14
8/12/2019 L2_Hydrographs http://slidepdf.com/reader/full/l2hydrographs 1/14 3/4/0 1 Well Hydrographs • Today  – Measuring Water Levels  – Water Level Fluctuations  – Examples  – Best reference: Todd and Mays, Groundwater Hydrology , Wiley, 2004 (Todd, 1980) 2 (Sanders, 1998) One-time measurements: electrical circuit indicator Measuring Water Levels

L2_Hydrographs

  • Upload
    nelbru

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 1/14

3/4/0

1

Well Hydrographs

• Today

 – Measuring Water 

Levels

 – Water Level

Fluctuations

 – Examples

 – Best reference:

Todd and Mays,

Groundwater Hydrology ,

Wiley, 2004

(Todd, 1980)

2

(Sanders, 1998)

One-time measurements: electrical circuit indicator 

Measuring Water Levels

Page 2: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 2/14

3/4/0

3

Long-term monitoring

(Sanders, 1998)

Measuring Water Levels

Old method—Stevens chart recorders

(McGlashan, 1921, plate IV)

4

Modern method—electronic sensing and data logger 

The submerged pressuretransducer contains asensitve element,

e.g., a piezometric crystal,

vibrating wire, or deflecting

membrane.

(Sanders, 1998)

Long-term monitoringMeasuring Water Levels

Two approaches:

  - depth to water &

- height above submersible

transducer 

What is a pressure transducer?http://www.omega.com/prodinfo/pressuretransducers.html

Current or voltage in thesensitve element varies

in response to thepressure exerted upon it.

The liquid level or distance

transducer uses a variety ofmethods, e.g., bubbler,

Ultrasonic distance, etc.

Ultrasonic 

Page 3: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 3/14

3/4/0

5

 Applications

• Well and other hydraulic tests

• Aquifer temporal response to natural & human

induced fluctuations

 – Water supply or irrigation pumping

 – Precipitation, ET, stream or lake stage, ocean levels

 – Barometric pressures & earth tides

• Potentiometric, water level mapping

today 

6

Measuring observation-well water levels for time-

drawdown analysis of a pumping test

(Figures from Schwartz & Zhang, 2005)

Various ways of 

plotting for diagnosticsand parameter 

estimation, including

log-log and semilog

plots.

one application of water-level measurement devices).

Page 4: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 4/14

3/4/0

7

(Todd, 1980)

What do these

“”rises” represent?

Time (weeks)   W

  e  e   k   l  y   P  r  e  c   i  p   (  c  m   )

 

   A  v  e  r  a  g  e   W  a   t  e  r   L  e  v  e   l   E   l  e  v .   (  m   )

What do these “decays” represent?

Seasonal shallow-groundwater head

fluctuations & precipitation in Maryland

The groundwater response lags recharge. It is slow to respond to changes.

Response is characterized by a time constant, say ! , that ranges from weeks to millennia,

depending on aquifer size L, conductivity K , and storage S  s ( !  "  SL2 /T or S  s L2 /KL2).

Related to stream base-flow recession

Why do seasonal 

gw levels tend to

be low in the fall?

8

Summer 

 After frost

(Todd, 1980; after White)

Notice these plots are depth to

the water level, a common way of recording data;

head is elevation of the well datum minus the depth.

These summer diel fluctuationsare driven by ET.

Other diel fluctuations are

driven by stream stage, oceantides, earth tides, etc.

Diel fluctuations of shallow-groundwater head

for two different seasons in Utah

Page 5: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 5/14

3/4/0

9

(Todd, 1980)

Long-term shallow-water level changes;

human impacts in Pakistan

What is happening?

Year 

   D  e  p   t   h   t  o  w  a   t  e  r   t  a   b   l  e   (  m   )

10

Confined aquifer head changes,

responding to atmospheric pressure.

(Todd, 1980; after Robinson)

Days of the month 

   W  a

   t  e  r   l  e  v  e   l  a   b  o  v  e   d  a   t  u  m

   (  m   )

   0 .   7

   5  x  a   t  m  o

  s  p   h  e  r   i  c  p  r  e  s  s  u  r  e   (  m   H   2   0   )

What is the

correspondence

between these

two time series?

Question? Why is there so little (almost unobservable)

time lag between atms. pressure and aquifer head?

   i  n  c  r  e  a

  s   i  n  g   d  o  w  n  w  a  r   d

Page 6: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 6/14

3/4/0

11

 patm

# patm patm

h1

h2

 pw# pw

  #$ e

$ e

# pw (aquifer)< # patm

# pin well  = # patm

# patm

Confined aquifer head changes, open hole,

responding to atmospheric pressure.

 Aquiclude

 Aquiclude

 Aquifer 

uncapped well

12

 patm

# patm

 patm

h1

h2

# ptm

Confined aquifer head changes, open hole,

responding to atmospheric pressure.

Head drops with

increase in patms

(Todd, 1980)

Page 7: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 7/14

3/4/0

13

Confined aquifer head changes, open hole,

responding to atmospheric pressure.

