78
Investigation 1: Milkweed Bugs Milkweed-Bug Observations ............................................................................................................................................. 1 A Habitat for Milkweed Bugs............................................................................................................................................ 2 Milkweed-Bug Changes ..................................................................................................................................................... 6 Investigation 2: Sorting Out Life Ecosystem Glossary ............................................................................................................................................................ 8 Ecosystem Card-Sort Results........................................................................................................................................... 11 Among the Wild Chimpanzees ....................................................................................................................................... 13 Investigation 3: Miniecosystems Miniecosystem Needs....................................................................................................................................................... 15 Aquatic Organism Observations .................................................................................................................................... 16 Terrestrial Organism Observations................................................................................................................................. 17 Investigation 4: Mono Lake Thinking about Mono Lake ............................................................................................................................................. 19 Response Sheet: Mono Lake ........................................................................................................................................... 21 Investigation 5: Finding the Energy Water-Heating Setup ........................................................................................................................................................ 22 Measuring Food Energy ................................................................................................................................................... 23 Food-Producers Experiment............................................................................................................................................ 25 Investigation 6: Population Size Milkweed-Bug Reproductive Potential ......................................................................................................................... 27 Milkweed Bugs, Limited .................................................................................................................................................. 29 Milkweed-Bug Hatching Investigation.......................................................................................................................... 31 Milkweed-Bug Hatching Analysis ................................................................................................................................. 33 Algae and Brine Shrimp Experiments ........................................................................................................................... 34 Algae and Brine Shrimp Experiments Analysis ........................................................................................................... 37 Mono Lake Data ................................................................................................................................................................ 38 Analysis of Mono Lake Data ........................................................................................................................................... 41 i LAB NOTEBOOK Table of Contents

LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

  • Upload
    dinhanh

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

Investigation 1: Milkweed BugsMilkweed-Bug Observations .............................................................................................................................................1A Habitat for Milkweed Bugs............................................................................................................................................2Milkweed-Bug Changes .....................................................................................................................................................6

Investigation 2: Sorting Out LifeEcosystem Glossary ............................................................................................................................................................8Ecosystem Card-Sort Results ........................................................................................................................................... 11Among the Wild Chimpanzees .......................................................................................................................................13

Investigation 3: MiniecosystemsMiniecosystem Needs .......................................................................................................................................................15Aquatic Organism Observations ....................................................................................................................................16Terrestrial Organism Observations .................................................................................................................................17

Investigation 4: Mono LakeThinking about Mono Lake .............................................................................................................................................19Response Sheet: Mono Lake ...........................................................................................................................................21

Investigation 5: Finding the EnergyWater-Heating Setup ........................................................................................................................................................22Measuring Food Energy ...................................................................................................................................................23Food-Producers Experiment ............................................................................................................................................25

Investigation 6: Population SizeMilkweed-Bug Reproductive Potential .........................................................................................................................27Milkweed Bugs, Limited ..................................................................................................................................................29Milkweed-Bug Hatching Investigation..........................................................................................................................31Milkweed-Bug Hatching Analysis .................................................................................................................................33Algae and Brine Shrimp Experiments ...........................................................................................................................34Algae and Brine Shrimp Experiments Analysis ...........................................................................................................37Mono Lake Data ................................................................................................................................................................38Analysis of Mono Lake Data ...........................................................................................................................................41

i

LAB NOTEBOOKTable of Contents

Page 2: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

Continued

Investigation 7: EcoscenariosEcoscenario Project Guidelines .......................................................................................................................................42Ecoscenario Presentation Notes ......................................................................................................................................46

Investigation 8: AdaptationsStrangers in Paradise ........................................................................................................................................................49Walkingstick Predation: Bush Environment ................................................................................................................51Five Generations of Walkingsticks .................................................................................................................................52Walkingstick Population Graphs ....................................................................................................................................53

Investigation 9: Genetic VariationGenetics Vocabulary .........................................................................................................................................................55Larkey Breeding Record ...................................................................................................................................................56Larkey Genetics Mat .........................................................................................................................................................57Larkey Breeding Steps ......................................................................................................................................................58Larkey Breeding Results ..................................................................................................................................................59Response Sheet: Genetic Variation ................................................................................................................................61Punnett Squares .................................................................................................................................................................63Genetic Variation Practice Sheet .....................................................................................................................................65

Investigation 10: Natural SelectionPrairie Larkey Breeding Record ......................................................................................................................................66Forest Larkey Breeding Record .......................................................................................................................................67Prairie and Forest Larkey Breeding Results ..................................................................................................................68Response Sheet: Natural Selection.................................................................................................................................69Voyage to the Galápagos ..................................................................................................................................................70Natural Selection: Larkeys .............................................................................................................................................73

Assessment: General Rubric ...........................................................................................................................................75

LAB NOTEBOOKTable of Contents

ii

Page 3: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 1

Name ___________________________

Period _____ Date _________________

MILKWEED-BUG OBSERVATIONS

Part 1: Milkweed bugs are insects. Observe them carefully, then answer the questions and make accurate illustrations of the bugs.

1. Describe in detail the structures milkweed bugs use to get from place to place.

2. Describe in detail how milkweed bugs get information about their environment.

3. Describe the milkweed bug’s mouth.

Part 2: Milkweed bugs do not all have the same markings. Observe how they are different and draw accurate pictures of the two different patterns.

Pattern 1 Pattern 2

Back side Belly side Back side Belly side

Investigation 1: Milkweed BugsStudent Sheet

Page 4: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 2

Milkweed bugs, like all living things, need a supportive environment in which to live. The environment that provides for all the needs of an organism is its habitat.

There are four primary components that every terrestrial organism must have in its habitat in order to survive: air, water, food, and space.

A simple plastic bag can become a suitable habitat for milkweed bugs. Follow these directions.

