53
An optimal transport problem with bulk/interface interactions eonard Monsaingeon IECL Nancy & GFM Lisbon Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute, Berkeley October 26th, 2021 φ|μ Grupo de Física Matemática da Universidade de Lisboa 1 / 21

L eonard Monsaingeon IECL Nancy & GFM Lisbon

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L eonard Monsaingeon IECL Nancy & GFM Lisbon

An optimal transport problem with bulk/interface interactions

Leonard MonsaingeonIECL Nancy & GFM Lisbon

Dynamics and Discretization: PDEs, Sampling, and OptimizationSimons Institute, Berkeley

October 26th, 2021

〈φ|µ〉 Grupo deFísica Matemáticada Universidade de Lisboa

1 / 21

Page 2: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Motivation

[JKO ’98, Otto ’00] Fokker-Planck = gradient-flow with respect to OT geometry

[Maas ’11, Mielke ’11, Chow-Huang-Li-Zhou ’12] discrete counterpart forirreducible reversible Markov processes

N→∞−−−−→dXt =

√Xt (1− Xt )dBt

or∂tρ = ∆ (x(1− x)ρ)

Moran process i ∈ [[0,N]] Kimura eq. x ∈ [0, 1]

∃ absorbing states, delicate interactions and irreversibility [Chalub M. RibeiroSouza ’21]

Need for an adapted bulk/interface geometry!

(but failed in the end)

2 / 21

Page 3: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Motivation

[JKO ’98, Otto ’00] Fokker-Planck = gradient-flow with respect to OT geometry

[Maas ’11, Mielke ’11, Chow-Huang-Li-Zhou ’12] discrete counterpart forirreducible reversible Markov processes

N→∞−−−−→dXt =

√Xt (1− Xt )dBt

or∂tρ = ∆ (x(1− x)ρ)

Moran process i ∈ [[0,N]] Kimura eq. x ∈ [0, 1]

∃ absorbing states, delicate interactions and irreversibility [Chalub M. RibeiroSouza ’21]

Need for an adapted bulk/interface geometry!

(but failed in the end)

2 / 21

Page 4: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Motivation

[JKO ’98, Otto ’00] Fokker-Planck = gradient-flow with respect to OT geometry

[Maas ’11, Mielke ’11, Chow-Huang-Li-Zhou ’12] discrete counterpart forirreducible reversible Markov processes

N→∞−−−−→dXt =

√Xt (1− Xt )dBt

or∂tρ = ∆ (x(1− x)ρ)

Moran process i ∈ [[0,N]] Kimura eq. x ∈ [0, 1]

∃ absorbing states, delicate interactions and irreversibility [Chalub M. RibeiroSouza ’21]

Need for an adapted bulk/interface geometry!

(but failed in the end)

2 / 21

Page 5: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Motivation

[JKO ’98, Otto ’00] Fokker-Planck = gradient-flow with respect to OT geometry

[Maas ’11, Mielke ’11, Chow-Huang-Li-Zhou ’12] discrete counterpart forirreducible reversible Markov processes

N→∞−−−−→dXt =

√Xt (1− Xt )dBt

or∂tρ = ∆ (x(1− x)ρ)

Moran process i ∈ [[0,N]] Kimura eq. x ∈ [0, 1]

∃ absorbing states, delicate interactions and irreversibility [Chalub M. RibeiroSouza ’21]

Need for an adapted bulk/interface geometry!

