500 + WIND3*0.900

    21 ULS/\t21 DL1*1.000 + DL2*1.000 + LL1*1.500 + LR1*1.500 + WIND4*0.900

    22 ULS/\t22 DL1*1.000 + DL2*1.000

    23 ULS/\t23 DL1*1.000 + DL2*1.000 + LL1*1.500

    24 ULS/\t24 DL1*1.000 + DL2*1.000 + LL1*1.500 + WIND1*0.900

    25 ULS/\t25 DL1*1.000 + DL2*1.000 + LL1*1.500 + WIND2*0.900

    26 ULS/\t26 DL1*1.000 + DL2*1.000 + LL1*1.500 + WIND3*0.900

    27 ULS/\t27 DL1*1.000 + DL2*1.000 + LL1*1.500 + WIND4*0.900

    28 ULS/\t28 DL1*1.000 + DL2*1.000 + LR1*1.500

    29 ULS/\t29 DL1*1.000 + DL2*1.000 + LR1*1.500 + WIND1*0.900

    30 ULS/\t30 DL1*1.000 + DL2*1.000 + LR1*1.500 + WIND2*0.900

    31 ULS/\t31 DL1*1.000 + DL2*1.000 + LR1*1.500 + WIND3*0.900

    32 ULS/\t32 DL1*1.000 + DL2*1.000 + LR1*1.500 + WIND4*0.900

    33 ULS/\t33 DL1*1.350 + DL2*1.350 + LL1*1.050 + LR1*1.050 + WIND1*1.500

    34 ULS/\t34 DL1*1.350 + DL2*1.350 + LL1*1.050 + LR1*1.050 + WIND2*1.500

    35 ULS/\t35 DL1*1.350 + DL2*1.350 + LL1*1.050 + LR1*1.050 + WIND3*1.500

    36 ULS/\t36 DL1*1.350 + DL2*1.350 + LL1*1.050 + LR1*1.050 + WIND4*1.500

    37 ULS/\t37 DL1*1.350 + DL2*1.350 + WIND1*1.500

    38 ULS/\t38 DL1*1.350 + DL2*1.350 + WIND2*1.500

    39 ULS/\t39 DL1*1.350 + DL2*1.350 + WIND3*1.500

    40 ULS/\t40 DL1*1.350 + DL2*1.350 + WIND4*1.500

    41 ULS/\t41 DL1*1.350 + DL2*1.350 + LL1*1.050 + WIND1*1.500

    42 ULS/\t42 DL1*1.350 + DL2*1.350 + LL1*1.050 + WIND2*1.500

    43 ULS/\t43 DL1*1.350 + DL2*1.350 + LL1*1.050 + WIND3*1.500

    44 ULS/\t44 DL1*1.350 + DL2*1.350 + LL1*1.050 + WIND4*1.500

    45 ULS/\t45 DL1*1.350 + DL2*1.350 + LR1*1.050 + WIND1*1.500

    46 ULS/\t46 DL1*1.350 + DL2*1.350 + LR1*1.050 + WIND2*1.500

    47 ULS/\t47 DL1*1.350 + DL2*1.350 + LR1*1.050 + WIND3*1.500

    48 ULS/\t48 DL1*1.350 + DL2*1.350 + LR1*1.050 + WIND4*1.500

    49 ULS/\t49 DL1*1.000 + DL2*1.000 + LL1*1.050 + LR1*1.050 + WIND1*1.500

    50 ULS/\t50 DL1*1.000 + DL2*1.000 + LL1*1.050 + LR1*1.050 + WIND2*1.500

    51 ULS/\t51 DL1*1.000 + DL2*1.000 + LL1*1.050 + LR1*1.050 + WIND3*1.500

    52 ULS/\t52 DL1*1.000 + DL2*1.000 + LL1*1.050 + LR1*1.050 + WIND4*1.500

    53 ULS/\t53 DL1*1.000 + DL2*1.000 + WIND1*1.500

    54 ULS/\t54 DL1*1.000 + DL2*1.000 + WIND2*1.500

    55 ULS/\t55 DL1*1.000 + DL2*1.000 + WIND3*1.500

    56 ULS/\t56 DL1*1.000 + DL2*1.000 + WIND4*1.500

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    16

    57 ULS/\t57 DL1*1.000 + DL2*1.000 + LL1*1.050 + WIND1*1.500

    58 ULS/\t58 DL1*1.000 + DL2*1.000 + LL1*1.050 + WIND2*1.500

    59 ULS/\t59 DL1*1.000 + DL2*1.000 + LL1*1.050 + WIND3*1.500

    60 ULS/\t60 DL1*1.000 + DL2*1.000 + LL1*1.050 + WIND4*1.500

    61 ULS/\t61 DL1*1.000 + DL2*1.000 + LR1*1.050 + WIND1*1.500

    62 ULS/\t62 DL1*1.000 + DL2*1.000 + LR1*1.050 + WIND2*1.500

    63 ULS/\t63 DL1*1.000 + DL2*1.000 + LR1*1.050 + WIND3*1.500

    64 ULS/\t64 DL1*1.000 + DL2*1.000 + LR1*1.050 + WIND4*1.500

    65 SLS:CHR/\t1 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000

    66 SLS:CHR/\t2 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND1*0.600

    67 SLS:CHR/\t3 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND2*0.600

    68 SLS:CHR/\t4 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND3*0.600

    69 SLS:CHR/\t5 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND4*0.600

    70 SLS:CHR/\t6 DL1*1.000 + DL2*1.000

    71 SLS:CHR/\t7 DL1*1.000 + DL2*1.000 + LL1*1.000

    72 SLS:CHR/\t8 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND1*0.600

    73 SLS:CHR/\t9 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND2*0.600

    74 SLS:CHR/\t10 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND3*0.600

    75 SLS:CHR/\t11 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND4*0.600

    76 SLS:CHR/\t12 DL1*1.000 + DL2*1.000 + LR1*1.000

    77 SLS:CHR/\t13 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND1*0.600

    78 SLS:CHR/\t14 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND2*0.600

    79 SLS:CHR/\t15 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND3*0.600

    80 SLS:CHR/\t16 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND4*0.600

    81 SLS:CHR/\t17 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND1*1.000

    82 SLS:CHR/\t18 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND2*1.000

    83 SLS:CHR/\t19 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND3*1.000

    84 SLS:CHR/\t20 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND4*1.000

    85 SLS:CHR/\t21 DL1*1.000 + DL2*1.000 + WIND1*1.000

    86 SLS:CHR/\t22 DL1*1.000 + DL2*1.000 + WIND2*1.000

    87 SLS:CHR/\t23 DL1*1.000 + DL2*1.000 + WIND3*1.000

    88 SLS:CHR/\t24 DL1*1.000 + DL2*1.000 + WIND4*1.000

    89 SLS:CHR/\t25 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND1*1.000

    90 SLS:CHR/\t26 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND2*1.000

    91 SLS:CHR/\t27 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND3*1.000

    92 SLS:CHR/\t28 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND4*1.000

    93 SLS:CHR/\t29 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND1*1.000

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    17

    94 SLS:CHR/\t30 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND2*1.000

    95 SLS:CHR/\t31 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND3*1.000

    96 SLS:CHR/\t32 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND4*1.000

    97 SLS:FRE/\t33 DL1*1.000 + DL2*1.000 + LL1*0.500 + LR1*0.500

    98 SLS:FRE/\t34 DL1*1.000 + DL2*1.000

    99 SLS:FRE/\t35 DL1*1.000 + DL2*1.000 + LL1*0.500

    100 SLS:FRE/\t36 DL1*1.000 + DL2*1.000 + LR1*0.500

    101 SLS:FRE/\t37 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND1*0.200

    102 SLS:FRE/\t38 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND2*0.200

    103 SLS:FRE/\t39 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND3*0.200

    104 SLS:FRE/\t40 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND4*0.200

    105 SLS:FRE/\t41 DL1*1.000 + DL2*1.000 + WIND1*0.200

    106 SLS:FRE/\t42 DL1*1.000 + DL2*1.000 + WIND2*0.200

    107 SLS:FRE/\t43 DL1*1.000 + DL2*1.000 + WIND3*0.200

    108 SLS:FRE/\t44 DL1*1.000 + DL2*1.000 + WIND4*0.200

    109 SLS:FRE/\t45 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND1*0.200

    110 SLS:FRE/\t46 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND2*0.200

    111 SLS:FRE/\t47 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND3*0.200

    112 SLS:FRE/\t48 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND4*0.200

    113 SLS:FRE/\t49 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND1*0.200

    114 SLS:FRE/\t50 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND2*0.200

    115 SLS:FRE/\t51 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND3*0.200

    116 SLS:FRE/\t52 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND4*0.200

    117 SLS:QPR/\t53 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300

    118 SLS:QPR/\t54 DL1*1.000 + DL2*1.000

    119 SLS:QPR/\t55 DL1*1.000 + DL2*1.000 + LL1*0.300

    120 SLS:QPR/\t56 DL1*1.000 + DL2*1.000 + LR1*0.300

    121 SLS:CHR/\t1 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000

    122 SLS:CHR/\t2 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND1*0.600

    123 SLS:CHR/\t3 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND2*0.600

    124 SLS:CHR/\t4 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND3*0.600

    125 SLS:CHR/\t5 DL1*1.000 + DL2*1.000 + LL1*1.000 + LR1*1.000 + WIND4*0.600

    126 SLS:CHR/\t6 DL1*1.000 + DL2*1.000

    127 SLS:CHR/\t7 DL1*1.000 + DL2*1.000 + LL1*1.000

    128 SLS:CHR/\t8 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND1*0.600

    129 SLS:CHR/\t9 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND2*0.600

    130 SLS:CHR/\t10 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND3*0.600

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    18

    131 SLS:CHR/\t11 DL1*1.000 + DL2*1.000 + LL1*1.000 + WIND4*0.600

    132 SLS:CHR/\t12 DL1*1.000 + DL2*1.000 + LR1*1.000

    133 SLS:CHR/\t13 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND1*0.600

    134 SLS:CHR/\t14 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND2*0.600