Task 1: Assemble the twig structure

Task 2: Assemble a water fountain

a. Remove the cap from a vial. Use the hole punch to make a hole near the center of the cap.

b. Roll a 10-cm square of paper towel into a tight cylinder and shove it through the hole to act as a wick. The part inside the vial should reach to the bottom of the vial.

c. Snap the cap on the vial. Use a sharp standard pencil to carefully poke a second hole in the vial cap. (Don’t use the hole punch—the hole will be too big.) Twist the pencil a bit as you push it through the cap.

d. Push the fl exible tubing through the second hole until the end of the tubing is on the bottom of the vial. Store the fountain in the bag.

a. Find 3–4 thin twigs 20–30 cm long.

b. Study the illustration of a fi nished habitat bag (in task 6). Use rubber bands to assemble the twigs into a climbing structure.

c. Make sure the structure will fi t inside a 4-liter bag, is fairly fl at, and will support the food bundles and polyester wool high above the water fountain.

d. Label the bag with the group number.

A HABITAT FOR MILKWEED BUGS (1 of 3)

Investigation 1: Milkweed BugsStudent Sheet

Page 5: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 3

A HABITAT FOR MILKWEED BUGS (2 of 3)Task 3: Prepare food bundles

a. Count out about 100 shelled sunfl ower seeds.

b. Put about half of them in the center of a square of netting.

c. Enclose the seeds in the netting. Pull the netting around tightly to make a ball of seeds.

d. Use a rubber band to hold the bundle shut. Wrap the rubber band around the ends of the netting many times.

e. Repeat the process with the rest of the seeds to make a second food bundle.

f. Use a loop of the rubber band to hang each food bundle on a twig high in the habitat.

g. Put everything in the bag.

Task 4: Add ventilation and polyester wool

a. Take everything out of the bag.

b. Lay the upper third of the bag on a piece of cardboard.

c. Use a pushpin to punch 100–200 holes in the upper third of the bag.

d. Take a wad of polyester wool about the size of a walnut. Stretch it out a bit.

e. Connect ends of the stretched polyester wool between the twigs to provide a place for bugs to hide.

f. Put everything in the bag.

Investigation 1: Milkweed BugsStudent Sheet

Page 6: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 4

A HABITAT FOR MILKWEED BUGS (3 of 3)Task 5: Install the water fountain

a. Take everything out of the bag. Run the pointed dowel through the center of the bottom of the zip bag. Pull the dowel all the way through the bag.

b. Push the water-fountain vial through the hole in the bottom of the bag from the inside. The job may be a bit of a struggle—you must stretch the plastic as you force the vial through the hole. Push hard and slowly—the plastic will yield without tearing.

c. Rotate the vial so that the upper end of the tubing is against the inside of the bag. Make sure the end of the tubing is on the bottom of the vial.

d. Push the sharp pencil point through the side of the bag into the open end of the fl exible tube.

e. Push the end of the tube through the side of the bag. Hold the vial in one hand and pull up on the tube to raise it several centimeters from the bottom of the vial. This will ensure that enough of the tubing extends outside the bag.

f. Return the twig structure with its food bundles and wool to the bag. Zip it shut.

Task 6: Complete the habitat

a. Open a large paper clip into a C hook.

b. Find the location at the top edge of the bag (above the zip) that allows the bag to hang level. Use a pushpin to poke a hole through the bag. Insert the paper-clip hook.

c. Hang the bag where your teacher has arranged to display the habitats.

d. Use a syringe to slowly fi ll the water fountain through the tube that extends outside the habitat bag.

Investigation 1: Milkweed BugsStudent Sheet

Page 7: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

5

Page 8: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 6

Name ___________________________

Period _____ Date _________________

MILKWEED-BUG CHANGES

Date Changes and observations

Investigation 1: Milkweed BugsStudent Sheet

Page 9: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 7

Name ___________________________

Period _____ Date _________________MILKWEED-BUG CHANGES (Continued)

Date Changes and observations

Investigation 1: Milkweed BugsStudent Sheet

Page 10: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 8

Name ___________________________

Period _____ Date _________________

ECOSYSTEM GLOSSARY

Investigation 2: Sorting Out LifeStudent Sheet

Page 11: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 9

Name ___________________________

Period _____ Date _________________

ECOSYSTEM GLOSSARY (Continued)

Investigation 2: Sorting Out LifeStudent Sheet

Page 12: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

10

Page 13: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 11

ECOSYSTEM CARD-SORT RESULTS

Indi

vidu

al

Ants

Brine Shrimp

Butterfl ies, Bees, and Flowers

California Gull

Chickadees

Chickens

Clouds

Deer

Elodea and Guppies

Fire

Forest

Fox

Frogs

Hawk

Heat

Hillside

Lightning

Mice

Mushrooms

Oak Trees

Ocean

Pond

Poppies

Prairie Dogs

Rabbit

Rabbits

Rain

Rocks

Snails

Snowfl akes

Sunlight

Trees, Shrubs, and Grass

Card Reason

Popu

latio

nCom

mun

ityEc

osys

tem

Abio

tic

Investigation 2: Sorting Out LifeStudent Sheet

Page 14: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

12

Page 15: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 13

AMONG THE WILD CHIMPANZEES1. How old was Jane Goodall when she began her research and what year was it? 2. What were some of the tools and techniques she used to study the chimps? Give a few

examples of the information she learned from using these tools.

3. How many generations of Flo’s family did she observe in the video? Why is it important to study the same family group for so long?

4. How are observational studies of populations different from experimental studies? What is learned from these different kinds of population studies?

5. What were four important fi ndings from this long-term study of the chimps in Gombe? Why was the work of Jane Goodall so signifi cant?

6. Discuss some of the biotic and abiotic factors in the chimps’ ecosystem that affect their behavior.

7. Defi ne and provide at least one example of an individual, population, community, and ecosystem in Jane Goodall’s chimpanzee study. (Use the back of this page.)

Name ___________________________

Period _____ Date _________________

Investigation 2: Sorting Out LifeStudent Sheet

Page 16: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

14

Page 17: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 15

Part 1: After your group has studied the organisms on pages 64 to 68 in the resources book, list the organisms that belong in each ecosystem.

