16
Kriging modelling applied to the clinker production process Gladson Euler Lima Jรบnior 1 , Ascendino Pereira de Araรบjo Neto 1 , Fabricia Araรบjo Sales 1 , Gilvan Wanderley Farias Neto 1 Danilo Pablo Barros Araรบjo 1 ,Romildo Pereira Brito 1 Federal University of Campina Grande 1 , Chemical Engineering Department. May, 2019.

Kriging modelling applied to the clinker production process

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kriging modelling applied to the clinker production process

Kriging modelling applied to the clinker production process

Gladson Euler Lima Jรบnior1, Ascendino Pereira de Araรบjo Neto1, Fabricia Araรบjo Sales1, Gilvan Wanderley Farias Neto1 Danilo Pablo Barros Araรบjo1,Romildo Pereira Brito1

Federal University of Campina Grande1, Chemical Engineering Department. May, 2019.

Page 2: Kriging modelling applied to the clinker production process

Introduction

24 Cement groups (national and international) .

100 plants in operation.

Production capacity of 100 million tonnes yearly.

Search for alternatives for optimization of the clinkerization process.

High fuel consumption; Figure 1 โ€“ Cement plants installed in Brazil

2

Page 3: Kriging modelling applied to the clinker production process

Introduction

Phenomenological modeling and machine learning techniques.

Variables of different types such as thermal and mechanical.

3

Page 4: Kriging modelling applied to the clinker production process

Objectives To perform the analysis and preprocessing of real data of a rotary kiln.

To build a model based on machine learning techniques using the variables of higher degree of coupling with the equipment.

To perform the validation of the generated model.

To optimize the validated model in order to minimize the consumption related to the inputs of the equipment.

4

Page 5: Kriging modelling applied to the clinker production process

Methodology

Figure 3 - Rotary kiln model

Inputs Outputs

Inputs

โ€ข Calciner fuel (tonnes/h) โ€ข Kiln fuel(tonnes/h) โ€ข Feed(tonnes/h) โ€ข Exhaust Speed(%)

Outputs

โ€ข Secondary air temperature(ยฐC) โ€ข O2 in the smoking chamber (%) โ€ข Engine torque(%) โ€ข Free CaO (%) โ€ข Smoking chamber temperature(ยฐC)

Figure 2 - Flowchart of applied methodology

(RQ Kernel)

Preprocessing

5

Page 6: Kriging modelling applied to the clinker production process

Methodology

Figure 4 โ€“ (a)Sampling data to the secondary air temperature;(b)Boxplot technique; (c) Filtered data of secondary air temperature

(a)

(b) (c)

Figure 2 - Flowchart of applied methodology

(RQ Kernel)

Preprocessing

6

Page 7: Kriging modelling applied to the clinker production process

Methodology

Figure 5 โ€“ (a)Sampling data to the O2 in the smoking chamber ;(b)Enlarged behavior; (c)Filtered data to the O2 in the smoking chamber

(a)

(b) (c)

Figure 2 - Flowchart of applied methodology

(RQ Kernel)

Preprocessing

7

Page 8: Kriging modelling applied to the clinker production process

Methodology

๐šผ ๐’™ = ๐‘ฏ๐œท + ๐’(๐’™

ฮฅ ๐‘ฅ = ๐‘ฆ(๐‘ฅ1 , ๐‘ฆ(๐‘ฅ2 , โ€ฆ ๐‘ฆ(๐‘ฅ๐‘› ๐‘‡

๐ป =

โ„Ž1 ๐‘ฅ1 โ„Ž2 ๐‘ฅ1 โ‹ฏ โ„Ž๐‘˜ ๐‘ฅ1

โ„Ž1 ๐‘ฅ2 โ„Ž2 ๐‘ฅ2 โ‹ฏ โ„Ž๐‘˜ ๐‘ฅ2

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ„Ž1 ๐‘ฅ๐‘› โ„Ž2 ๐‘ฅ๐‘› โ‹ฏ โ„Ž๐‘˜ ๐‘ฅ๐‘›

๐›ฝ = ๐›ฝ1, ๐›ฝ2, โ€ฆ ๐›ฝ๐‘˜๐‘‡

Z ๐‘ฅ = ๐‘ง(๐‘ฅ1 , ๐‘ง(๐‘ฅ2 , โ€ฆ ๐‘ง(๐‘ฅ๐‘› ๐‘‡

๐ถ๐‘œ๐‘ฃ ๐‘ง ๐‘ฅ๐‘– , ๐‘ง ๐‘ฅ๐‘— = ๐”ผ ๐‘ง ๐‘ฅ๐‘– โˆ’ ๐‘š ๐‘ฅ๐‘– (๐‘ง ๐‘ฅ๐‘— โˆ’ ๐‘š ๐‘ฅ๐‘— = ๐œŽ2๐พ ๐‘˜ ๐‘ฅ๐‘– , ๐‘ฅ๐‘— ๐œƒ