(but failed in the end)

2 / 21

Page 6: L eonard Monsaingeon IECL Nancy & GFM Lisbon

In this talk Ω ⊂ Rd is compact and ∂Ω ⊂ Ω

3 / 21

Page 7: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

4 / 21

Page 8: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

Fundamental example: ρ0 = δx0 , ρ1 = δx1 , interpolate xt = (1− t)x0 + tx1

ρt = δxt

x0 x1

mass conservative, based on horizontal displacements

4 / 21

Page 9: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

Fundamental example: ρ0 = δx0 , ρ1 = δx1 , interpolate xt = (1− t)x0 + tx1

ρt = δxt

x0 x1

mass conservative, based on horizontal displacements

4 / 21

Page 10: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

Fundamental example: ρ0 = δx0 , ρ1 = δx1 , interpolate xt = (1− t)x0 + tx1

ρt = δxt

x0 x1xt

v

mass conservative, based on horizontal displacements

4 / 21

Page 11: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

Fundamental example: ρ0 = δx0 , ρ1 = δx1 , interpolate xt = (1− t)x0 + tx1

ρt = δxt

x0 x1xt

v

mass conservative, based on horizontal displacements

4 / 21

Page 12: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

Fundamental example: ρ0 = δx0 , ρ1 = δx1 , interpolate xt = (1− t)x0 + tx1

ρt = δxt

x0 x1xt

v

mass conservative, based on horizontal displacements

4 / 21

Page 13: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = minρ,v

∫ 1

0

∫Ω

1

2|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω

Fundamental example: ρ0 = δx0 , ρ1 = δx1 , interpolate xt = (1− t)x0 + tx1

ρt = δxt

x0 x1

mass conservative, based on horizontal displacements

4 / 21

Page 14: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = minρ,r

∫ 1

0

∫Ω

1

2|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =[(1− t)

√ρ0 + t

√ρ1

]2x0 x1

mass variations, based on vertical displacements

5 / 21

Page 15: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = minρ,r

∫ 1

0

∫Ω

1

2|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =[(1− t)

√ρ0 + t

√ρ1

]2x0 x1

mass variations, based on vertical displacements

5 / 21

Page 16: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = minρ,r

∫ 1

0

∫Ω

1

2|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =[(1− t)

√ρ0 + t

√ρ1

]2x0 x1

mass variations, based on vertical displacements

5 / 21

Page 17: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = minρ,r

∫ 1

0

∫Ω

1

2|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =[(1− t)

√ρ0 + t

√ρ1

]2x0 x1

mass variations, based on vertical displacements

5 / 21

Page 18: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = minρ,r

∫ 1

0

∫Ω

1

2|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =[(1− t)

√ρ0 + t

√ρ1

]2x0 x1

mass variations, based on vertical displacements

5 / 21

Page 19: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = minρ,r

∫ 1

0

∫Ω

1

2|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =[(1− t)

√ρ0 + t

√ρ1

]2x0 x1

mass variations, based on vertical displacements

5 / 21

Page 20: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Unbalanced OT

Definition/theorem (Wasserstein-Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) and κ > 0

WFR2κ(ρ0, ρ1) := min

ρ,v,r

∫ 1

0

∫Ω

1

2

(|vt (x)|2 + κ2|rt (x)|2

)dρt (x) dt

s.t. ∂tρt + div(ρt vt ) = ρt rt

is a distance on M+(Ω) with nice properties [KMV ’16, LMS ’18, CPSV ’18]

Infimal convolution between horizontal Wasserstein and vertical Fisher-Rao

6 / 21

Page 21: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Some convex analysis

∂tρt + div(ρt vt ) = ρt rt

∫ 1

0

∫Ω

1

2

(|vt (x)|2 + κ2|rt (x)|2

)dρt (x) dt

mass/momentum variables, convex 1-homogeneous action

(ρ,G , f ) = (ρ, ρv , ρr) and (|v |2 + κ2r2)ρ =|G |2 + κ2|f |2

ρ

convex constraint/functional over measures (ρ,G , f ) ∈M+ ×Md ×M

∂tρt + div Gt = ft1

2

∫ 1

0

∫Ω

|Gt |2 + κ2|ft |2

ρtdt

7 / 21

Page 22: L eonard Monsaingeon IECL Nancy & GFM Lisbon

The bulk/interface setup(AKA the ring-road )

Key ingredients:

X transport in the city

X transport on the road

X a toll cost κ > 0

Ω = downtown, Γ = ∂Ω = ring-road8 / 21

Page 23: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Bulk/interface interactions