Aquatic ecosystem Terrestrial ecosystem

_______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________

Part 2: Based on the information from the resources book and other readings, make a list of the abiotic factors in the environments of the organisms in each ecosystem.

Aquatic ecosystem Terrestrial ecosystem

_______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________

MINIECOSYSTEM NEEDS

Name ___________________________

Period _____ Date _________________

Investigation 3: MiniecosystemsStudent Sheet

Page 18: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 16

Name ___________________________

Period _____ Date _________________

Date of initial observation ___________________________________

AQUATIC ORGANISM OBSERVATIONS

Type of organism

Drawing and measurements

Potential foodsource

Potentialpredator

Describe evidence that a population is changing.

Investigation 3: MiniecosystemsStudent Sheet

Page 19: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 17

Name ___________________________

Period _____ Date _________________

Date of initial observation ___________________________________

TERRESTRIAL ORGANISM OBSERVATIONS

Type of organism

Drawing and measurements

Potential foodsource

Potentialpredator

Describe evidence that a population is changing.

Investigation 3: MiniecosystemsStudent Sheet

Page 20: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

18

Page 21: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 19

1. What one abiotic factor is the most important in the Mono Lake ecosystem? Why?

2. What two or three organisms are most important in the Mono Lake ecosystem?

3. What is the major issue concerning the well-being of the Mono Lake ecosystem?

4. Identify two biotic interactions that take place in the Mono Lake ecosystem.

5. Identify two examples of organisms interacting with abiotic factors in the Mono Lake ecosystem.

THINKING ABOUT MONO LAKE

Name ___________________________

Period _____ Date _________________

Investigation 4: Mono LakeStudent Sheet

Page 22: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

20

Page 23: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 21

RESPONSE SHEET: MONO LAKE

Susan and Marco went to the science museum and saw an exhibit about trout. They learned that trout eat mayfl y nymphs and dragonfl y nymphs. They thought it was interesting that the dragonfl y nymphs also eat the mayfl y nymphs. The mayfl ies feed on algae growing on rocks in rivers. Some of the trout are caught by ospreys that swoop down and pluck the trout out of the water with their talons.

Marco thought it would be fun to make a food web of the trout-stream ecosystem. When he showed it to Susan, she thought it needed a little more work.

What corrections and additions do you think Susan suggested to Marco?

Algae

Mayfl ynymph

Dragonfl ynymph

Trout

Osprey

Name ___________________________

Period _____ Date _________________

Investigation 4: Mono LakeStudent Sheet

Page 24: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 22

a. Form an aluminum cup by carefully molding the aluminum-foil square around a vial.

WATER-HEATING SETUP

Assemble this apparatus for measuring the energy in a cheese ball.

b. Squeeze the ring a bit and insert the downward tines into the binder clip. Slide the ring down over the dowel.

c. Open the clip and clamp it all the way onto the dowel about 10 cm above the base.

d. Spread the top of the aluminum-foil cup to make a fl ange. Drop the cup into the holder.

e. Slide the cheese ball on its holder under the cup. Move the clip up or down a bit until the distance between the cheese ball and the bottom of the cup is about 1.5–2 cm.

Investigation 5: Finding the EnergyStudent Sheet

Page 25: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 23

Name ___________________________

Period _____ Date _________________

MEASURING FOOD ENERGY

The snack food we burned was

Fill in the data table.

1. The unit used to measure heat energy is the calorie. One calorie (c) is the amount of heat needed to raise the temperature of 1 ml of water 1°C. Therefore, it would take 10 calories to raise the temperature of 1 ml of water 10°C. It would also take 10 calories to raise the temperature of 10 ml of water 1°C.

Calculate the number of calories your sample of snack food produced when it burned.

2. If your suggested daily intake of calories is about 2000 calories a day, how many pieces of this snack food would you have to eat each day to meet your requirement?

3. Food calories are measured in kilocalories or Calories. A food Calorie is equal to 1000 calories. How many pieces of your snack food would you have to eat to get your suggested daily requirement of 2000 food Calories?

Volume of water

Investigation 5: Finding the EnergyStudent Sheet

Final temperature

Starting temperature

Temperature change

Page 26: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

24

Page 27: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 25

Environment A 500 g 551 g

Environment B 500 g 552 g

Environment C 500 g 500 g

Environment D 500 g 549 g

Environment E 500 g 500 g

Environment F 500 g 500 g

Results. Describe the role of the fi ve environmental factors (water, light, etc.) on plant growth.

Conclusions. What did you learn from the experiment about what plants need to produce food?

Purpose. To determine if there is an increase in the mass of plants when they produce food.

Experimental design

• Five-hundred grams of bean seeds were planted in each of six planting containers fi lled with clean, dry sand. One gram of dry fertilizer was added to the sand in each planter.

• The six planters were placed in six identical environment chambers where water, light, and air—oxygen (O2), carbon dioxide (CO2), and nitrogen (N2)—could be controlled.

• After 3 weeks the seeds or plants were collected, dried, and weighed. The conditions and results of the experiment are recorded in the chart below.

FOOD-PRODUCERS EXPERIMENT

Water Light O2 CO2 N2

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

NoYes

NoYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No Yes Yes Yes Yes

Starting mass

Ending mass

Mass change

Investigation 5: Finding the EnergyStudent Sheet

Name ___________________________

Period _____ Date _________________

Conditions Data

Page 28: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

26

Page 29: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 27

Imagine that you have two milkweed bugs, one female and one male. There’s plenty of food and everything else the bugs need to thrive. How big would the milkweed-bug population be after 2 months? After 4 months? After 6 months?

Here are some questions and answers about milkweed-bug natural history to help you calculate the population size.