    135 SLS:CHR/\t15 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND3*0.600

    136 SLS:CHR/\t16 DL1*1.000 + DL2*1.000 + LR1*1.000 + WIND4*0.600

    137 SLS:CHR/\t17 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND1*1.000

    138 SLS:CHR/\t18 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND2*1.000

    139 SLS:CHR/\t19 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND3*1.000

    140 SLS:CHR/\t20 DL1*1.000 + DL2*1.000 + LL1*0.700 + LR1*0.700 + WIND4*1.000

    141 SLS:CHR/\t21 DL1*1.000 + DL2*1.000 + WIND1*1.000

    142 SLS:CHR/\t22 DL1*1.000 + DL2*1.000 + WIND2*1.000

    143 SLS:CHR/\t23 DL1*1.000 + DL2*1.000 + WIND3*1.000

    144 SLS:CHR/\t24 DL1*1.000 + DL2*1.000 + WIND4*1.000

    145 SLS:CHR/\t25 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND1*1.000

    146 SLS:CHR/\t26 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND2*1.000

    147 SLS:CHR/\t27 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND3*1.000

    148 SLS:CHR/\t28 DL1*1.000 + DL2*1.000 + LL1*0.700 + WIND4*1.000

    149 SLS:CHR/\t29 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND1*1.000

    150 SLS:CHR/\t30 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND2*1.000

    151 SLS:CHR/\t31 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND3*1.000

    152 SLS:CHR/\t32 DL1*1.000 + DL2*1.000 + LR1*0.700 + WIND4*1.000

    153 SLS:FRE/\t1 DL1*1.000 + DL2*1.000 + LL1*0.500 + LR1*0.500

    154 SLS:FRE/\t2 DL1*1.000 + DL2*1.000

    155 SLS:FRE/\t3 DL1*1.000 + DL2*1.000 + LL1*0.500

    156 SLS:FRE/\t4 DL1*1.000 + DL2*1.000 + LR1*0.500

    157 SLS:FRE/\t5 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND1*0.200

    158 SLS:FRE/\t6 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND2*0.200

    159 SLS:FRE/\t7 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND3*0.200

    160 SLS:FRE/\t8 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND4*0.200

    161 SLS:FRE/\t9 DL1*1.000 + DL2*1.000 + WIND1*0.200

    162 SLS:FRE/\t10 DL1*1.000 + DL2*1.000 + WIND2*0.200

    163 SLS:FRE/\t11 DL1*1.000 + DL2*1.000 + WIND3*0.200

    164 SLS:FRE/\t12 DL1*1.000 + DL2*1.000 + WIND4*0.200

    165 SLS:FRE/\t13 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND1*0.200

    166 SLS:FRE/\t14 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND2*0.200

    167 SLS:FRE/\t15 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND3*0.200

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    19

    168 SLS:FRE/\t16 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND4*0.200

    169 SLS:FRE/\t17 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND1*0.200

    170 SLS:FRE/\t18 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND2*0.200

    171 SLS:FRE/\t19 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND3*0.200

    172 SLS:FRE/\t20 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND4*0.200

    173 SLS:QPR/\t1 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300

    174 SLS:QPR/\t2 DL1*1.000 + DL2*1.000

    175 SLS:QPR/\t3 DL1*1.000 + DL2*1.000 + LL1*0.300

    176 SLS:QPR/\t4 DL1*1.000 + DL2*1.000 + LR1*0.300

    177 ACC:SEI/\t1 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*0.300

    178 ACC:SEI/\t2 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*-0.300

    179 ACC:SEI/\t3 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*1.000

    180 ACC:SEI/\t4 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*-1.000

    181 ACC:SEI/\t5 DL1*1.000 + DL2*1.000

    182 ACC:SEI/\t6 DL1*1.000 + DL2*1.000 + SEI_X6*1.000 + SEI_Y7*0.300

    183 ACC:SEI/\t7 DL1*1.000 + DL2*1.000 + SEI_X6*1.000 + SEI_Y7*-0.300

    184 ACC:SEI/\t8 DL1*1.000 + DL2*1.000 + SEI_X6*0.300 + SEI_Y7*1.000

    185 ACC:SEI/\t9 DL1*1.000 + DL2*1.000 + SEI_X6*0.300 + SEI_Y7*-1.000

    186 ACC:SEI/\t10 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*1.000 + SEI_Y7*0.300

    187 ACC:SEI/\t11 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*1.000 + SEI_Y7*-0.300

    188 ACC:SEI/\t12 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*0.300 + SEI_Y7*1.000

    189 ACC:SEI/\t13 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*0.300 + SEI_Y7*-1.000

    190 ACC:SEI/\t14 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*0.300

    191 ACC:SEI/\t15 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*-0.300

    192 ACC:SEI/\t16 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*1.000

    193 ACC:SEI/\t17 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*-1.000

    194 ACC:SEI/\t18 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*-0.300

    195 ACC:SEI/\t19 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*0.300

    196 ACC:SEI/\t20 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*-1.000

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    20

    197 ACC:SEI/\t21 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*1.000

    198 ACC:SEI/\t22 DL1*1.000 + DL2*1.000 + SEI_X6*-1.000 + SEI_Y7*-0.300

    199 ACC:SEI/\t23 DL1*1.000 + DL2*1.000 + SEI_X6*-1.000 + SEI_Y7*0.300

    200 ACC:SEI/\t24 DL1*1.000 + DL2*1.000 + SEI_X6*-0.300 + SEI_Y7*-1.000

    201 ACC:SEI/\t25 DL1*1.000 + DL2*1.000 + SEI_X6*-0.300 + SEI_Y7*1.000

    202 ACC:SEI/\t26 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-1.000 + SEI_Y7*-0.300

    203 ACC:SEI/\t27 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-1.000 + SEI_Y7*0.300

    204 ACC:SEI/\t28 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-0.300 + SEI_Y7*-1.000

    205 ACC:SEI/\t29 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-0.300 + SEI_Y7*1.000

    206 ACC:SEI/\t30 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*-0.300

    207 ACC:SEI/\t31 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*0.300

    208 ACC:SEI/\t32 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*-1.000

    209 ACC:SEI/\t33 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*1.000

    210 ACC:SEISHEAR /\t34 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300

    211 ACC:SEISHEAR /\t35 DL1*1.000 + DL2*1.000

    212 ACC:SEISHEAR /\t36 DL1*1.000 + DL2*1.000 + LL1*0.300

    213 ACC:SEISHEAR /\t37 DL1*1.000 + DL2*1.000 + LR1*0.300

    214 ACC:SEI/\t1 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*0.300

    215 ACC:SEI/\t2 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*-0.300

    216 ACC:SEI/\t3 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*1.000

    217 ACC:SEI/\t4 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*-1.000

    218 ACC:SEI/\t5 DL1*1.000 + DL2*1.000

    219 ACC:SEI/\t6 DL1*1.000 + DL2*1.000 + SEI_X6*1.000 + SEI_Y7*0.300

    220 ACC:SEI/\t7 DL1*1.000 + DL2*1.000 + SEI_X6*1.000 + SEI_Y7*-0.300

    221 ACC:SEI/\t8 DL1*1.000 + DL2*1.000 + SEI_X6*0.300 + SEI_Y7*1.000

    222 ACC:SEI/\t9 DL1*1.000 + DL2*1.000 + SEI_X6*0.300 + SEI_Y7*-1.000

    223 ACC:SEI/\t10 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*1.000 + SEI_Y7*0.300

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    21

    224 ACC:SEI/\t11 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*1.000 + SEI_Y7*-0.300

    225 ACC:SEI/\t12 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*0.300 + SEI_Y7*1.000

    226 ACC:SEI/\t13 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*0.300 + SEI_Y7*-1.000

    227 ACC:SEI/\t14 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*0.300

    228 ACC:SEI/\t15 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*1.000 + SEI_Y7*-0.300

    229 ACC:SEI/\t16 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*1.000

    230 ACC:SEI/\t17 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*0.300 + SEI_Y7*-1.000

    231 ACC:SEI/\t18 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*-0.300

    232 ACC:SEI/\t19 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*0.300

    233 ACC:SEI/\t20 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*-1.000

    234 ACC:SEI/\t21 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*1.000

    235 ACC:SEI/\t22 DL1*1.000 + DL2*1.000 + SEI_X6*-1.000 + SEI_Y7*-0.300

    236 ACC:SEI/\t23 DL1*1.000 + DL2*1.000 + SEI_X6*-1.000 + SEI_Y7*0.300

    237 ACC:SEI/\t24 DL1*1.000 + DL2*1.000 + SEI_X6*-0.300 + SEI_Y7*-1.000

    238 ACC:SEI/\t25 DL1*1.000 + DL2*1.000 + SEI_X6*-0.300 + SEI_Y7*1.000