Ω

∂Ω = Γ

ω γ

Think ω = cars in the city Ω, and γ = cars on the road Γ

P⊕(Ω) :=

ρ = (ω, γ) ∈M+(Ω)×M+(Γ) s.t. |ω|+ |γ| = 1

9 / 21

Page 24: L eonard Monsaingeon IECL Nancy & GFM Lisbon

The ring-road distance

Definition/theorem [M ’20]

For ρ0, ρ1 ∈ P⊕(Ω)

W2κ(ρ0, ρ1) = min

∫ 1

0

∫Ω

|Ft |2

2ωtdt +

∫ 1

0

∫Γ

|Gt |2 + κ2|ft |2

2γtdt

s.t.∂tωt + div(Ft ) = 0 in ΩFt · n = ft on ∂Ω

and ∂tγt + div(Gt ) = ft in Γ

is a distance on P⊕(Ω), and minimizing geodesics t 7→ ρt always exist with

%t = ωt + γt ∈ P(Ω).

only coupled through the flux condition

weak formulation allows f 6= 0 even if F = 0

local stoichiometry ω −− γ with rate ∂tγ = f = −∂tω

10 / 21

Page 25: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

ω0

γ0

11 / 21

Page 26: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

ω0

γ0

Step 1: pure Wasserstein transport inside Ω with f = 0,G = 0

finite cost W2Ω <∞

11 / 21

Page 27: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

γ0

Step 1: pure Wasserstein transport inside Ω with f = 0,G = 0

finite cost W2Ω <∞

11 / 21

Page 28: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

γ0

Step 2: pure Wasserstein transport along Γ with F = 0, f = 0

finite cost W2Γ <∞

11 / 21

Page 29: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

Step 2: pure Wasserstein transport along Γ with F = 0, f = 0

finite cost W2Γ <∞

11 / 21

Page 30: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

Step 3: pure Fisher-Rao reaction ω −− γ with F = 0,G = 0 and f > 0

finite cost FR2κ <∞

11 / 21

Page 31: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

Step 3: pure Fisher-Rao reaction ω −− γ with F = 0,G = 0 and f > 0

finite cost FR2κ <∞

11 / 21

Page 32: L eonard Monsaingeon IECL Nancy & GFM Lisbon

A typical proof: Wκ(ρ0, ρ1) < +∞∂tω + div F = 0 in Ω

F · n = f on ∂Ωand ∂tγ + div G = f in Γ

x∗

Conclusion: we just connected any arbitrary ρ0 to ρ∗ = (0, δx∗ ) with finite cost.

11 / 21

Page 33: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

inf(ω,γ)∈L

A

= infω,γ

supφ,ψA+ L = sup

φ,ψinfω,γA+ L

Proposition (Hamilton-Jacobi duality)

W2κ(ρ0, ρ1) = sup

φ,ψ

∫Ωφ1ω1 − φ0ω0 +

∫Γψ1γ1 − ψ0γ0 s.t. φ, ψ ∈ C 1 and

∂tφ+ 12|∇φ|2 ≤ 0 in (0, 1)× Ω

∂tψ + 12|∇ψ|2 + 1

2κ2 |ψ − φ|2 ≤ 0 in (0, 1)× Γ

Corollary

For fixed ρ0, ρ1 the map κ 7→ Wκ(ρ0, ρ1) is monotone ↑

Proof: Sκ′ ⊂ Sκ for κ′ < κ.

12 / 21

Page 34: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

inf(ω,γ)∈L

A = infω,γ

supφ,ψA+ L

= supφ,ψ

infω,γA+ L

Proposition (Hamilton-Jacobi duality)

W2κ(ρ0, ρ1) = sup

φ,ψ

∫Ωφ1ω1 − φ0ω0 +

∫Γψ1γ1 − ψ0γ0 s.t. φ, ψ ∈ C 1 and

∂tφ+ 12|∇φ|2 ≤ 0 in (0, 1)× Ω

∂tψ + 12|∇ψ|2 + 1

2κ2 |ψ − φ|2 ≤ 0 in (0, 1)× Γ

Corollary

For fixed ρ0, ρ1 the map κ 7→ Wκ(ρ0, ρ1) is monotone ↑

Proof: Sκ′ ⊂ Sκ for κ′ < κ.