MILKWEED-BUG REPRODUCTIVE POTENTIAL

How long do milkweed bugs live? 4 months

How old is a female when she mates? 2 months

How many eggs does a typical female lay in a lifetime? 100

What is the ratio of males to females? 50/50

1. Guess the population size at the end of 1 year.

2. Calculate the population size after 2 months, 4 months...up to 1 year. Show your work on the facing page.

Question Answer

Name ___________________________

Period _____ Date _________________

Investigation 6: Population SizeStudent Sheet

Populationreduction

Parents(male and female)

Offspring(male and female)

Totalpopulation

Total elapsed

time

Page 30: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

28

Page 31: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 29

The Milkweed Bugs, Limited simulation allows you to change fi ve variables in order to fi nd out how each one affects the size of a milkweed-bug population. The variables are

• Volume of space available to the population (400 to 1200 cubic centimeters)

• Percentage of females in any clutch of eggs (10 to 90%)

• Clutch frequency—age at which females reach reproductive maturity (2–3.9 months)

• Number of eggs per clutch (20 to 150)

• Survival rate of eggs (50 to 100%)

Work with the simulation to answer these questions.

1. Which variable has the largest effect on population size? What is your evidence?

2. Which of the variables are biotic factors and which are abiotic factors?

3. How does each variable act as a population limiting factor?

4. Develop a question about milkweed-bug population growth and answer it using the model simulation. On the back of this page, write the question and what you found out.

MILKWEED BUGS, LIMITED

Name ___________________________

Period _____ Date _________________

Investigation 6: Population SizeStudent Sheet

Page 32: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

30

Page 33: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 31

A class of high school biology students was asked to conduct some experiments to fi nd out what variables affect the hatching of milkweed-bug eggs. They planned experiments that they thought would help them understand milkweed-bug egg hatching, gathered the data, and organized it for others to share. They did not have time to summarize the results of the experiments or draw conclusions from those results. Here is the fi rst part of their report.

Title. Investigation into Three Variables That Might Affect Milkweed-Bug Egg Hatching

Purpose. All organisms have limits on their populations. One limit on the population of milkweed bugs might be egg hatching. We identifi ed two ways the milkweed-bug population might be limited at the egg stage: the number of eggs that hatch and the length of time it takes eggs to hatch.

We decided to test three variables to see how they affect both the number of eggs that hatch and the length of time that elapses before eggs hatch. We tested three variables: temperature, humidity, and exposure to light.

Experimental design. A large colony of breeding milkweed bugs was available. One day before the experiments were scheduled to start, we put fresh pieces of polyester wool into the colony. The next day we had several thousand new eggs to use in our experiment.Three pieces of equipment were used to control the variables for the experiments.

1. A temperature-control device to maintain precise temperatures for extended periods of time.

2. A humidity-control device to maintain precise humidities for extended periods of time.

3. A light-control device to maintain precise exposure to light.

The standard hatching environment was established to be 25°C, 50% humidity, and 12 hours of light exposure each day.

One hundred milkweed-bug eggs were placed in each experimental setting. In the temperature experiments, humidity was maintained at 50% and light exposure controlled at 12 hours each day. Similarly, in the humidity experiment, temperature was maintained at 25°C and light exposure controlled at 12 hours each day. Every 5 days the eggs were observed, and the number of eggs that had hatched was recorded. Nymphs were removed to a supportive environment, and the unhatched eggs were returned to the experimental conditions. The experiments continued for 30 days.

MILKWEED-BUG HATCHING INVESTIGATION (1 of 2)

Investigation 6: Population SizeStudent Sheet

Page 34: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 32

Elapsed time in days

0 days 5 days 10 days 15 days 20 days 25 days 30 days

Lig

ht (h

ours

per

day

)

06

121824

00000

2822252326

8883908288

9494979196

9494979196

9494979196

9494979196

00000000

Elapsed time in days

0 days 5 days 10 days 15 days 20 days 25 days 30 days

Tem

pera

ture

(°C

)

0°5°10°20°30°40°50°60°

00011365700

00086949200

001091959200

002391959200

002691959200

002891959200

Effect of Temperature on Milkweed-Bug Egg Hatching

Effect of Humidity on Milkweed-Bug Egg Hatching

Effect of Light Exposure on Milkweed-Bug Egg Hatching

Data

MILKWEED-BUG HATCHING INVESTIGATION (2 of 2)

Elapsed time in days

0 days 5 days 10 days 15 days 20 days 25 days 30 days

Hum

idit

y (%

) 0%25%50%75%

100%

00000

2622282621

8088908687

9691959596

9691959596

9691959596

9691959596

Investigation 6: Population SizeStudent Sheet

Page 35: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 33

Name ___________________________

Period _____ Date _________________

Results. Summarize what you found out about the limiting effect of the three variables studied in the milkweed-bug hatching experiments.

Conclusions. Discuss the signifi cance of the experimental results. What do the results suggest about ways that milkweed-bug populations are limited in nature?

MILKWEED-BUG HATCHING ANALYSIS

Investigation 6: Population SizeStudent Sheet

Page 36: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 34

Purpose. Lab experiments were set up to determine if the abiotic factors of light and temperature limit population growth of algae and brine shrimp.

Experimental design. Four populations of planktonic algae and four populations of brine shrimp were placed in the controlled environments described. Population sizes were measured once each month for a year.

Algae experiments—Four identical aquariums were set up. Each had the same amount of Mono Lake water, ample nutrients, including carbon dioxide, and a small starter population of algae.

Temperature: 2°C Temperature: 21°C

Light 14 hours/dayLight 9 hours/day

Light 9–14 hours/day for these two aquariums

Temperature varied from 2 to 21°C for these two aquariums

Light 9–14 hours/day for these two aquariums

Light 14 hours/dayLight 9 hours/day

Temperature: 2°C Temperature: 21°C

Temperature varied from 2 to 21°C for these two aquariums

ALGAE AND BRINE SHRIMP EXPERIMENTS (1 of 3)

Brine shrimp experiments—Four identical aquariums were set up. Each had the same amount of Mono Lake water, ample food, and 1.0 g of brine shrimp eggs.

Two aquariums were maintained at constant temperatures (one at low temperature and one at high temperature), and the light was varied.

The other two aquariums were maintained with constant light (one 9 hours a day and one 14 hours a day), and temperature was varied.