    239 ACC:SEI/\t26 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-1.000 + SEI_Y7*-0.300

    240 ACC:SEI/\t27 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-1.000 + SEI_Y7*0.300

    241 ACC:SEI/\t28 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-0.300 + SEI_Y7*-1.000

    242 ACC:SEI/\t29 DL1*1.000 + DL2*1.000 + LL1*0.300 + SEI_X6*-0.300 + SEI_Y7*1.000

    243 ACC:SEI/\t30 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*-0.300

    244 ACC:SEI/\t31 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-1.000 + SEI_Y7*0.300

    245 ACC:SEI/\t32 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*-1.000

    246 ACC:SEI/\t33 DL1*1.000 + DL2*1.000 + LR1*0.300 + SEI_X6*-0.300 + SEI_Y7*1.000

    247 FIRE/\t1 DL1*1.000 + DL2*1.000 + LL1*0.500 + LR1*0.500

    248 FIRE/\t2 DL1*1.000 + DL2*1.000

    249 FIRE/\t3 DL1*1.000 + DL2*1.000 + LL1*0.500

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    22

    250 FIRE/\t4 DL1*1.000 + DL2*1.000 + LR1*0.500

    251 FIRE/\t5 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND1*0.200

    252 FIRE/\t6 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND2*0.200

    253 FIRE/\t7 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND3*0.200

    254 FIRE/\t8 DL1*1.000 + DL2*1.000 + LL1*0.300 + LR1*0.300 + WIND4*0.200

    255 FIRE/\t9 DL1*1.000 + DL2*1.000 + WIND1*0.200

    256 FIRE/\t10 DL1*1.000 + DL2*1.000 + WIND2*0.200

    257 FIRE/\t11 DL1*1.000 + DL2*1.000 + WIND3*0.200

    258 FIRE/\t12 DL1*1.000 + DL2*1.000 + WIND4*0.200

    259 FIRE/\t13 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND1*0.200

    260 FIRE/\t14 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND2*0.200

    261 FIRE/\t15 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND3*0.200

    262 FIRE/\t16 DL1*1.000 + DL2*1.000 + LL1*0.300 + WIND4*0.200

    263 FIRE/\t17 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND1*0.200

    264 FIRE/\t18 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND2*0.200

    265 FIRE/\t19 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND3*0.200

    266 FIRE/\t20 DL1*1.000 + DL2*1.000 + LR1*0.300 + WIND4*0.200

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    23

    GENERAL NOTES AND SPECIFICATIONS

    a) High tensile yield steel of characteristic strength 500 N/mm2 respectively was

    used in the design. The steel was deformed mild/high tensile bars complying

    with the current BS 4449.

    b) The concrete grade used was C25/30 and concrete on the project is to have a

    minimum crushing cube strength of 30 N/mm2 at 28 days. Blinding was in

    GEN C10/15 concrete with maximum aggregate size of 20mm.

    c) Cement consisted of ordinary Portland cement to BS 12 or BS 146.

    d) Coarse aggregate consisted of crushed rock of granite, basalt or quartzite.

    The size of aggregate used was 20mm (maximum) graded down to 10mm.

    e) Fine aggregate consisted of sand or crushed rock of granite, basalt and

    quartzite. Maximum size shall be 5mm.

    f) In case underground water was encountered during excavation, the project

    engineer had to be informed immediately. Before the use of admixtures, the

    same thing was required.

    g) All block work was non load bearing with a minimum compressive strength

    of 5 N/mm2.

    h) The cover to main reinforcement specified otherwise was

    Foundations = 50mm

    Columns = 35mm

    Beams = 30mm

    Slabs = 25mm

    i) Water used for the mix was specified to be potable.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    24

    STRUCTURAL ANALYSIS

    Various types of Structural analysis was conducted to determined the effects of loads

    on physical structures and their components to ensure that Structural members

    subject to this type of forces withstand loads safely.

    The followign types analysis was conducted;

    Static Analysis

    Modal Dyanamic Analysis

    Seismic Analsysis

    Wind Static Analysis

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    25

    Project properties: LABONE OFFICE COMPLEX foundation model Structure type: Shell Structure gravity center coordinates: X = 12.549 (m) Y = 0.746 (m) Z = 4.137 (m) Central moments of inertia of a structure: Ix = 19784039.746 (kg*m2) Iy = 48367374.102 (kg*m2) Iz = 42812901.162 (kg*m2) Mass = 801828.604 (kg) Coordinates of structure centroid with dynamic global masses considered: X = 12.752 (m) Y = 0.838 (m) Z = 3.951 (m) Central moments of inertia of a structure with dynamic global masses considered: Ix = 39828248.179 (kg*m2) Iy = 97838033.803 (kg*m2) Iz = 89103660.184 (kg*m2) Mass = 1532213.456 (kg) Structure description

    Number of nodes: 8091 Number of bars: 219 Bar finite elements: 1898 Planar finite elements: 8251 Volumetric finite elements: 0 No of static degree of freedom: 48460 Cases: 35 Combinations: 4

    MODAL ANALYSIS

    Dynamic Analysis Results The dynamic properties were established using multi-modal free vibration analysis.

    The structural system of the building was engineered as to minimize eccentricities

    between shear rigidity centers and center of masses. This has been well interpreted

    in the dynamic analysis results where pure translational responses were achieved in

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    26

    the fundamental modes although mode 1 seem to be couple with lateral torsional

    response, predominant translation were observed in the mass participations.

    Also the cracked stiffness properties were accounted for in-line with ec8

    recommendations i.e. 0.5 EI for flexural and 0.5EA for shear.

    Case/Mode Frequency (Hz)

    Period (sec)

    Rel.mas.UX (%)

    Rel.mas.UY (%)

    Cur.mas.UX (%)

    Cur.mas.UY (%)

    Total mass (kg)

    24/1 1.415 0.707 3.166 59.445 3.166 59.445 1392252.33

    24/2 1.507 0.663 62.087 64.686 58.92 5.242 1392252.33

    24/3 1.756 0.569 67.323 67.652 5.236 2.966 1392252.33

    24/4 3.097 0.323 67.399 68.148 0.076 0.496 1392252.33

    24/5 4.356 0.23 67.402 73.565 0.003 5.417 1392252.33

    24/6 4.652 0.215 67.406 73.669 0.005 0.104 1392252.33

    24/7 5.468 0.183 67.416 74.992 0.01 1.323 1392252.33

    24/8 5.687 0.176 67.423 75.205 0.006 0.213 1392252.33

    24/9 6.403 0.156 70.957 75.283 3.535 0.079 1392252.33

    24/10 7.071 0.141 72.658 75.307 1.701 0.023 1392252.33

    24/11 7.413 0.135 72.856 75.328 0.198 0.021 1392252.33

    24/12 8.152 0.123 75.719 75.644 2.863 0.317 1392252.33

    24/13 8.658 0.115 75.986 78.494 0.267 2.85 1392252.33

    24/14 8.828 0.113 76.886 78.494 0.9 0 1392252.33

    24/15 9.205 0.109 77.003 78.686 0.117 0.192 1392252.33

    24/16 9.679 0.103 77.875 85.341 0.872 6.655 1392252.33

    24/17 9.837 0.102 79.302 85.517 1.427 0.176 1392252.33

    24/18 10.313 0.097 87.12 85.618 7.818 0.1 1392252.33

    24/19 10.625 0.094 87.123 85.62 0.003 0.003 1392252.33

    24/20 11.428 0.088 90.288 85.668 3.166 0.047 1392252.33

    24/21 12.091 0.083 90.319 85.849 0.031 0.182 1392252.33

    24/22 12.454 0.08 90.612 85.992 0.293 0.143 1392252.33

    24/23 12.809 0.078 90.639 86.135 0.027 0.143 1392252.33

    24/24 13.322 0.075 90.65 86.294 0.011 0.159 1392252.33

    24/25 13.662 0.073 90.65 86.294 0 0 1392252.33

    24/26 14.113 0.071 90.65 86.573 0.001 0.278 1392252.33

    24/27 14.435 0.069 90.65 86.579 0 0.006 1392252.33

    24/28 14.768 0.068 90.657 86.602 0.006 0.024 1392252.33

    24/29 15.064 0.066 90.672 86.836 0.015 0.234 1392252.33

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    27

    Mode Shapes

    Mode 1 view 1 coupled lateral translation and torsion

    Mode 1 view 2 coupled lateral translation and torsion

    Mode 1

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    28

    Mode 2 view 1- pure lateral translation

    Mode 2 view 2 pure lateral translation

    Mode 1

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    29

    Mode 3 view 1 pure torsional response

    Mode 31 view 2- pure torsional response

    Mode 1

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    30

    RESPONSE SPECTRUM ANALYSIS Case 24 : Seismic EC 8 Direction_X Analysis type: Seismic-EC8 Mass eccentricities ex = 5.000 (%) ey = 5.000 (%) Excitation direction: X = 1.000 Y = 0.000 Z = 0.000