12 / 21

Page 35: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

inf(ω,γ)∈L

A = infω,γ

supφ,ψA+ L = sup

φ,ψinfω,γA+ L

Proposition (Hamilton-Jacobi duality)

W2κ(ρ0, ρ1) = sup

φ,ψ

∫Ωφ1ω1 − φ0ω0 +

∫Γψ1γ1 − ψ0γ0 s.t. φ, ψ ∈ C 1 and

∂tφ+ 12|∇φ|2 ≤ 0 in (0, 1)× Ω

∂tψ + 12|∇ψ|2 + 1

2κ2 |ψ − φ|2 ≤ 0 in (0, 1)× Γ

Corollary

For fixed ρ0, ρ1 the map κ 7→ Wκ(ρ0, ρ1) is monotone ↑

Proof: Sκ′ ⊂ Sκ for κ′ < κ.

12 / 21

Page 36: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

inf(ω,γ)∈L

A = infω,γ

supφ,ψA+ L = sup

φ,ψinfω,γA+ L

Proposition (Hamilton-Jacobi duality)

W2κ(ρ0, ρ1) = sup

φ,ψ

∫Ωφ1ω1 − φ0ω0 +

∫Γψ1γ1 − ψ0γ0 s.t. φ, ψ ∈ C 1 and

∂tφ+ 12|∇φ|2 ≤ 0 in (0, 1)× Ω

∂tψ + 12|∇ψ|2 + 1

2κ2 |ψ − φ|2 ≤ 0 in (0, 1)× Γ

Corollary

For fixed ρ0, ρ1 the map κ 7→ Wκ(ρ0, ρ1) is monotone ↑

Proof: Sκ′ ⊂ Sκ for κ′ < κ.

12 / 21

Page 37: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

inf(ω,γ)∈L

A = infω,γ

supφ,ψA+ L = sup

φ,ψinfω,γA+ L

Proposition (Hamilton-Jacobi duality)

W2κ(ρ0, ρ1) = sup

φ,ψ

∫Ωφ1ω1 − φ0ω0 +

∫Γψ1γ1 − ψ0γ0 s.t. φ, ψ ∈ C 1 and

∂tφ+ 12|∇φ|2 ≤ 0 in (0, 1)× Ω

∂tψ + 12|∇ψ|2 + 1

2κ2 |ψ − φ|2 ≤ 0 in (0, 1)× Γ

Corollary

For fixed ρ0, ρ1 the map κ 7→ Wκ(ρ0, ρ1) is monotone ↑

Proof: Sκ′ ⊂ Sκ for κ′ < κ.

12 / 21

Page 38: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Optimality and geodesics

W2κ(ρ0, ρ1) = sup

∫Ωφ1ω1 − φ0ω0 +

∫Γψ1γ1 − ψ0γ0 s.t. (φ, ψ) subsolutions

Hopf-Lax monotonicity suggests saturating HJ inequalities

Theorem (certification)

If

∂tω + div(ω∇φ) = 0

∂tγ + div(γ∇ψ) = γ ψ−φκ2

with

∂tφ+ 1

2|∇φ|2 = 0 ω − a.e.

