L05 Kvs Sinusoidal Steadystate Full

  • Upload
    egupta1

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    1/81

    ESc201: IntroductiontoElectronics

    SinusoidalSteadystateAnalysis

    r. . . r vas avaDept. of Electrical Engineering

    IIT Kanpur

    1

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    2/81

    2 w i r eL o s s i R==

    2 .2 2 .2 1K W K V A= 2 .2 2 2 0 1 0K W V A=

    2

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    3/81

    Communication

    20 Hz -20KHz

    3

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    4/81

    4 1( ) s in ( )

    n tf t

    =

    1,3,5

    4

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    5/81

    d S in x d v

    o s x in xd x= =

    c d t=

    ( 9 0 )S in x d x C o s x S in x= =

    v L

    d t

    =

    So as a sinusoidal signal goes through a circuit, it remains a

    This makes analysis easier

    s nuso

    5

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    6/81

    VIN

    VC

    VL6

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    7/81

    VIN

    VC

    VL

    Voltage everywhere in the circuit is sinusoidal 7

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    8/81

    Transient and Forced Response

    8

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    9/81

    Transient and Forced Response

    9

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    10/81

    10

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    11/81

    ( ) c o s( )m

    v t V t = +

    11

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    12/81

    VM

    ( ) c o s( )mv t V t = +

    12

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    13/81

    )604sin(5 otExample-1

    What is the amplitude, phase, angular frequency, time period,

    frequency?

    ( ) c o s( )mv t V t = +

    c o sv t t=

    Amplitude = 5 ; Phase = -150o

    Phase in radians:

    360o = 2

    1 5 02 2 .6 1 8 ra d ia n s

    3 6 0

    = =

    4 /r s =1

    4 0 .5T sT

    2= = =

    z

    T

    = =13

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    14/81

    Example-2 Find the phase difference between the two currents

    1 4 sin(377 25 )oi t= + 2 cos t=

    c o smx x = +

    o o o

    1 cos= 1

    o o= o=2

    sin( 180 ) sinot t = o

    cos( 180 ) coso

    o

    t t =

    =

    1 2 =

    cos( 90 ) sino

    t t =

    much?14

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    15/81

    2 2( ) c o s( )mv t v t = 1 1( ) c o s( 6 0 )o

    mv t v t = +

    15

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    16/81

    Voltage leads current by 90o or lags current by 270o ?

    Phase difference is usually considered between -180 to 180o

    Add or subtract 360o to bring the phase between -180 to 180o16

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    17/81

    1 4 cos(377 65 )oi t=

    2 5cos(377 140 )oi t= +

    1 2 205o

    =

    205 360 155o o o = + =

    1 ea s 2 y

    17

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    18/81

    Power dissipation with sinusoidal Voltage

    R

    ( )v tp

    R=

    18

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    19/81

    Power dissipation with sinusoidal Voltage

    2

    ( )v tp=

    19

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    20/81

    Average

    X: x x x ..x1

    a v g ix x=

    If X is continuous, its average over a time t1

    11( )

    t

    a vx x t d t= 1 0

    or per o c s gna s

    1 T

    =

    0

    a v gT

    20

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    21/81

    Average Power21 ( )

    Tv t

    = 0a v g

    T R

    2V

    We would like to express it like the dc power dissipated in a resisto

    2

    pR

    =2)(

    1dttv

    T

    R

    pavg =

    21 ( )T

    r m sV v t d t =2

    r m sV

    p =0

    This is true for any periodic waveform 21

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    22/81

    RMS Value of a Sinusoid

    T

    2

    0

    ( )r m sV v t d t T

    =

    ( ) c o s( )mv t V t = +

    2 1 c o s( 2 2 )c o s ( )2

    T Tt

    t d t d t

    +

    + =

    0

    10 .5 s in ( 2 2 ) 0 .5TT t T = + =

    mr m s

    VV =

    22

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    23/81

    Power dissipation with sinusoidal Voltage

    R

    ( ) c o s( )m

    v t V t = +v

    2r m s

    a v g

    V

    p = m

    r m s

    V

    V =

    2

    m

    Vp =

    ( ) c o s ( )i t I t = +

    IT 21

    2

    r m s=

    0

    ( )r m s

    I i t d t

    T

    =232

    a v g m=

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    24/81

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    25/81

    Performing algebra on sinusoids by representing them as

    complex numbers

    Strategy

    Sinusoidal Complex Perform Algebra onvariables variables Complex variables

    Transform complex variable

    Back to sinusoid

    25

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    26/81

    26

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    27/81

    27

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    28/81

    28

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    29/81

    |z|

    Polar form:29

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    30/81

    Rectangular Polar form

    30

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    31/81

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    32/81

    ?