    Data: Site : B Spectrum : Dimensioning Spectrum type : 1 Direction : Horizontal Behavior factor : 1.500

    0 . 0 1 . 0 2 . 0 3 . 0 0 . 0

    1 . 0

    2 . 0

    3 . 0

    4 . 0

    P e r io d ( s )

    A c c e le r a t io n ( m / s ^ 2 )

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    31

    Spectrum parameters: Acceleration : ag = 1.962

    Damping : = 5.00 %

    Damping correction : = [10/(5+)]0,5

    = 1.000

    S = 1.200 = 0.200 TB = 0.150 TC = 0.500 TD = 2.000 Case 25 : Seismic EC 8 Direction_Y Analysis type: Seismic-EC8 Mass eccentricities ex = 5.000 (%) ey = 5.000 (%) Excitation direction: X = 0.000 Y = 1.000 Z = 0.000

    Data: Site : B Spectrum : Dimensioning

    0 . 0 1 . 0 2 . 0 3 . 0 0 . 0

    1 . 0

    2 . 0

    3 . 0

    4 . 0

    P e r io d ( s )

    A c c e le r a t io n ( m / s ^ 2 )

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    32

    Spectrum type : 1 Direction : Horizontal Behavior factor : 1.500 Spectrum parameters: Acceleration : ag = 1.962

    Damping : = 5.00 %

    Damping correction : = [10/(5+)]0,5

    = 1.000

    S = 1.200 = 0.200 TB = 0.150 TC = 0.500 TD = 2.000

    SEISMIC ANALYSIS RESULTS STOREY FORCES

    Case/Story G (x,y,z) (m) FX (kN) FY (kN) MZ (kNm)

    ACC+/1 12.66 0.71 -0.58 2863.3 2749.91 11690.86

    ACC+/2 12.52 0.75 2.82 2677.71 2565.04 10686.74

    ACC+/3 12.52 0.75 6.02 2165.06 2066.35 8041.5

    ACC+/4 12.52 0.75 9.22 1289.06 1224.42 4171.65

    ACC+/5 12.06 0.95 11.11 176.87 165.39 62.18

    Case/Story FX to columns (kN)

    FX to walls (kN)

    FY to columns (kN)

    FY to walls (kN)

    ACC+/1 1192.4 1671.33 792.53 1958.54

    ACC+/2 425.01 2253.27 430.88 2134.71

    ACC+/3 416.84 1749.2 389.51 1677.25

    ACC+/4 408.62 881.26 334.11 890.65

    ACC+/5 0 176.87 0 165.39

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    33

    WIND ANALYSIS

    The wind loading regime was automatically generated in the Autodesk RobotTM

    Structural Analysis Professional 2015 software which incorporates a new wind

    simulation tool that enables users to test their designs in a virtual wind tunnel. To

    accomplish this, the tool incorporates an advance computational fluid dynamics

    (CFD) into a streamlined workflow practical for design-phase analysis.

    The Wind loading on the structure was again computed in accordance with the

    procedures given in EC1 and checked against the results of virtual wind tunnel

    simulation.

    Resultant Wind Force : Fw = Fw,e + Ffr

    External Force : Fw,e = Pf * Aref

    Frictional Force : Ffr = Pfr * Afr

    Net Wind Pressure Across a Surface : Pf = CsCd * (We_front - We_rear) * Lack

    Frictional Wind Pressure in Side Wall : Pfr = Cfr * Qp

    External Wind Pressure : We = Qp * Cpe

    Exposure Factor : Ce = Qp / Qb

    Peak Velocity Pressure : Qp = 0.5 * (1 + 7 * Lv) * rho * Vm * Vm

    Basic Velocity Pressure : Qb = 0.5 * rho * Vb * Vb

    Turbulence Intensity : Lv = Kl / (Co * ln(Z / Zo))

    Mean Wind Velocity [m/sec] : Vm = Cr * Co * Vb

    Basic Wind Velocity [m/sec] : Vb = Cdir * Cseason * Vb,o

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    34

    Roughness Factor : Cr = Kr * ln(Z / Zo)

    Air Density [kg / m^3] : rho = 1.25

    Terrain Category : II

    Friction Coefficient : Cfr = 0.00

    Fundamental Basic Wind Velocity [m/sec] : Vb,o = 33.00

    Directional Factor : Cdir = 1.00

    Seasonal Factor : Cseason = 1.00

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    35

    SERVICEABILITY & DAMAGE LIMITATION

    SERVICEABILITY

    Horizontal Deflection Criteria

    Lateral deflection limit Wind limit Height/500 Lateral deflection criteria seismic limit Height/200 Vertical Deflection

    Deflection limit (DL + LL) L/250 Incremental Deflection (DL + LL + Creep) L/500 Movement provision shall be made at heads of walls and partitions to accommodate the slab deflections

    Design Service Life The design service life of the structure will be 50 years. This is defined as the period

    during which it will be in service without requiring major structural repair, but with

    proper maintenance, the physical life of the structure will extend significantly longer

    DAMAGE LIMITATION

    INTER-STOREY DRIFT

    The damage limitation requirement was verified in terms of the inter-storey drift (dr)

    according to (EN 1998- 1/4.4.3.2) ie.

    The inelastic displacement were generated as q*dr. In the program RSA the

    behaviour factor is already accounted for in the table of results characterizing them as

    the true seismic displacements.

    The allowable limit for inter-storey drift is calculated according to

    dr < 0.005*3200/0.5 < 32mm ---- eqn (3)

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    36

    Where 0.005h was chosen in conformity with non-structural elements. (with non-

    structural brittle elements) dr=q*ds, (ds is the elastic displacement and q is the

    behavior factor taken as 1.5)

    In the case of the 3-storey office complex, the inter-storey drifts for the seismic in X

    and Y directions were within the allowable limits calculated in equation 3; dr < 30mm

    and tabulated below.

    Case/Story UX (mm)

    UY (mm)

    dr UX (mm)

    dr UY (mm)

    d UX d UY

    24/1 4.7 -1.4 4.7 -1.4 0.004 -0.001

    24/2 24.4 -8.1 19.7 -6.7 0.006 -0.002

    24/3 42.7 -14.2 18.3 -6.2 0.006 -0.002

    24/4 59.5 -18.1 16.8 -3.8 0.005 -0.001

    24/5 70.9 -14.4 11.4 3.7 0.005 0.002

    Case/Story UX (mm)

    UY (mm)

    dr UX (mm)

    dr UY (mm)

    d UX d UY

    25/1 1 5.6 1 5.6 0.001 0.005

    25/2 4.4 28.2 3.4 22.7 0.001 0.007

    25/3 7.8 49.3 3.4 21 0.001 0.007

    25/4 12.3 66.3 4.5 17.1 0.001 0.005

    25/5 13.8 71.9 1.5 5.6 0.001 0.002

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    37

    P-DELTA CHECK (SECOND ORDER EFFECT)

    In line with this, the above equation (2.8) of EC8 was used and the results tabulated

    below.

    As it can be seen the interstorey drift sensitivity coefficientshows that P-

    SEISMIC X

    Name Drift ratio ACC Gravity Load ACC

    Strory Shear ACC

    Drift Sensitivity Coefficient

    0.0060 0.0211

    Level 0 0.004 14665.68 2863.3 0.0204878

    Level 1 0.006 9437.67 2677.71 0.0211472

    Level 2 0.006 6168.43 2165.06 0.0170945

    Level 3 0.005 2899.2 1289.06 0.0112454

    Level 4 0.005 281.27 176.87 0.0079513

    SEISMIC Y

    Name Drift ratio ACC Gravity Load ACC

    Strory Shear ACC

    Drift Sensitivity Coefficient

    0.0010 0.0053

    Level 0 0.001 14665.68 2749.91 0.0053331

    Level 1 0.001 9437.67 2565.04 0.0036793

    Level 2 0.001 6168.43 2066.35 0.0029852

    Level 3 0.001 2899.2 1224.42 0.0023678

    Level 4 0.001 281.27 165.39 0.0017006

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    38

    INTERNAL FORCES DIAGRAMS

    The Axial forces, shear forces and bending moments obtained after the various

    structural analysis cases are presented for a few selected frames.

    Bending Moment Diagrams.

