38
Kyle Stern Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko John Pelesko An experimental and An experimental and mathematical study of mathematical study of M. oryzae M. oryzae spore germination spore germination and dispersal in the presence and dispersal in the presence of host and non-host volatiles of host and non-host volatiles

Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

  • Upload
    ayanna

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

An experimental and mathematical study of M. oryzae spore germination and dispersal in the presence of host and non-host volatiles. Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko. Magnaporthe oryzae. Fungus is also known as “rice blast” disease - PowerPoint PPT Presentation

Citation preview

Page 1: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Kyle SternKyle SternAmanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John PeleskoAmanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

An experimental and mathematical An experimental and mathematical study of study of M. oryzae M. oryzae spore germinationspore germinationand dispersal in the presence of host and dispersal in the presence of host

and non-host volatilesand non-host volatiles

Page 2: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Magnaporthe oryzae

• Fungus is also known as “rice blast” disease• Thought to be a potential bio-terrorism weapon

during the mid-twentieth century• Kills enough rice per year to feed over 60 million

people worldwide• Also infects barley and wheat crops

Page 3: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The destructive process

• Spore lands on a leaf via dispersal through the air• Spore sticks to the leaf with sticky substance on

surface of its body• Germination begins:

• Moisture• Hard surface• Dark• Room temperature

Page 4: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The destructive process• Spore begins to pump fluids from its body into the end of

the germ tube • Causes a swelling at the end of the germ tube • Appressorium develops• Pressure causes appressorium to swell• Penetration peg infiltrates the plant leaf• Fungus invades the plant• Noticeable brownish-yellow lesions in the plant leaves• Plant dies

Page 5: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Normal barley leaf

Page 6: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

After the infection

Page 7: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Volatile Compounds• Emitted from a plant in gas form• Farnesyl acetate (C17H28O2 ), a volatile of broad

bean, inhibits spread of bean rust fungus• Limonene (C10H16) – volatile of rice• Other volatiles?

– Gas chromatography/ mass spectrometry– None found yet

Limonene:

Page 8: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Two Assays• Germ tube assay

– Do volatile compounds assist in M. oryzae germ tube growth?

– Do germ tubes grow in specific directions?• Spore dispersal/sedimentation assay

– Are spores actively or passively released from their stalks?

– Do volatile compounds assist in M. oryzae spore dispersal?

– At what velocity and acceleration are spores released?– Is there a particular force causing the release?

Page 9: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Germ Tube Assay

• Volatile incorporated into water agar• Spore suspension created using

sporulating colony• Spore suspension dropped on empty plate

of plain water agar• Strip of volatile in water agar cut out and

placed in plate containing spore suspension

Page 10: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Germ Tube Assay• Plate sealed and placed in dark drawer for

24 hours• Viewed at 6.3x magnification under

dissecting microscope

Page 11: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Germ Tube Assay

Page 12: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Germ Tube Assay

Page 13: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Concentration Gradient• Volatiles must diffuse into the agar where the spores

are germinating. • The concentration gradient of a compound in water

agar, C(x,t), is found via the following partial differential equation:

Solution:

SporesVolatile

Page 14: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Dispersal & Sedimentation Assay

• Empty Petri dish prepared with two sterile glass slides

• V8 agar cut in half through the diameter and placed directly on top of glass slides

• Side of V8 agar perpendicular to bottom of dish swabbed with sporulating M. oryzae

• Volatile placed in non-control plates

Page 15: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

• Plate left unsealed and placed in fungal growth chamber for eight to ten days

• Viewed under dissecting microscope

The Dispersal & Sedimentation Assay

M. oryzae

Page 16: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Dispersal & Sedimentation Assay

Page 17: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Dispersal & Sedimentation Assay

Page 18: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Germ Tube Results

• Initial results show that germ tube growth direction is random

Page 19: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Germ Tube ResultsRose Plot

N = 100

N = 45N = 27 Farnesyl Acetate Limonene

Random

M. oryzae M. oryzae

Page 20: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Germ Tube ResultsRose Plot

N = 100000N = 1000

Page 21: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation Results

The Volume of an M. oryzae Spore

- 30 spores measured using ocular micrometer

Mean length: 26.2 μmStandard deviation: 3.585 μm

Mean width: 11.233 μmStandard deviation: 1.612 μm

Page 22: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation Results

The Volume of an M. oryzae Spore

- Is a spore ellipsoidal or something else?