Two aquariums were maintained at constant temperatures (one at low temperature and one at high temperature), and the light was varied.

The other two aquariums were maintained with constant light (one 9 hours a day and one 14 hours a day), and temperature was varied.

Investigation 6: Population SizeStudent Sheet

Page 37: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 35

Experimental procedure

The eight aquariums were set up as described and allowed to develop for 1 year.

The aquariums that received constant low light got 9 hours of light each day for a year. Nine hours of light represents the shortest days at Mono Lake. The high-light aquariums got 14 hours of light each day for a year.

The aquariums that received variable light got the amount of light each day that corresponds to the length of the day at Mono Lake—9 hours in January, gradually increasing to 14 hours in June and July, then declining back to 9 hours in December.

The aquariums maintained at a constant low temperature were at 2°C all the time for a year. Two degrees is the lowest temperature of Mono Lake in the winter. The high-temperature aquariums were maintained at 22°C throughout the year, Mono Lake’s warmest.

The aquariums maintained at variable temperature started out cold (2°C) in January, warmed gradually to 22°C in July and August, and then cooled to 2°C by December.

Populations were sampled once at the end of every month. A 100-ml sample of algae water was removed and processed to see how much chlorophyll a was present. The amount of chlorophyll a, reported in micrograms per milliliter (µg/ml), is directly related to the size of the population.

Populations of brine shrimp were counted directly by placing a 5-ml sample of culture water under a microscope and counting all the shrimp of any size (larvae, juvenile, and adult). The result was converted to the number of brine shrimp per cubic meter (m3) of water.

ALGAE AND BRINE SHRIMP EXPERIMENTS (2 of 3)

Investigation 6: Population SizeStudent Sheet

Page 38: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 36

Pla

nkto

nic

alg

ae e

xper

imen

tsB

rine

shr

imp

exp

erim

ents

Results

ALGAE AND BRINE SHRIMP EXPERIMENTS (3 of 3)

Brine shrimp population in thousands of individuals per cubic meter

0 0 0 0 0 0 0 0 0 0 0 0

3 40 54 58 57 54 53 45 53 68 70 74

0 0 2 25 55 51 49 48 22 9 1 0

0 0 3 22 56 55 51 48 25 8 2 0

Light 9–14 hr./day

Light 9–14 hr./day

Temperature: 2°C

Temperature: 21°C

Temperature varied from 2 to 21°C

Temperature varied from 2 to 21°C

Light 14 hr./day

Light 9 hr./day

Algae population in micrograms of chlorophyll per milliliter (µg/ml)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 3 27 68 86 91 92 96 94 92 93 95

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 5 33 88 90 91 94 97 96 97 98 94

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 2 10 31 55 82 92 96 94 89 92 93

1 3 19 43 86 91 94 97 96 97 98 94

Temperature: 2°C

Temperature: 21°C

Light 9–14 hr./day

Temperature varied from 2 to 21°C

Light 14 hr./day

Light 9 hr./day

Light 9–14 hr./day

Temperature varied from 2 to 21°C

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Investigation 6: Population SizeStudent Sheet

Page 39: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 37

Name ___________________________

Period _____ Date _________________

Conclusions1. Based on the experimental results, what factors placed limits on the algae populations? What is your evidence?

2. Based on the experimental results, what factors placed limits on the brine shrimp populations? What is your evidence?

3. What additional abiotic and biotic factors might limit population size in Mono Lake?

ALGAE AND BRINE SHRIMP EXPERIMENTS ANALYSIS

Investigation 6: Population SizeStudent Sheet

Page 40: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 38

Because of its unique ecology, Mono Lake has been an interesting place for scientists to study. Good scientifi c study involves accurate data recording. A lot is known about the organisms that live in the lake and the abiotic conditions that affect the organisms in the ecosystem.

These three pages have graphs that show how some of the populations in the Mono

Lake ecosystem vary over the course of a year and how the abiotic factors change over the course of a year.

Study the graphs. Look for relationships between populations of different species and between organisms and abiotic factors in the ecosystem.

MONO LAKE DATA (1 of 3)

Average light exposure

J F M A M J J A S O N D

181614121086420

Hou

rs o

f day

light

J F M A M J J A S O N D

Average surface water temperature35302520151050

–5–10

Tem

pera

ture

(ºC

)

Month

Investigation 6: Population SizeStudent Sheet

Page 41: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 39

Average brine shrimp population

J F M A M J J A S O N D

5 4 3

2

1

0

Popu

lati

on in

trill

ions

Average planktonic algae population

J F M A M J J A S O N D

Max.

0

Average brine fl y population

J F M A M J J A S O N D

Max.

0

MONO LAKE DATA (2 of 3)

MonthInvestigation 6: Population Size

Student Sheet

Page 42: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 40

MONO LAKE DATA (3 of 3)

J F M A M J J A S O N D

California gull population9080706050403020100

Popu

lati

on ✕

100

0

Phalarope population

J F M A M J J A S O N D

180160140120100806040200

Popu

lati

on ✕

100

0

Eared grebe population

J F M A M J J A S O N D

9876543210

Popu

lati

on ✕

100

,000

MonthInvestigation 6: Population Size

Student Sheet

Page 43: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 41

Name ___________________________

Period _____ Date _________________

ANALYSIS OF MONO LAKE DATA1. When does the planktonic algae population peak? When does the brine shrimp

population peak? What explanation do you have for the timing of each peak?

2. What is the relationship between water temperature and the other organisms in the Mono Lake ecosystem?

3. Discuss the population graphs of the birds (gulls, phalaropes, and grebes).

4. What is the relationship between the birds and the other organisms?

5. What do you think is going on with the populations at Mono Lake in April?

Investigation 6: Population SizeStudent Sheet

Page 44: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 42

Research and Preparation. Working together as a group, look over the resources and fi gure out which ones will help you answer these questions.

What kind of environment is this? Where is it? (Hint: look for information about rain or other precipitation, climate, sunlight,

elevation, temperatures, latitude, freshwater or seawater, etc.)