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    39

    Shear Force Diagram

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    40

    Axial Force Diagram - Columns

    Minor Axis Moment Diagram

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    41

    STRENGTH AND RESISTANCES DESIGN TO EC8 & EC2

    RAFT FOUNDATION DESIGN Ground pressure distribution under raft foundation

    Ground pressure distribution under Elastic T-foundation Beams

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    42

    Design Effect of Seismic Action NUMERICAL CONSTANTS Typical Values of grdINPUT DATA soil type

    ag 1.962 m/s^2 a 0.7 k 1.22 Medium to Dense Sand

    Ned 5600 kN b 1.29 k1 1 Loose Dry Sand

    Ved 1510 kN c 2.14 ct 2 Loose Saturated Sand

    Med 12800 kNm d 1.81 Cm 2 Non Sensitive Clay

    Soil Factor 1.2 e 0.21 C'm 1 Sensitive clay

    thickness 0.35 m f 0.44 2.57 SELECT SOIL TYPE

    f 36 degree m 0.21 g 1.85 Medium to Dense Sand

    r 1.85 Relative grdCu 450 kpa

    Su 405 kpa Calculate

    B 5.6 m

    L 5.6 m

    p 3.14159265 = 0.12005695 STRIPED F.5 satisfied

    gm 1.4 = 0.10288066 ISOLATED F.5 satisfied

    Nmax= 46644.5286 kNCalculate

    Isolated/Circular = 0.0323725 STRIPED F.5 satisfied

    f ' 30.1666113 degree = 0.02774103 ISOLATED F.5 satisfied

    r 1.85Cu 450 kpa

    Su 405 kpa Calculate

    r 3.15946167 m

    NcE 6 = 0.04900 STRIPED F.5 satisfied

    p 3.14159265 = 0.04199 ISOLATED F.5 satisfied

    gm 1.4

    Nmax= 54432 kN Calculate

    = 0.07026382 Striped & Isolated

    VERIFACATION OF THE SOILS BEARING CAPACITY UNDER SEISMIC CONDITIONS

    i ii

    STRIP FOOTING REMARKS SAFE!!

    ISOLATED FOOTING REMARKS SAFE!!

    SLIDING RESISTANCE CHECK! Ved < Frd = 3254.910525

    REMARKS PASSED!

    -0.011438662

    0.004934006-0.031561891

    0.006719034

    0.189956886

    0.007964295+ 0.008355412

    0.174843362

    0.005848441

    0.0062203+ 1

    Purely Cohesive Soil

    1

    Medium to Dense Sand

    Seismic Bearing Capacity Verification

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    43

    Seismic Ultimate Bearing Capacity Verification comments

    Unlike the static loads the seismic bearing capacity was verified by relevant

    equations of EN998 part 5 and with reference to the geotechnical report as shown

    in the above calculations

    Design calculation for Raft foundation

    1. Slab: Plate490 - Panel no. 490

    1.1. Renforcement:

    Type : RC floor 1

    Main reinforcement direction : 0 Main reinforcement grade : B500B or C; Characteristic strength = 500.00 MPa Horizontal branch of the stress-strain diagram

    Ductility class : B

    Bar diameters bottom d1 = 1.2 (cm) d2 = 1.2 (cm) top d1 = 1.6 (cm) d2 = 1.6 (cm)

    Cover bottom c1 = 5.0 (cm) top c2 = 5.0 (cm)

    Cover deviations Cdev = 1.0(cm), Cdur = 0.0(cm)

    1.2. Concrete Class : C25/30; Characteristic strength = 25.00 MPa Rectangular stress distribution [3.1.7(3)]

    Density : 2501.36 (kG/m3)

    Concrete creep coefficient : 1.441

    cement class : N

    1.3. Hypothesis

    Calculations according to : BS EN1992-1-1:2004 NA:2005

    Method of reinforcement area calculations : NEN

    Allowable cracking width - upper layer : 0.30 (mm) - lower layer : 0.30 (mm)

    Allowable deflection : 20.0 (mm)

    Verification of punching : no

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    44

    Exposure - upper layer : XC1 - lower layer : XC1

    Calculation type : simple bending

    Structure class : S4

    1.4. Slab geometry Thickness 0.45 (m) Contour: edge beginning end length x1 y1 x2 y2 (m) 1 0.00 5.30 5.92 5.30 5.92 2 5.92 5.30 5.92 0.00 5.30 3 5.92 0.00 0.00 0.00 5.92 4 0.00 0.00 0.00 5.30 5.30 Support: n Name dimensions coordinates edge (m) x y 0 linear 3.00 4.18 0 linear 3.00 1.35 0 linear 0.20 / 1.25 3.00 3.47 0 linear 1.32 / 0.20 3.62 2.81 0 linear 1.32 / 0.20 2.37 2.81 * - head present

    1.5. Calculation results:

    1.5.1. Maximum moments + reinforcement for bending Ax(+) Ax(-) Ay(+)

    Ay(-) Provided reinforcement (mm2/m): 3272.49 3506.24 2094.40

    3272.49 Modified required reinforcement (mm2/m): 2457.07 3354.96 1919.93

    2616.72 Original required reinforcement (mm2/m): 2457.07 3354.96 1919.93

    2616.72 Coordinates (m): 1.56;4.43 1.56;4.43 1.33;4.21

    1.33;4.21 1.5.2. Maximum moments + reinforcement for bending

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    45

    Ax(+) Ax(-) Ay(+)

    Ay(-) Symbol: required area/provided area Ax(+) (mm2/m) 2457.07/3272.49 2457.07/3272.49

    2333.84/3272.49 2333.84/3272.49 Ax(-) (mm2/m) 3354.96/3506.24 3354.96/3506.24

    3166.40/3506.24 3166.40/3506.24 Ay(+) (mm2/m) 1576.76/2094.40 1576.76/2094.40

    1919.93/2094.40 1919.93/2094.40 Ay(-) (mm2/m) 2144.30/3272.49 2144.30/3272.49

    2616.72/3272.49 2616.72/3272.49

    SLS Mx(+) (kN*m/m) -30.28 -30.28 -

    28.47 -28.47 Mx(-) (kN*m/m) -65.93 -65.93 -

    65.87 -65.87 My(+) (kN*m/m) -14.78 -14.78 -

    16.72 -16.72 My(-) (kN*m/m) -50.43 -50.43 -

    54.12 -54.12

    Nxx

    (kN/m) 6.64 6.64 7.96 7.96

    Nyy (kN/m) 5.02 5.02 0.65 0.65

    Nxy (kN/m) -2.92 -2.92 2.47 2.47

    ULS Mx(+) (kN*m/m) -41.77 -41.77 -

    39.26 -39.26 Mx(-) (kN*m/m) -90.75 -90.75 -

    90.67 -90.67 My(+) (kN*m/m) -20.39 -20.39 -

    23.10 -23.10 My(-) (kN*m/m) -69.37 -69.37 -

    74.51 -74.51

    Nxx

    (kN/m) 9.17 9.17 10.97 10.97

    Nyy (kN/m) 6.96 6.96 0.89 0.89

    Nxy (kN/m) -3.97 -3.97 3.44 3.44

    ULS - accid. comb. Mx(+)

    (kN*m/m) 266.22 266.22 270.64 270.64

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    46

    Mx(-) (kN*m/m) 145.05 145.05 136.36 136.36

    My(+) (kN*m/m) 176.61 176.61 200.81 200.81

    My(-) (kN*m/m) 55.43 55.43 66.52 66.52

    Nxx

    (kN/m) 198.60 198.60 119.87 119.87

    Nyy (kN/m) 90.02 90.02 159.67 159.67

    Nxy (kN/m) -91.21 -91.21 -136.56 -136.56

    Coordinates

    (m) 1.56;4.43 1.56;4.43 1.33;4.21 1.33;4.21

    Coordinates* (m) 10.63;2.43;-1.20 10.63;2.43;-1.20 10.41;2.21;-1.20 10.41;2.21;-1.20

    * - Coordinates in the structure global coordinate system

    1.5.4. Deflection |f(+)| = 0.0 (mm)

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    47

    3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=7.96(m) N1Y=8.05(m) N1Z=0.0(m) N2X=7.88(m) N2Y=6.10(m) N2Z=0.0(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=7.88(m) N1Y=6.10(m) N1Z=0.0(m) N2X=19.08(m) N2Y=1.70(m) N2Z=0.0(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=19.08(m) N1Y=1.70(m) N1Z=0.0(m) N2X=21.60(m) N2Y=2.80(m) N2Z=0.0(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=11.01(m) N1Y=6.88(m) N1Z=0.0(m) N2X=10.32(m) N2Y=5.14(m) N2Z=0.0(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=12.81(m) N1Y=6.19(m) N1Z=0.0(m) N2X=12.12(m) N2Y=4.43(m) N2Z=0.0(m) 3 (FE) linear on edges FZ=N/A(kN) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=15.00(m) N1Y=5.35(m) N1Z=0.0(m) N2X=14.30(m) N2Y=3.58(m) N2Z=0.0(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=16.82(m) N1Y=4.65(m) N1Z=0.0(m) N2X=16.12(m) N2Y=2.86(m) N2Z=0.0(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=7.96(m) N1Y=8.05(m) N1Z=3.20(m) N2X=7.88(m) N2Y=6.10(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=7.88(m) N1Y=6.10(m) N1Z=3.20(m) N2X=19.08(m) N2Y=1.70(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=19.08(m) N1Y=1.70(m) N1Z=3.20(m) N2X=21.60(m) N2Y=2.80(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=11.01(m) N1Y=6.88(m) N1Z=3.20(m) N2X=10.32(m) N2Y=5.14(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=12.81(m) N1Y=6.19(m) N1Z=3.20(m) N2X=12.12(m) N2Y=4.43(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=15.00(m) N1Y=5.35(m) N1Z=3.20(m) N2X=14.30(m) N2Y=3.58(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=16.82(m) N1Y=4.65(m) N1Z=3.20(m) N2X=16.12(m) N2Y=2.86(m) N2Z=3.20(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=7.96(m) N1Y=8.05(m) N1Z=6.40(m) N2X=7.88(m) N2Y=6.10(m) N2Z=6.40(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=7.88(m) N1Y=6.10(m) N1Z=6.40(m) N2X=19.08(m) N2Y=1.70(m) N2Z=6.40(m)