∂tψ + 12|∇ψ|2 + 1

2κ2 |ψ − φ|2 = 0 γ − a.e.

then t 7→ ρt = (ωt , γt ) ∈ P⊕ is a minimizing geodesic between ρ0, ρ1.

allows to check optimality of possible ansatz

determines the built-in Riemannian structure a la Otto

13 / 21

Page 39: L eonard Monsaingeon IECL Nancy & GFM Lisbon

One-point geodesics

In classical OT, Eulerian/Lagrangian duality d2(x0, x1) =W2(δx0 , δx1 )

ρt = δxt

x0 x1xt

v

⇐⇒

minimizing W-geodesics constant-speed particles

14 / 21

Page 40: L eonard Monsaingeon IECL Nancy & GFM Lisbon

One-point geodesics

xR

x0

I

Ω

Γ

Question

Compute the Wκ distance and geodesic between ρ0 = (δx0 , 0) and ρ1 = (0, δxR )?

clearly a 1D problem along I , coordinate r ∈ [0,R] with R = |xR − x0|cannot simply be a traveling Dirac (∞ cost)

14 / 21

Page 41: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

I

0 R r

ω0 γ1

15 / 21

Page 42: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

0 R r

ω0

15 / 21

Page 43: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

0 R rRt

ωt

γt

15 / 21

Page 44: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

0 R rRt

ωtγt

15 / 21

Page 45: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

0 R rRt

ωt

γt

15 / 21

Page 46: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

0 R r

γ1

15 / 21

Page 47: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2κ(ρ0, ρ1) =

1

2

α

α− 1

(R2 + ακ2

)α = 1 +

√1 +

R2

κ2> 2

and the geodesic is

ωt = α

(Rt

r

)α 1

rχ[Rt,R](r)dr and γt = tα

Mass splitting and unbounded speeds 6= classical OT

W2κ(ρ0, ρ1)

κ→∞−−−−→ +∞ and W2κ(ρ0, ρ1)

κ→0−−−→ 12

R2

15 / 21

Page 48: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Idea of proof(clever ansatz + certification)

0 R rX yt

U(y)

ωt

γty ∈ [0,Yt ]

1 superposition of Lagrangian particles (X yt )y∈[0,1] with mass dy

2 constant speeds, only keep y ∈ [0,Yt ]

ωt (•) =

∫ Yt

0δX

yt

(•) dy andd

dtX y

t = U(y)

3 optimize with respect to U(·)

cost =

∫ 1

0

∫ τ(y)

0

1

2dy |U(y)|2dt + “reaction”

16 / 21

Page 49: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Geometrical/topological properties

Theorem

Writing %i = ωi + γi ∈ P(Ω), there holds

W2Ω(%0, %1) ≤ W2

κ(ρ0, ρ1)︸ ︷︷ ︸↑ in κ

≤ W2Ω(ω0, ω1) +W2

Γ(γ0, γ1) (1)

Moreover

Wκ(ρn, ρ)→ 0 iff ωn∗ ω and γn

∗ γ

and (P⊕,Wκ) is complete.

Remarks:

Completeness needed for the “Italian voodoo” [AGS ’08]

For fixed κ all inequalities are sharp but can be strict

In (1) the r.h.s. can be +∞ if |ω0| 6= |ω1| or |γ0| 6= |γ1|

17 / 21

Page 50: L eonard Monsaingeon IECL Nancy & GFM Lisbon

The small- and large-toll limits

Theorem

There holds

limκ→0W2κ(ρ0, ρ1) =W2

Ω(%0, %1) with % = ω + γ

andlim

κ→+∞W2κ(ρ0, ρ1) =W2

Ω(ω0, ω1) +W2Γ(γ0, γ1) ∈ [0,+∞]

and geodesics converge as well (Gamma-limit).

Interpretation:

As κ→ 0 the (ω, γ) cars need not be distinguished and superpose into % = ω + γ

As κ→ +∞ transfer of mass becomes infinitely expensive, hence independentOT problems in Ω, Γ

18 / 21

Page 51: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Perspectives

static formulation ??

gradient-flows and PDEs

dynamical evolution of interfaces [Cances-Merlet?]

complex structures, different flux costs

κ2 |f |2

θ(ω, γ)e.g. θ(ω, γ) = [ω − γ]+

numerics, with T. Gallouet and M. Laborde (ALG2-JKO)

19 / 21

Page 52: L eonard Monsaingeon IECL Nancy & GFM Lisbon

Thank you for listening

20 / 21

Page 53: L eonard Monsaingeon IECL Nancy & GFM Lisbon