What are the main organisms that are important in this ecosystem? (Hint: look for information about the trophic levels, like primary producers or

plants, what organisms eat the producers, what eats them, etc.)

What are the main abiotic factors that affect this ecosystem? (Hint: look for information about changing water levels, temperature, light levels, salinity, pollution, etc.)

What are the main ways that people affect this ecosystem? (Hint: look for information about building or construction, logging, diverting

freshwater, hunting, or anything else humans do that affects nature.)

Be sure to take notes, highlight passages, and write down the source of the information and where you found it.

Food Web. With your group members, develop a food web of the most important organisms. This will help you develop your poster and your individual reports. Start by identifying the producers in your ecosystem. Next, determine what organisms are the primary consumers. Next, identify what eats these and so on.

Include at least three producers and their consumers in your food web.

Color-code them so that producers are green and consumers are red.

Include at least 10 organisms, but no more than 15.

Draw arrows to show which organisms eat which others.

Abiotic Factors. Make a list of the most important abiotic factors that affect this ecosystem. This will help you develop your poster and your individual reports.

List the main abiotic factors in the ecosystem (no more than three).

Identify the population(s) affected by the factor.

Describe the factor’s effect on the ecosystem.

ECOSCENARIO PROJECT GUIDELINES (1 of 3)

Investigation 7: EcoscenariosStudent Sheet

Page 45: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 43

Human Impact. Make a list of the most important human effects on this ecosystem. Add these to the food web. Color-code these in black.

Describe the human impacts (no more than two).

Identify the population(s) affected by humans.

Describe the effect on the ecosystem.

Poster. After you have done your research for your individual reports, work with your group members to develop a poster to present to the rest of the class. Your poster will help you tell the story of your ecosystem to the rest of the class.

Pick one population that you think will be the best to help other people understand your ecosystem. Work together to fi gure out how to share the story of your ecosystem with the rest of the class. Include diagrams, pictures, drawings, graphs, or other ways to make the information easy to understand.

Posters should include

Title and description • Briefl y describe the ecosystem. • Tell or show where the ecosystem is.

• Mention similar ecosystems in other places on Earth.

Food web

• Diagram organisms in trophic levels: producers, consumers, and so forth. • Include 10–15 organisms in the food web.

• Draw arrows to show energy fl ow in the ecosystem.

Abiotic factors

• Identify two or three abiotic factors that defi ne your ecosystem.

• Describe how these abiotic factors infl uence the ecosystem.

Human impact

• Identify an issue arising from human impact in your ecosystem. • Describe the effect of humans on the populations in your ecosystem.

• Discuss possible actions that could be taken to reduce the impact.

ECOSCENARIO PROJECT GUIDELINES (2 of 3)

Investigation 7: EcoscenariosStudent Sheet

Page 46: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 44

Presentation. In your presentation, include information about one important population in this ecosystem.

Cover its role in the ecosystem.

Describe the effect of abiotic factors on the population.

Describe the effect of humans on the population.

As you tell the story of your ecosystem, use the food web on your poster, plus any other diagrams or visual aids that you think will help other students understand.

Individual Report. After you have completed your food web (including trophic levels, abiotic factors, and human impact) with your group, decide as a group which population each person will study for individual reports. Each group must have individual reports for a producer, a primary consumer, and a secondary consumer.

Individual reports will include

A description of one key population’s role in the ecosystem, including where it lives, what it eats, what eats it, and any other interactions or important behaviors.

A discussion of the population’s abiotic needs and interactions.

An example of human impact on the population.

Include diagrams, pictures, drawings, graphs, or other ways to make the information easy to understand. Each individual report should be about three pages long, but it may be shorter or longer, depending on what you need to say.

Grading. Grades will be based on group work and individual work. The group grade considers The individual grade considers• Poster • Group participation• Report • Individual report• Group assessment • Self-assessment

ECOSCENARIO PROJECT GUIDELINES (3 of 3)

Investigation 7: EcoscenariosStudent Sheet

Page 47: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

45

Page 48: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 46

Name ___________________________

Period _____ Date _________________

ECOSCENARIO PRESENTATION NOTES

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Investigation 7: EcoscenariosStudent Sheet

Page 49: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 47

Name ___________________________

Period _____ Date _________________

ECOSCENARIO PRESENTATION NOTES (Continued)

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Ecosystem

Abiotic issues

Trophic issues

Human issues

Comments

Investigation 7: EcoscenariosStudent Sheet

Page 50: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

48

Page 51: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 49

Name ___________________________

Period _____ Date _________________

STRANGERS IN PARADISE

Organism Adaptation Survival advantage

Green sea turtle

Wild pig

Carnivorous caterpillar

Monk seal

Rat

Banana poka

Frigate bird

‘Akiapola‘au bird

Investigation 8: AdaptationsStudent Sheet

Page 52: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

50

Page 53: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 51

WALKINGSTICK PREDATION: BUSH ENVIRONMENTYou are a predator. You prey on walkingsticks. This is what the walkingstick looks like.

Write responses to these items on the blank page facing this one.

1. Which color of walkingstick was easiest to fi nd? Which was hardest? Why do you think that was the case?

2. Which color of walkingstick survived best when there was a time limit on feeding? Why do you think that color survived best?

3. Discuss the results of the walkingstick predation in terms of adaptations.

a. Open the walkingstick multimedia program to Level 1—Eat Insects.

b. Select the 30 Clicks to Eat Insects button.

c. Use your 30 clicks to eat as many walkingsticks as you can.

d. Then click the Results button.

e. Record your results in the table below.

f. Click Start Over and select 30 Seconds to Eat Insects. Eat as many insects as you can in 30 seconds.

g. Record your results in the table below.

Name ___________________________

Period _____ Date _________________

Investigation 8: AdaptationsStudent Sheet

30 clicks

30 seconds

Eaten

Survived

Eaten

Survived

Brown Green-brown Green

Page 54: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 52

Name ___________________________

Period _____ Date _________________

Population 1Five generations of walkingsticks living in the bush environment

FIVE GENERATIONS OF WALKINGSTICKS

Population 2Select a new environment (wood chips or bamboo), and fi nd out what happens to the population after fi ve generations.