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    48

    3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=19.08(m) N1Y=1.70(m) N1Z=6.40(m) N2X=21.60(m) N2Y=2.80(m) N2Z=6.40(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=11.01(m) N1Y=6.88(m) N1Z=6.40(m) N2X=10.32(m) N2Y=5.14(m) N2Z=6.40(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=12.81(m) N1Y=6.19(m) N1Z=6.40(m) N2X=12.12(m) N2Y=4.43(m) N2Z=6.40(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=15.00(m) N1Y=5.35(m) N1Z=6.40(m) N2X=14.30(m) N2Y=3.58(m) N2Z=6.40(m) 3 (FE) linear 2p (3D) FZ1=-7.00(kN/m) FZ2=-7.00(kN/m) N1X=16.82(m) N1Y=4.65(m) N1Z=6.40(m) N2X=16.12(m) N2Y=2.86(m) N2Z=6.40(m) 3 (FE) uniform 490 PZ=-18.00(kN/m2) 5 (FE) uniform 492 PZ=-10.00(kN/m2) 5 (FE) uniform 407 PZ=-1.50(kN/m2) 5 (FE) uniform 274 PZ=-10.00(kN/m2) Combination/Component Definition ULS/26 24*1.000+25*0.300 ULS/27 24*1.000+25*-0.300 ULS/28 24*0.300+25*1.000 ULS/29 24*0.300+25*-1.000

    3. Results - detailing List of solutions: Reinforcement: bars Solution no. Reinforcement range Total weight Diameter / Weight (kG) 1 - 2993.81 2 - 3284.20 3 - 4314.13 4 - 5800.94 5 - 8124.08 Results for the solution no. 1 Reinforcement zones Bottom reinforcement Name coordinates Provided reinforcement At Ar

    x1 y1 x2 y2 f(mm) / (cm) (mm2/m) (mm2/m) 1/1- Ax Main 0.00 0.00 5.92 5.30 25.0 / 14.0 3354.96 < 3506.24

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    49

    1/2- Ay Perpendicular 0.00 0.00 5.92 5.30 25.0 / 15.0 2616.72 < 3272.49 Top reinforcement Name coordinates Provided reinforcement At Ar

    x1 y1 x2 y2 f (mm) / (cm) (mm2/m) (mm2/m) 1/1+ Ax Main 0.00 0.00 5.92 5.30 25.0 / 15.0 2457.07 < 3272.49 1/2+ Ay Perpendicular 0.00 0.00 5.92 5.30 20.0 / 15.0 1919.93 < 2094.40

    4. Material survey

    Concrete volume = 14.13 (m3)

    Formwork = 31.39 (m2)

    Slab circumference = 22.45 (m)

    Area of openings = 0.00 (m2)

    Steel B500B or C

    Total weight = 2920.46 (kG)

    Density = 206.75 (kG/m3)

    Average diameter = 23.8 (mm)

    Survey according to diameters: Diameter Length Number: (m) B20 5.20 39 B25 5.20 39 B25 5.82 73

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    50

    Design Calculation for T-Beam Foundation

    1 Level:

    Name :

    Reference level : -1.20 (m)

    Maximum cracking : 0.40 (mm)

    Exposure : XC1

    Concrete creep coefficient : p = 1.865 cement class : N

    Concrete age (loading moment) : 28 (days)

    Concrete age : 50 (years)

    Structure class : S4

    Quality assurance system (4.4.1.3(3); A.2.1(1))

    Fire resistance class : no requirements

    2 Continuous footing: Continuous Footing487 Number: 1

    2.1 Material properties:

    Concrete : C25/30 fck = 25.00 (MPa) Rectangular stress distribution [3.1.7(3)] Density : 2501.36 (kG/m3) Aggregate size : 20.0 (mm)

    Longitudinal reinforcement: : B500B or C fyk = 500.00 (MPa)

    Horizontal branch of the stress-strain diagram

    Ductility class : B

    Transversal reinforcement: : B500B or C fyk = 500.00 (MPa)

    Horizontal branch of the stress-strain diagram

    Ductility class : B

    Additional reinforcement: : B500C fyk = 500.00 (MPa) Horizontal branch of the

    stress-strain diagram

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    51

    2.2 Geometry: 2.2.1 Span Position L.supp. L R.supp. (m) (m) (m) P1 Span 0.20 2.40 0.20 Span length: Lo = 2.60 (m)

    Section from 0.00 to 2.40 (m) 40.0 x 60.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm) 2.2.2 Span Position L.supp. L R.supp. (m) (m) (m) P2 Span 0.20 1.88 0.20 Span length: Lo = 2.08 (m)

    Section from 0.00 to 1.88 (m) 40.0 x 60.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm) 2.2.3 Span Position L.supp. L R.supp. (m) (m) (m) P3 Span 0.20 1.95 0.20 Span length: Lo = 2.15 (m)

    Section from 0.00 to 1.95 (m) 40.0 x 60.0, Offset (+ up, - down): 0.0 x -0.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm) 2.2.4 Span Position L.supp. L R.supp. (m) (m) (m) P4 Span 0.20 1.95 0.20 Span length: Lo = 2.15 (m)

    Section from 0.00 to 1.95 (m) 40.0 x 60.0, Offset (+ up, - down): 0.0 x +0.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm) 2.2.5 Span Position L.supp. L R.supp. (m) (m) (m)

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    52

    P5 Span 0.20 1.95 0.20 Span length: Lo = 2.15 (m)

    Section from 0.00 to 1.95 (m) 40.0 x 60.0, Offset (+ up, - down): 0.0 x -0.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm) 2.2.6 Span Position L.supp. L R.supp. (m) (m) (m) P6 Span 0.20 1.95 0.20 Span length: Lo = 2.15 (m)

    Section from 0.00 to 1.95 (m) 40.0 x 60.0, Offset (+ up, - down): 0.0 x -0.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm) 2.2.7 Span Position L.supp. L R.supp. (m) (m) (m) P7 Span 0.20 2.57 0.40 Span length: Lo = 2.87 (m)

    Section from 0.00 to 2.57 (m) 40.0 x 60.0 (cm) Left slab 0.0 + 30.0 from 30.0 (cm) Right slab 0.0 + 30.0 from 30.0 (cm) Left slab overhanging: 30.0 (cm) Right slab overhanging: 30.0 (cm)

    2.3 Soils: Reference level: 0.00 (m) Origin: 0.00 (m) End: 22.93 (m) Elasticity coefficient: 92182.40 (kN/m2) Soil layers:

    1. Medium Sand Soil level: 75.0 (cm) Thickness: 100.0 (cm) Unit weight: 1886.47 (kG/m3) Friction angle: 34.0 (Deg) Cohesion: 0.00 (MPa) Poisson ratio: 0.25 Eo: 90.00 (MPa)

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    53

    Consolidation coeff.: 1.00 qmax: 0.30 (MPa) 2. Medium gravel Soil level: -25.0 (cm) Thickness: 100.0 (cm) Unit weight: 1937.46 (kG/m3) Friction angle: 38.0 (Deg) Cohesion: 0.00 (MPa) Poisson ratio: 0.20 Eo: 120.00 (MPa) Consolidation coeff.: 1.00 qmax: 0.30 (MPa) 3. Gravel Soil level: -125.0 (cm)

    Thickness: Unit weight: 1937.46 (kG/m3) Friction angle: 38.0 (Deg) Cohesion: 0.00 (MPa) Poisson ratio: 0.20 Eo: 120.00 (MPa) Consolidation coeff.: 1.00 qmax: 0.30 (MPa)

    2.4 Calculation options: Regulation of combinations : EN 1990:2002

    Calculations according to : EN 1992-1-1:2004 AC:2008

    Geotechnic calculations according to : EN 1997-1:2008

    Seismic dispositions : Moderate ductility class

    Precast beam : no

    Cover : bottom c = 6.0 (cm) : side c1= 6.0 (cm) : top c2= 6.0 (cm)

    Cover deviations : Cdev = 1.0(cm), Cdur = 0.0(cm)

    Coefficient 2 =0.50 : long-term or cyclic load Method of shear calculations : strut inclination

    2.5 Calculation results: 2.5.1 Internal forces in ULS

    Span Mt max. Mt min. Ml Mr Ql Qr (kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN) P1 74.27 -33.14 28.62 74.27 -115.47 161.95 P2 74.68 -5.17 74.68 32.14 -142.23 95.11 P3 29.96 -30.98 29.96 18.59 -119.72 105.30 P4 29.06 -30.83 18.24 29.06 -104.43 117.11 P5 29.09 -30.41 28.22 29.09 -117.61 122.57