Since z does not change, dhwell/dhatm = dpwell/dpatm

 Atmospheric loading on the top of the aquifer is just

like any other loading (e.g., pumping). From basic

storage mechanics we remember:

 

dV w = " (n# +$ ) V t  dp

 

" dpaquifer =#dV w

n$ +% ( )V t 

14

Confined aquifer head changes, open hole,

responding to atmospheric pressure.

In the open hole the only elastic response is compression

of the water:

 dpV ndV  t w   ! "=

 

" dpwell =#dV w

n$ V t 

 

"   dpwell

dpaquifer

= #n$ V t    dV w( )#dV w  % + n$ ( )V t 

= n$ % + n$ 

Page 8: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 8/14

3/4/0

15

Confined aquifer head changes, open hole,

responding to atmospheric pressure

Barometric efficiency is expressed in terms of the ratio

of the change in well head to change in atmosphericpressure. We therefore have to divide by ! to convert:

 

 BE =" water#hwell

# patm

=

n$ 

% + n$ =

" n$ 

S s

! and " are constants and we can often estimate

n fairly well. If so, we can use BE to estimate Ss:

 

S s=

" n# 

 BE 

16

(Todd, 1980; afer Meinzer)

Confined aquifer near the ocean.Effect of ocean tides along Maryland coast.

Note:

 Amplitude Reduction

Phase Lag (if well is some distance from shore)

Both increase with distance from the ocean.

well is 100 ft. from from shore:

Page 9: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 9/14

3/4/0

17

Confined aquifer near the ocean

 

"hwell

"htide

=

 TE 

Tidal Efficiency

if well is very close to ocean

18

Confined aquifer near the oceanThe aquifer under the ocean has the usual compressive

response:

 

" dpaquifer =#dV w

n$ +% ( )V t 

The water level in the well responds to compression

in the aquifer, but is always at atm pressure (assumed

constant) and thus does not compress:

 

" dpwell =#dV w

$ V t 

Page 10: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 10/14

3/4/0

19

Confined aquifer near the ocean

 

TE ="h

well

"htide

=

#V w$ dV 

w

# $ +  n% ( )V wdV w=

$ +  n% =

&$ 

S s

 

TE  =" 

" +  n# 

 

 BE =n" 

# + n" 

 

TE +  BE  =" +  n# 

" +  n# =1

TE is useful for parameter estimation mostly only in a relative

sense (if TE<<1, then Ss is quite small)

20

(Todd, 1980; after Robinson)

Confined aquifer head changes, open hole,

responding to the moon: earth tides.

Days of the month

 

   W  a

   t  e  r   l  e  v  e   l  a   b  o  v  e   d  a   t  u  m

   (  m   )

Page 11: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 11/14

3/4/0

21

When the moon is overhead, the

Earth bulges out, pores dilate,

and water level drops

This effect is usually only seen

in stiff aquifers, such as

fractured granite

Confined aquifer head changes, open hole,

responding to the moon: earth tides.

22

 patm

# patm

 pw# pw

  #$ e

$ e

# pw (aquifer)< # patm

Because the packed off well bore is not directly connected to the atmosphere thewater pressure in the well increases with that in the aquifer (due to the very small

volume, V , of water needed to increase pressure by compressibility; V = %  &  r w2 bo,

where bo is height of the interval below the packing.

Confined aquifer head changes, packed-off interval,

responding to atmospheric pressure.

 Aquiclude

 Aquiclude

 Aquifer 

Packing

# pin well  = ?# pin well  ! # pw(aquifer)bo

Page 12: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 12/14

3/4/0

23

Groundwater 

head fluctuations

Wells at various

distances from a

river 

(Todd, 1980; after Werner and Noren)

Water table aquifer near a river Elbe River in Germany

Note:

 Amplitude Reduction

Phase Lag

  (not evident in this

  example)

Both increase with

distance from the

river.

24

“Attenuation of a periodic signal”

 Amplitude

reduction

in well 1

Phase lag well 1

Stream stage

 Amplitude reduction & phase lag

increase with time constant,

SL2 /T or S  s L2 /K,

where L is the appropriate

length scale.

Well 1 hydrograph (water level) at L=50m

Well 2 hydrograph at L=100m

The groundwater response lags periodic forcings and BC. Slowr esponse is

characterized by a time constant, say ! , that ranges from weeks to millennia, depending

on aquifer size L, conductivity K , and storage S  s ( !  "  SL2 /T or S  s L2 /KL2).

Page 13: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 13/14

3/4/0

25

(Todd, 1980; after Vorhis)

What is it?

Groundwater head fluctuations in Chile

due to an earthquake.

26

What is it?

5 cm

1 day

Groundwater head fluctuationshead

time

Frog

Page 14: L2_Hydrographs

8/12/2019 L2_Hydrographs

http://slidepdf.com/reader/full/l2hydrographs 14/14

3/4/0

27

Well Hydrographs

• Review

 – Measuring Water 

Levels

 – Water Level

Fluctuations

 – Examples

• Fluctuations due to well

tests, ET, recharge,

atms. pressure, earth

tides, river stage, oceantides, surface loading,

etc.

• Next time

 – Simulation Methods

 – Computer Models

Visual Modflow