    32

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    33/81

    33

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    34/81

    To add or subtract two complex numbers, convert

    the operation

    34

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    35/81

    35

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    36/81

    ( ) c o s ( )m

    v t V t = +

    ( )( ) R e ( )j tm

    v t V e +=

    ( ) R e ( c o s( ) s in ( ))m m

    v t V t jV t = + + +

    ( ) c o s( )mv t V t = + R e ( )V t +

    mV ( ) c o s ( )mv t V t = +

    Phasor36

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    37/81

    ( ) 3 c o s ( 4 5 )v t t= + 3 4 5

    3 c o s( 4 5) 3 s in (4 5 )j+

    5 6 0 ( ) 5 c o s( 6 0 )v t t=

    37

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    38/81

    452045cos20 t

    =

    38

    Complex Impedances

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    39/81

    Complex Impedances

    ,and capacitors can be represented as Complex Impedances

    39

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    40/81

    40

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    41/81

    9 0L MI I = L MV L I =

    9 0 9 0L MV L I = +

    9 0 9 0V I L =

    9 0V I L=

    V I j L=

    L L LV I Z= LZ j L=

    This is l ike ohms law relationship between phasor

    voltage and current 41

    Example-4

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    42/81

    L=0.1HExample 4

    i(t)

    ( ) 2 c o s ( 2 0 0 4 5 )v t t= + 2 0 0 =V rad/s

    2 4 5L

    V = LL L L

    V I j L I j L

    = =V

    2 4 5 2 4 5 0 .1 4 52 0 2 0 9 0

    LI

    j = = =

    A

    ( ) 0 .1 c o s( 2 0 0 4 5 )i t t= A

    42

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    43/81

    =L=0.1H LL

    v(t) V

    V2 0 0 = rad/s2 0

    Lj

    =

    Carry out analysis with phasors keeping in mind that we canalways transform phasor to the sinusoidal voltage or current

    as e case may e.

    43

    ResistorR

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    44/81

    ResistorR

    v(t)

    c o sMv t t= + ( ) c o s( )Mi t tR

    = +

    MR

    VI

    R=

    R MV V =

    RV

    RR

    44

    L=0 1H R=50Example-5 i(t)

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    45/81

    L=0.1H R=50Example 5 i(t)

    ( ) 2 c o s ( 2 0 0 4 5 )v t t= + 2 0 0 =V rad/s

    50j20

    L

    2 4 5SV = V 45

    Example-5

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    46/81

    50+j20

    p

    Zeq

    =S

    2 4 5 2 4 5 . .5 0 2 0 5 3 .8 5 2 1 .8j

    = = =+

    ( ) 0 .0 3 7 c o s ( 2 0 0 2 3 .2 )i t t= + A

    46

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    47/81

    50j20

    2 4 5SV = V

    5 02 4 5

    5 0 2 0RV =

    +V

    47

    Capacitor

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    48/81

    p

    c o sv t V t = +

    c

    ci C d t=

    ( ) s in ( )Mi t C V t = +

    ( ) c o s( 9 0 )oM

    i t C V t = + +

    9 0C M

    I C V = +C MV V =

    In a capacitor, current leads voltage by 90048

    CapacitorV V

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    49/81

    C MV V =

    9 0C M

    I C V = +

    9 0C MI C V =

    C CI j C V=

    C C CV I Z= CZ jj C C = =

    49

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    50/81

    50

    Example-6

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    51/81

    V

    51

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    52/81

    52

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    53/81

    V

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    54/81

    1 0 0 3 0V =

    0 .7 0 7 1 5I =

    54

    Example-7

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    55/81

    55

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    56/81

    V

    56

    Currents 5 0 5 0R C

    Z j=

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    57/81

    V

    A

    57

    Example-8

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    58/81

    58

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    59/81

    59

    Example-9

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    60/81

    60

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    61/81

    61

    Example-10

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    62/81

    62

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    63/81

    63

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    64/81

    64

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    65/81

    65

    sinusoidal sources

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    66/81

    66

    Example-11

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    67/81

    67

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    68/81

    68

    Power dissipation in RLC Circuits

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    69/81

    R 2( )v tp

    R=

    2

    0

    1 ( )Ta v g

    v tp d tT R

    =

    v(t)

    2r m sV=R

    m

    V

    2r m s

    a v g r m sp I R=

    2

    mr m s

    I =69

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    70/81

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    71/81

    General Rule ( ) ( )mv t V C o s t =

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    72/81

    m o s =

    1( ) ( )

    T

    p v t i t d tT=

    For a resistor PF = 1, while for inductor and capacitor it is 0

    1 19 0 ; 9 0j L L j = =

    is phase difference between voltage and current72

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    73/81

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    74/81

    1 0 0 1 4 .1 4 4 5L

    V j I= =

    4 5 1 3 5 9 0 = + =

    2 0 .5R r m sP I R W = = 22 1

    2

    R rm s RP I R I R= =74

    Should a Power company charge a person even though power

    consumed is zero?

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    75/81

    L v(t)PowerMeter

    =a v gRwire

    PowerMeter

    v(t)L

    Power is dissipated and

    Rwire

    somebody has to pay for it.

    75

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    76/81

    76

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    77/81

    77

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    78/81

    2sin | | sin | || |

    rms rms rms rms rmsQ V I I Z I I Z

    Z = = =

    78

    Maximum Power Transfer for sinusoidal input

    Z R jX= +

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    79/81

    Z

    ZLVS L L LZ R jX= +L

    22 1= =

    S

    L

    VI =

    2

    2 2

    1 SL L

    VP R=

    2r m s

    L L+ + + L L

    For maximum load power : X = -X

    2

    2S

    L L

    VP R=

    LZ Z=

    L

    Choose RL = R to maximize load power

    Maximum power is transferred to the load when load is

    complex conjugate of source impedance 79

    Maximum Power Transfer for sinusoidal input

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    80/81

    conjugate of source impedance

    Z Z=

    L=

    80

    Maximum Power Transfer for sinusoidal input when load is

    Resistive complex

  • 8/12/2019 L05 Kvs Sinusoidal Steadystate Full

    81/81

    Z

    L

    Maximum power is transferred to the load whenLR Z=

    2 25 0 5 0 7 0 .7 1L

    R Z= = + =

    81