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    54

    P6 147.08 -0.00 32.57 147.08 -73.30 191.68 P7 147.10 -42.37 147.10 -43.64 -197.88 5.27

    2.5.2 Internal forces in SLS

    Span Mt max. Mt min. Ml Mr Ql Qr (kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN) P1 54.04 -24.16 21.10 54.04 -84.56 118.11 P2 54.34 -3.83 54.34 23.48 -103.73 69.55 P3 21.89 -22.59 21.89 13.66 -87.41 76.96 P4 21.24 -22.48 13.40 21.24 -76.34 85.52 P5 21.20 -22.22 20.62 21.20 -85.92 89.48 P6 107.39 0.00 23.74 107.39 -53.50 139.97 P7 107.39 -28.41 107.39 -31.41 -144.48 3.86

    2.5.3 Required reinforcement area

    Span Span (mm2) Left support (mm2) Right support (mm2) Span (mm2/m) bottom top bottom top bottom top splice reinf. P1 316.90 0.00 313.35 246.58 316.90 75.71 310.96 P2 322.32 0.00 322.32 0.00 137.67 12.33 310.96 P3 131.35 0.00 131.35 28.74 104.53 45.69 310.96 P4 121.58 0.00 116.08 52.61 121.58 18.65 310.96 P5 145.24 0.00 144.15 42.33 145.24 48.15 310.96 P6 647.97 0.00 138.97 0.00 647.97 0.00 310.96 P7 648.02 0.00 648.02 0.00 134.95 349.38 310.96

    2.5.4 Results of section design wk - width of perpendicular cracks n - Span Span wk (mm) P1 0.0 P2 0.0 P3 0.0 P4 0.0 P5 0.0 P6 0.2 P7 0.0

    Transverse bending of a continuous footing : n = 1 x = 0.20 (m) A = 310.96 (mm2/m) M = 10.35 (kN*m/m)

    2.5.5 Geotechnical results n - Span Ref - Calculated value Adm - Allowable value

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    55

    2.6 Theoretical results - detailed results: 2.6.1 P1 : Span from 0.20 to 2.60 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 0.20 28.62 -3.71 21.10 0.00 313.35 246.58 0.36 28.62 -10.91 8.40 0.00 309.57 285.37 0.62 10.59 -25.19 0.00 -8.40 281.86 328.71 0.88 0.00 -32.67 0.00 -19.01 246.49 346.42 1.14 0.00 -33.14 0.00 -24.16 215.47 350.22 1.40 0.00 -33.10 0.00 -23.77 191.91 351.38 1.66 0.00 -32.00 0.00 -17.75 184.60 333.19 1.92 15.19 -23.16 0.00 -5.98 209.46 284.69 2.18 46.74 -7.54 11.76 0.00 252.19 216.12 2.44 74.27 -0.00 35.56 0.00 309.77 139.35 2.60 74.27 -0.00 54.04 0.00 316.90 75.71 ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m) 0.20 -115.47 -84.56 0.0 0.14 0.21 310.96 0.36 -98.15 -71.90 0.0 0.14 0.21 310.96 0.62 -69.81 -51.18 0.0 0.14 0.21 310.96 0.88 -41.24 -30.31 0.0 0.14 0.21 310.96 1.14 -12.94 -9.58 0.0 0.14 0.21 310.96 1.40 16.99 12.24 0.0 0.15 0.21 310.96 1.66 46.95 34.13 0.0 0.15 0.21 310.96 1.92 77.68 56.57 0.0 0.15 0.21 310.96 2.18 109.24 79.62 0.0 0.16 0.21 310.96 2.44 141.61 103.25 0.0 0.16 0.21 310.96 2.60 161.95 118.11 0.0 0.16 0.21 310.96

    2.6.2 P2 : Span from 2.80 to 4.69 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 2.80 74.68 -0.00 54.34 0.00 322.32 0.00 2.91 74.68 -0.00 43.14 0.00 321.82 5.41 3.12 64.21 -0.00 25.66 0.00 272.02 36.17 3.33 39.32 -0.64 12.25 0.00 164.67 56.01 3.54 20.01 -4.08 2.90 0.00 109.81 61.31 3.75 6.24 -5.17 0.00 -2.86 68.67 58.79 3.95 1.24 -5.17 0.00 -3.83 43.96 59.60 4.16 9.88 -5.17 0.00 -1.34 55.53 54.45 4.37 25.15 -2.36 5.46 0.00 107.98 43.47 4.58 32.14 -0.30 15.98 0.00 135.51 22.63 4.69 32.14 -0.00 23.48 0.00 137.67 12.33 ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m) 2.80 -142.23 -103.73 0.0 0.16 0.21 310.96 2.91 -128.34 -93.59 0.0 0.16 0.21 310.96 3.12 -101.59 -74.06 0.0 0.16 0.21 310.96

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    56

    3.33 -74.92 -54.59 0.0 0.16 0.21 310.96 3.54 -48.39 -35.22 0.0 0.16 0.21 310.96 3.75 -22.02 -15.98 0.0 0.16 0.21 310.96 3.95 4.96 3.67 0.0 0.16 0.21 310.96 4.16 30.21 22.16 0.0 0.16 0.21 310.96 4.37 56.10 41.06 0.0 0.16 0.21 310.96 4.58 81.83 59.85 0.0 0.16 0.21 310.96 4.69 95.11 69.55 0.0 0.16 0.21 310.96

    2.6.3 P3 : Span from 4.89 to 6.84 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 4.89 29.96 -2.18 21.89 0.00 131.35 28.74 5.00 29.96 -5.55 11.93 0.00 128.82 45.99 5.22 19.65 -19.33 0.00 -2.65 90.78 73.78 5.43 2.13 -27.72 0.00 -13.22 34.51 113.33 5.65 0.00 -30.98 0.00 -19.86 3.63 131.73 5.86 0.00 -30.98 0.00 -22.59 0.00 132.15 6.08 0.00 -30.98 0.00 -21.47 1.36 132.04 6.29 0.87 -29.65 0.00 -16.51 17.76 124.07 6.51 9.57 -23.57 0.00 -7.74 71.70 90.31 6.72 18.59 -12.25 4.92 0.00 102.89 57.61 6.84 18.59 -6.37 13.66 0.00 104.53 45.69 ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m) 4.89 -119.72 -87.41 0.0 0.15 0.21 310.96 5.00 -105.80 -77.24 0.0 0.15 0.21 310.96 5.22 -80.11 -58.48 0.0 0.15 0.21 310.96 5.43 -54.80 -39.99 0.0 0.15 0.21 310.96 5.65 -29.83 -21.76 0.0 0.15 0.21 310.96 5.86 -5.14 -3.72 0.0 0.15 0.21 310.96 6.08 19.34 14.16 0.0 0.15 0.21 310.96 6.29 43.69 31.95 0.0 0.15 0.21 310.96 6.51 68.00 49.71 0.0 0.15 0.21 310.96 6.72 92.30 67.47 0.0 0.15 0.21 310.96 6.84 105.30 76.96 0.0 0.15 0.21 310.96

    2.6.4 P4 : Span from 7.04 to 8.99 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 7.04 18.24 -6.41 13.40 0.00 116.08 52.61 7.15 18.24 -12.32 4.70 0.00 114.61 63.01 7.37 9.22 -23.52 0.00 -7.82 79.46 89.08 7.58 0.82 -29.53 0.00 -16.50 22.56 122.75 7.80 0.00 -30.83 0.00 -21.39 1.93 131.28 8.01 0.00 -30.83 0.00 -22.48 0.00 131.48 8.23 0.00 -30.83 0.00 -19.78 1.75 131.28 8.44 2.03 -27.59 0.00 -13.24 21.15 114.65 8.66 18.91 -19.32 0.00 -2.84 76.49 72.42 8.87 29.06 -5.76 11.47 0.00 119.26 34.09 8.99 29.06 -2.33 21.24 0.00 121.58 18.65 ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m)

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    57

    7.04 -104.43 -76.34 0.0 0.15 0.21 310.96 7.15 -91.43 -66.83 0.0 0.15 0.21 310.96 7.37 -67.22 -49.14 0.0 0.15 0.21 310.96 7.58 -43.09 -31.51 0.0 0.14 0.21 310.96 7.80 -18.99 -13.91 0.0 0.14 0.21 310.96 8.01 5.14 3.73 0.0 0.15 0.21 310.96 8.23 29.40 21.45 0.0 0.15 0.21 310.96 8.44 53.85 39.31 0.0 0.15 0.21 310.96 8.66 78.57 57.37 0.0 0.15 0.21 310.96 8.87 103.57 75.64 0.0 0.15 0.21 310.96 8.99 117.11 85.52 0.0 0.15 0.21 310.96