Five generations of walkingsticks living in the environment

= Green-brown walkingsticks= Green walkingsticks

= Brown walkingsticks

Graph resultsMake bar graphs to show the number of surviving walkingsticks of each color over a period of fi ve generations. Graph the walkingsticks in the bush environment in the upper graph. Graph the walkingsticks in the wood-chip or bamboo environment in the lower graph.

Use colored pencils or pens to represent each color of walkingstick. Identify your color code here.

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Brown Green-brown Green

Initial Eaten Survived

16 16 16 Initial Eaten Survived Initial Eaten Survived

Investigation 8: AdaptationsStudent Sheet

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Brown Green-brown Green

Initial Eaten Survived Initial Eaten Survived Initial Eaten Survived

16 16 16

Page 55: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 53

Name ___________________________

Period _____ Date _________________

WALKINGSTICK POPULATION GRAPHS

Investigation 8: AdaptationsStudent Sheet

Generations

Starting population

1 2 3 4 5

Num

ber

of s

urvi

vors

0

5

10

15

20

25

30Five generations of walkingsticks living in the environment

Generations

Starting population

1 2 3 4 5

Num

ber

of s

urvi

vors

0

5

10

15

20

25

30Five generations of walkingsticks living in the bush environment

Page 56: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

54

Page 57: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 55

GENETICS VOCABULARY

The offspring of organisms often grow up to look like one or both of their parents. This is because offspring inherit information from their parents that directs their development.

The inherited information is located in the of every cell in the organism. The

information is coded in the huge molecule. The huge molecules are coiled into

compact hot dog–shaped structures called . are always

present in almost identical pairs. Locations on chromosomes that affect features of

organisms are called . A gene is composed of .

An organism’s unique combination of genes is its . The traits produced

by an organism’s genes is its . Alleles that have more infl uence in

determining traits are alleles. Alleles that have less infl uence in determining

traits are alleles.

Name ___________________________

Period _____ Date _________________

Investigation 9: Genetic VariationStudent Sheet

Page 58: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use. 56

LARKEY BREEDING RECORD

Immigrant male

Generation

GenotypePhenotypeMale

PGeneration

GenotypePhenotypeFemale

P

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Immigrant male

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Investigation 9: Genetic VariationStudent Sheet

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Immigrant male

Page 59: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

57

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

Offspring

LARKEY GENETICS MAT

Male parentFemale parent

Place female allele cup here.

Place male allele cup here.

Female parent Male parent

Larkey Genetics Code

T T or T t = bushy t t = bare

F F = striped F f = solid f f = spotted

E E or E e = red e e = gray

A A or A a = short legs a a = long legs

Appendages

Eye color

Fur pattern

Tail shape

Investigation 9: Genetic VariationStudent Sheet

Page 60: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

58

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

1. Draw four allele tiles from the breeding female and four allele tiles from the breeding male. Put the eight alleles on the mat to produce the genotype of the female offspring.

LARKEY BREEDING STEPS

57

Offspring

Larkey Genetics Code

T T or T t = bushy t t = bare

F F = striped F f = solid f f = spotted

E E or E e = red e e = gray

A A or A a = short legs a a = long legs

Appendages

Eye color

Fur pattern

Tail shape

ae

F

Ttf

EA

tf

EA a

e

F

T

2. Duplicate the genotype with eight allele tiles from the gene pool.

3. Transfer the eight duplicate alleles to a cup. This is the offspring’s genotype cup. Write the generation of the offspring on a pink ID tag.

4. Return the four alleles on the mat that came from the breeding female to the female’s genotype cup. Return the four alleles that came from the breeding male to the male’s genotype cup.

5. Repeat Steps 1–3 to produce a male offspring. Prepare a blue ID tag for the male offspring’s genotype cup.

57

Offspring

Larkey Genetics Code

T T or T t = bushy t t = bare

F F = striped F f = solid f f = spotted

E E or E e = red e e = gray

A A or A a = short legs a a = long legs

Appendages

Eye color

Fur pattern

Tail shape

ae

F

Ttf

EA

tf

EA a

e

F

T

fF1

57

Offspring

Larkey Genetics Code

T T or T t = bushy t t = bare

F F = striped F f = solid f f = spotted

E E or E e = red e e = gray

A A or A a = short legs a a = long legs

Appendages

Eye color

Fur pattern

Tail shape

ae

F

Ttf

EA

Investigation 9: Genetic VariationStudent Sheet

Page 61: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

59

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

LARKEY BREEDING RESULTS

HOMOZYGOUS PARENTS

Eye colorLeg length Fur pattern Tail

Gen.Traits Traits TraitsTraits

P

F1

F2

Short Long Solid Spotted Bushy BareStripedRed Gray

Investigation 9: Genetic VariationStudent Sheet

Page 62: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

60

Page 63: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

61

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

Bill looked at these two larkey parents and said,

It’s impossible to tell what the offspring of these two gray-eyed parents will look like. The offspring could have any of the larkey traits.

Angie thought about it for a minute and said,

Well, I’m not sure what the offspring will look like exactly, but I can tell you this.

• All of the offspring will have gray eyes.

• None of the offspring will have spots.

Whose answer do you think is better? Explain why you think so.

RESPONSE SHEET: GENETIC VARIATION

Larkey Genetics Code

AppendagesAA or Aa = short legs

aa = long legs

Eye colorEE or Ee = red

ee = gray

Fur patternFF = striped

Ff = solidff = spotted

Tail shapeTT or Tt = bushy

tt = bare

Investigation 9: Genetic VariationStudent Sheet

Page 64: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

62

Page 65: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

63

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

Eye colorAppendages Fur pattern Tail shape

PUNNETT SQUARESRecord the genotype of both F2 parents.