Spore.mw

Page 23: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation Results

The Volume of an M. oryzae Spore

Page 24: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsThe Volume of an M. oryzae Spore

Let w = hV = (πlwh)/6 = 1730.98 μm3

Page 25: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsThe Mass of an M. oryzae Spore

m = ρVm = ρV

Let ρ = 1000 kg/mLet ρ = 1000 kg/m33, the density of water, the density of waterm = 1000 * 1.731 x 10m = 1000 * 1.731 x 10-15-15 kg kg

m = 1.731 x 10m = 1.731 x 10-12-12 kg kg

Page 26: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsThe mechanics of spore dispersal

Solution:

a = radius of the spore,μ = absolute viscosity of air at room temperature,K = shape factor of the ellipsoid given by:

Page 27: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Time it takes a free-falling spore to reach the ground: between 70 and 110 seconds.

Terminal vertical velocity:between 56.96μm/s and 90.86μm/s downward

Velocity of a spore in freefall:

Dispersal & Sedimentation ResultsThe mechanics of spore dispersal

Page 28: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsDistribution of Dispersing Spores

Page 29: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsDistribution of Dispersing Spores

Control

N = 1340

Mean: 510.8527

Std. Dev.: 334.2456

F. Acetate

N = 68

Mean: 556.6809

Std. Dev.: 398.3656

LimoneneN = 289

Mean: 823.1248

Std. Dev.: 397.2171

Page 30: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsRandom Walk of a Spore

• A spore that does not avoid the block of agar will hit it and either – stick to it– bounce off of it

Page 31: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Dispersal & Sedimentation ResultsRandom Walk of a Spore

• The distributions are almost identical.

Stick, N=10000 Bounce, N=10000

Simulated Distance Simulated Distance

Freq

uenc

y

Freq

uenc

y

Page 32: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Conclusions

• Spores are actively released.• Some force is pushing them from their

stalks. • The presence of limonene is assisting in

the dispersal process.

• Germ tubes grow in random directions regardless of any volatiles present in the assay.

Page 33: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Future Work

• GC-MS testing on rice, lima bean, and barley plants

• Determine the diffusion coefficients of the volatiles

• Determine the underlying force causing spores to disperse

Page 34: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

Future Work

• Direct extraction of volatiles

Page 35: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

The Dispersal & Sedimentation Assay• Optimize spore dispersal assay so that healthy leaves can be placed in the dish with the fungus

Page 36: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

References• 1 Trail, F., Gaffoor, I., Vogel, S. 2005. “Ejection mechanics and

trajectory of the ascospores of Gibberella zeae”. Fungal 42, 528-533.

• 2 Clarkson University. “Drag Force and Drag Coefficient”. <http://people.clarkson.edu/~rayb/aerosol/hydrodynamic/hydro4.htm>.

• 3 Mendgen, K., Wirsel, S., Jux, A., Hoffmann, J., Boland, W. 2006. “Volatiles modulate the development of plant pathogenic rust fungi”. Planta 224, 1353-1361.

Page 37: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

AcknowledgmentsThanks:

Howard Hughes Medical Institute

University of Delaware Undergraduate Research Program

University of Delaware Department of Mathematical Sciences

University of Delaware Department of Plant and Soil Sciences

Dr. Harsh Bais

Dr. Nicole Donofrio

Dr. John Pelesko

And…

Page 38: Kyle Stern Amanda Romag, Dr. Harsh Bias, Dr. Nicole Donofrio, Dr. John Pelesko

AcknowledgmentsMy awesome lab partner, Mandy, who had to put up with me.