    2.6.5 P5 : Span from 9.19 to 11.14 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 9.19 28.22 -2.87 20.62 0.00 144.15 42.33 9.30 28.22 -6.66 10.80 0.00 142.28 56.08 9.52 18.03 -20.03 0.00 -3.53 101.84 77.08 9.73 1.91 -27.85 0.00 -13.83 39.44 113.49 9.95 0.00 -30.41 0.00 -20.07 4.18 129.29 10.16 0.00 -30.41 0.00 -22.22 0.00 129.70 10.38 0.00 -30.41 0.00 -20.25 4.65 129.29 10.60 1.95 -28.06 0.00 -14.11 42.82 113.98 10.81 18.47 -20.38 0.00 -3.72 105.00 78.52 11.03 29.09 -6.89 10.98 0.00 142.92 62.48 11.14 29.09 -3.00 21.20 0.00 145.24 48.15 ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m) 9.19 -117.61 -85.92 0.0 0.15 0.21 310.96 9.30 -103.97 -75.96 0.0 0.15 0.21 310.96 9.52 -78.35 -57.25 0.0 0.15 0.21 310.96 9.73 -52.62 -38.45 0.0 0.15 0.21 310.96 9.95 -26.72 -19.54 0.0 0.15 0.21 310.96 10.16 -0.84 -0.62 0.0 0.15 0.21 310.96 10.38 25.79 18.81 0.0 0.16 0.21 310.96 10.60 52.58 38.37 0.0 0.16 0.21 310.96 10.81 79.80 58.25 0.0 0.16 0.21 310.96 11.03 107.50 78.48 0.0 0.16 0.21 310.96 11.14 122.57 89.48 0.0 0.16 0.21 310.96

    2.6.6 P6 : Span from 11.34 to 13.29 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 11.34 32.57 -0.00 23.74 0.00 138.97 0.00 11.46 32.57 -0.00 17.68 0.00 138.97 0.00 11.67 26.31 -0.00 10.83 0.00 112.08 0.00 11.88 16.12 -0.00 8.52 0.00 68.47 0.00 12.10 26.26 -0.00 10.78 0.00 111.86 0.00 12.31 42.83 -0.00 17.64 0.00 183.24 0.00 12.53 65.75 -0.00 29.13 0.00 283.07 0.00 12.74 95.02 -0.00 45.26 0.00 412.41 0.00 12.96 130.59 -0.00 66.03 0.00 572.53 0.00 13.17 147.08 -0.00 91.41 0.00 647.97 0.00 13.29 147.08 -0.00 107.39 0.00 647.97 0.00

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    58

    ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m) 11.34 -73.30 -53.50 0.0 0.17 0.21 310.96 11.46 -58.08 -42.38 0.0 0.17 0.21 310.96 11.67 -29.28 -21.36 0.0 0.17 0.21 310.96 11.88 -0.27 -0.16 0.0 0.17 0.21 310.96 12.10 29.03 21.22 0.0 0.17 0.21 310.96 12.31 58.48 42.71 0.0 0.17 0.21 310.96 12.53 88.05 64.30 0.0 0.17 0.21 310.96 12.74 117.66 85.93 0.0 0.17 0.21 310.96 12.96 147.17 107.47 0.0 0.17 0.21 310.96 13.17 176.39 128.80 0.2 0.17 0.21 310.96 13.29 191.68 139.97 0.2 0.17 0.21 310.96

    2.6.7 P7 : Span from 13.49 to 16.06 (m) ULS SLS Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (mm2) (mm2) 13.49 147.10 -0.00 107.39 0.00 648.02 0.00 13.67 147.10 -0.00 81.18 0.00 648.02 0.00 13.96 104.32 -0.00 48.34 0.00 451.83 25.32 14.25 60.77 -0.00 22.31 0.00 248.03 110.77 14.54 26.38 -14.20 2.36 0.00 160.96 183.63 14.82 2.74 -28.38 0.00 -12.24 137.01 255.16 15.11 0.00 -37.62 0.00 -22.26 124.38 305.86 15.40 0.00 -42.37 0.00 -28.41 127.20 336.07 15.68 0.00 -43.54 0.00 -31.40 133.68 349.09 15.97 0.00 -43.64 0.00 -31.86 134.95 349.38 16.06 0.00 -43.64 0.00 -31.41 134.95 349.38 ULS SLS Abscissa V max. V max. afp SgmRef SgmAdm A splice reinf. (m) (kN) (kN) (mm) (MPa) (MPa) (mm2/m) 13.49 -197.88 -144.48 0.2 0.16 0.21 310.96 13.67 -174.03 -127.06 0.2 0.16 0.21 310.96 13.96 -140.02 -102.23 0.0 0.15 0.21 310.96 14.25 -109.20 -79.73 0.0 0.13 0.21 310.96 14.54 -81.88 -59.78 0.0 0.12 0.21 310.96 14.82 -58.17 -42.47 0.0 0.11 0.21 310.96 15.11 -38.03 -27.76 0.0 0.10 0.21 310.96 15.40 -21.30 -15.55 0.0 0.09 0.21 310.96 15.68 -7.76 -5.66 0.0 0.07 0.21 310.96 15.97 2.86 2.10 0.0 0.07 0.21 310.96 16.06 5.27 3.86 0.0 0.06 0.21 310.96

    2.7 Reinforcement: 2.7.1 P1 : Span from 0.20 to 2.60 (m)

    Longitudinal reinforcement: bottom (B500B or C) 4 fB20 l = 2.74 from 0.06 to 2.53

    support (B500B or C) 4 fB20 l = 2.30 from 0.06 to 1.98

    4 fB20 l = 3.49 from 0.83 to 4.32

    Transversal reinforcement:

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    59

    main (B500B or C) stirrups 15 fB10 l = 1.72 e = 1*0.03 + 4*0.15 + 1*0.20 + 2*0.25 + 2*0.20 + 4*0.15 + 1*0.02 (m)

    15 fB10 l = 1.40 e = 1*0.03 + 4*0.15 + 1*0.20 + 2*0.25 + 2*0.20 + 4*0.15 + 1*0.02 (m)

    12 fB26 l = 1.23 e = 1*0.20 + 5*0.40 (m)

    2 fB12 l = 2.50 e = 1*-0.05 (m)

    2 fB12 l = 2.50 e = 1*-0.05 (m)

    pins 15 fB10 l = 1.72 e = 1*0.03 + 4*0.15 + 1*0.20 + 2*0.25 + 2*0.20 + 4*0.15 + 1*0.02 (m)

    15 fB10 l = 1.40 e = 1*0.03 + 4*0.15 + 1*0.20 + 2*0.25 + 2*0.20 + 4*0.15 + 1*0.02 (m)

    12 fB26 l = 1.23 e = 1*0.20 + 5*0.40 (m)

    2 fB12 l = 2.50 e = 1*-0.05 (m)

    2 fB12 l = 2.50 e = 1*-0.05 (m)

    2.7.2 P2 : Span from 2.80 to 4.69 (m)

    Longitudinal reinforcement: bottom (B500B or C) 4 fB20 l = 3.96 from 1.72 to 5.68

    Transversal reinforcement: main (B500B or C) stirrups 13 fB10 l = 1.72 e = 1*0.04 + 12*0.15 (m)

    13 fB10 l = 1.40 e = 1*0.04 + 12*0.15 (m)

    10 fB26 l = 1.23 e = 1*0.14 + 4*0.40 (m)

    2 fB12 l = 1.98 e = 1*-0.05 (m)

    2 fB12 l = 1.98 e = 1*-0.05 (m)

    pins 13 fB10 l = 1.72 e = 1*0.04 + 12*0.15 (m)

    13 fB10 l = 1.40 e = 1*0.04 + 12*0.15 (m)

    10 fB26 l = 1.23 e = 1*0.14 + 4*0.40 (m)

    2 fB12 l = 1.98 e = 1*-0.05 (m)

    2 fB12 l = 1.98 e = 1*-0.05 (m)

    2.7.3 P3 : Span from 4.89 to 6.84 (m)

    Longitudinal reinforcement: support (B500B or C) 4 fB20 l = 3.27 from 3.17 to 6.44

    Transversal reinforcement:

  • STR

    UC

    TUR

    AL

    DES

    IGN

    REP

    OR

    T

    LAB

    ON

    E O

    FFIC

    E

    60

    main (B500B or C) stirrups 15 fB10 l = 1.72 e = 1*0.05 + 1*0.02 + 12*0.15 + 1*0.02 (m)

    15 fB10 l = 1.40 e = 1*0.05 + 1*0.02 + 12*0.15 + 1*0.02 (m)

    10 fB26 l = 1.23 e = 1*0.17 + 4*0.40 (m)

    2 fB12 l = 2.05 e = 1*-0.05 (m)

    2 fB12 l = 2.05 e = 1*-0.05 (m)

    pins 15 fB10 l = 1.72 e = 1*0.05 + 1*0.02 + 12*0.15 + 1*0.02 (m)

    15 fB10 l = 1.40 e = 1*0.05 + 1*0.02 + 12*0.15 + 1*0.02 (m)

    10 fB26 l = 1.23 e = 1*0.17 + 4*0.40 (m)

    2 fB12 l = 2.05 e = 1*-0.05 (m)

    2 fB12 l = 2.05 e = 1*-0.05 (m)

    2.7.4 P4 : Span from 7.04 to 8.99 (m)

    Longitudinal reinforcement: bottom (B500B or C) 4 fB20 l = 6.28 from 4.88 to 11.15

    support (B500B or C) 4 fB20 l = 3.30 from 5.29 to 8.59

    4 fB20 l = 3.30 from 7.44 to 10.74

    Transve