1. Based on the results of your Punnett squares, predict the percentage of offspring that will have each trait.

Trait % Trait % Trait % Trait %

short legs red eyes striped fur bushy tails

long legs gray eyes solid fur bare tails

spotted fur

2. Explain how traits that are not expressed in one generation can reappear in the next generation.

Appendages

Fur pattern

Tail shape

Eye color

F2 femalegenotype

F2 immigrant male genotype

Investigation 9: Genetic VariationStudent Sheet

Page 66: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

64

Page 67: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

65

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

A AE Ef fT t

Jenny and Ray were doing the larkey breeding activity. These are the two parents they started with.

Jenny said,

When we breed these larkeys, the F1 offspring will all have short legs and solid gray fur —no stripes or spots. I think the F2 and F3 generations will all have short legs and solid fur, too. Long legs, striped fur, and spotted fur will not show up again in this population.Ray studied the genotypes and said,

No, there is a possibility for long legs, spots, and stripes to show up in the F2 generation.Discuss Jenny’s idea and Ray’s idea.

GENETIC VARIATION PRACTICE SHEET

a aE eF Ft t

Investigation 9: Genetic VariationStudent Sheet

Page 68: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

66

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

P P

Immigrant male

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Phenotype Survival rate

Long legs and striped fur

Long legs and solid fur

Short legs and spotted fur

100%100%

0%

50%50%50%

Long legs and spotted fur

Short legs and solid fur

Short legs and striped fur

Flip a coin. Heads = survive

Tails = eaten

Immigrant male

PRAIRIE LARKEY BREEDING RECORD

Immigrant male

Investigation 10: Natural SelectionStudent Sheet

Page 69: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

67

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

FOREST LARKEY BREEDING RECORD

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

P P

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeFemale

Generation

GenotypePhenotypeMale

Generation

GenotypePhenotypeMale

Phenotype Survival rate

Short legs and spotted fur

Short legs and solid fur

Long legs and striped fur

100%100%

0%

50%50%50%

Short legs and striped fur

Long legs and solid fur

Long legs and striped fur

Flip a coin. Heads = survive

Tails = eaten

Immigrant male

Immigrant male

Immigrant male

Investigation 10: Natural SelectionStudent Sheet

Page 70: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

68

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

PRAIRIE AND FOREST LARKEY BREEDING RESULTS

Prairie Larkey

Forest Larkey

Eye colorLeg length Fur pattern Tail

Gen.Traits Traits TraitsTraits

P

F1

F2

Short Long Solid Spotted Bushy BareStripedRed Gray

Eye colorLeg length Fur pattern Tail

Gen.Traits Traits TraitsTraits

P

F1

F2

Short Long Solid Spotted Bushy BareStripedRed Gray

Investigation 10: Natural SelectionStudent Sheet

Page 71: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

69

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

RESPONSE SHEET: NATURAL SELECTION

Katie said,

Today, giraffes have long necks that allow them to eat leaves high in trees. They got longer necks by stretching up for leaves. They passed the trait of longer neck to their offspring. The offspring stretched up for even higher leaves. After many generations, the giraffe’s neck was really long.Do you think Katie’s explanation for how the giraffe’s neck got long is right? Explain.

Investigation 10: Natural SelectionStudent Sheet

Page 72: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

70

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

1. What was the “mystery of mysteries” Darwin started to think about after visiting the Galápagos Islands?

2. A population of ground fi nches lives on Daphne Major Island. There is beak size variation in the population. What selective pressure infl uences beak size, and how does that selective pressure affect the number of offspring with large and small beaks?

3. One species of fi nch came to the Galápagos Islands many years ago. Today there are 13 species of fi nches. Explain how the change from one species to 13 species might have happened.

4. On one island the marine iguanas are large, and on a second island they are small. Discuss small size as an adaptation that helps the population survive on the second island.

VOYAGE TO THE GALÁPAGOS (1 OF 2)

Investigation 10: Natural SelectionStudent Sheet

Page 73: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

71

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

5. Discuss how the land iguana may have evolved into the marine iguana. Think about factors such as variation, selective pressure, and isolation as you prepare your answer.

6. Masked boobies have behaviors that appear to be bad for survival of the population. Identify two of these behaviors and discuss how they are in fact adaptations that improve the chances that the population will survive.

7. What can happen to an island ecosystem when a new kind of plant or animal is introduced? What effects did the arrival of humans have on the Galápagos Island ecosystems?

VOYAGE TO THE GALÁPAGOS (2 OF 2)

Investigation 10: Natural SelectionStudent Sheet

Page 74: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

72

Page 75: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

73

Name

Period Date

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

NATURAL SELECTION: LARKEYSThese are the traits after the larkeys moved to the environment.

These are the traits after the larkeys moved to the environment.

1. Describe how the population of larkeys changed when it moved to the forest.

2. Describe how the population of larkeys changed when it moved to the prairie.

3. What caused the population to change? (Answer this question on the back of the page.)

Appendages Eye color Fur pattern Tail shape

Parent

F6

Short Long Red Gray Bushy BareStriped SpottedSolid

Appendages Eye color Fur pattern Tail shape

Parent

F6

Short Long Red Gray Bushy BareStriped SpottedSolidGeneration

Generation

Investigation 10: Natural SelectionStudent Sheet

Page 76: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

74

Page 77: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents

75

FOSS Populations and Ecosystems Course© The Regents of the University of CaliforniaCan be duplicated for classroom or workshop use.

ASSESSMENT—GENERAL RUBRIC

4 The student uses two or more facts to explain a bigger idea by making connections between those facts. All of the information is correct, and the connections and conclusions are correct.

3 The student uses two or more facts to attempt to explain a bigger idea by making connections between those facts. The facts or the connections have minor errors.

2 The student provides two or more facts that are related to the task or questions

asked, but does not make any connections between the facts.

1 The student provides one fact that is related to the task or question asked.

0 The student does not answer the question, does not complete the task, or gives an answer that has nothing to do with what was asked.

Page 78: LAB NOTEBOOK Table of Contents - Central Valley School ... Notebook for Populations and... · Investigation 4: Mono Lake Thinking about Mono Lake ... LAB NOTEBOOK Table of Contents