๐พ ๐‘˜ ๐‘ฅ๐‘– , ๐‘ฅ๐‘— ๐œƒ =

๐‘˜ ๐‘ฅ1, ๐‘ฅ1 ๐œƒ ๐‘˜ ๐‘ฅ1, ๐‘ฅ2 ๐œƒ โ‹ฏ ๐‘˜ ๐‘ฅ1, ๐‘ฅ๐‘› ๐œƒ

๐‘˜ ๐‘ฅ2, ๐‘ฅ1 ๐œƒ ๐‘˜ ๐‘ฅ2, ๐‘ฅ2 ๐œƒ โ‹ฏ ๐‘˜ ๐‘ฅ2, ๐‘ฅ๐‘› ๐œƒ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ ๐‘˜ ๐‘ฅ๐‘›, ๐‘ฅ1 ๐œƒ ๐‘˜ ๐‘ฅ๐‘›, ๐‘ฅ2 ๐œƒ โ‹ฏ ๐‘˜ ๐‘ฅ๐‘›, ๐‘ฅ๐‘› ๐œƒ

(2)

(1)

(3)

(4)

(5)

(6)

(7)

๐‘˜ ๐‘ฅ, ๐‘ฅโˆ— ๐œƒ = ๐œŽ๐‘“2 1 +

๐ท2

2๐›ผ๐œŽ๐‘™2

โˆ’๐›ผ

(8)

Rational Quadratic Kernel:

Figure 2 - Flowchart of applied methodology

(RQ Kernel)

Preprocessing

8

Page 9: Kriging modelling applied to the clinker production process

Variable Mean Values

Calciner fuel (tonnes/h) 15.68

Kiln fuel (tonnes/h) 11.31

Feed (tonnes/h) 399.8

Exhaust Speed (%) 67.7

Secondary air temperature(ยฐC) 1070

O2 in the smoking chamber (%) 4.25

Smoking chamber temperature(ยฐC) 1017

Engine torque(%) 37.9

Free CaO (%) 0.82

Table 1 โ€“ Mean of the variables that compose the base case

Methodology

Figure 2 - Flowchart of applied methodology

(RQ Kernel)

Preprocessing

9

Page 10: Kriging modelling applied to the clinker production process

Restrictions

Secondary air temperature(ยฐC):

๐ท๐‘’๐‘ฃ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›(๐‘†๐‘’๐‘. ๐ด๐‘–๐‘Ÿ๐‘‡๐‘’๐‘š๐‘. โ‰ค 0.05(1070

O2 in the smoking chamber (%):

๐ท๐‘’๐‘ฃ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›(๐‘‚2๐‘†๐‘š๐‘œ. ๐ถโ„Ž๐‘Ž๐‘š. โ‰ค 0.05(4.25

๐‘“๐ถ๐‘‚๐‘€๐‘†๐‘ˆ๐‘€๐‘ƒ๐‘‡๐ผ๐‘‚๐‘ = ๐‘‰๐น๐‘ˆ๐ธ๐ฟ๐พ๐ผ๐ฟ๐‘+ ๐‘‰๐น๐‘ˆ๐ธ๐ฟ๐ถ๐ด๐ฟ๐ถ๐ผ๐‘๐ธ๐‘…

Objective Function

Smoking chamber temperature(ยฐC):

๐ท๐‘’๐‘ฃ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›(๐‘‡๐‘’๐‘š๐‘๐‘†๐‘š๐‘œ.๐ถโ„Ž๐‘Ž๐‘š. โ‰ค 0.05(1017

Engine torque(%):

๐ท๐‘’๐‘ฃ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›(๐ธ๐‘›๐‘”๐‘–๐‘›๐‘’๐‘‡๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’ โ‰ค 0.05(37.9

Methodology

Free CaO (%):

1.1 โ‰ค ๐น๐‘Ÿ๐‘’๐‘’๐ถ๐‘Ž๐‘‚ โ‰ค 1.6 Method

๐‘š๐‘–๐‘›๐‘–๐‘š๐‘–๐‘ง๐‘’(๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘ฅ0,๐‘š๐‘’๐‘กโ„Ž๐‘œ๐‘‘ = โ€ฒ๐ถ๐‘‚๐ต๐‘Œ๐ฟ๐ดโ€ฒ, ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก๐‘  = ๐‘๐‘œ๐‘›๐‘ , ๐‘œ๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  = {โ€ฒ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘ก๐‘’๐‘Ÿโ€ฒ: 5000,โ€ฒ ๐‘๐‘Ž๐‘™๐‘ก๐‘œ๐‘™โ€ฒ = 0.002}

(9)

(10)

(11)

(12)

(13)

(14)

Figure 2 - Flowchart of applied methodology

(RQ Kernel)

Preprocessing

10

Page 11: Kriging modelling applied to the clinker production process

Validation Results and Discussion

Figure 7 โ€“ Histogram for the secondary air temperature error(%)

Figure 6 โ€“ Histogram for the secondary air temperature

Figure 8 โ€“ Error scattering for the secondary air temperature

11

Page 12: Kriging modelling applied to the clinker production process

Secondary air temperature(%)

O2 in the smoking chamber (%)

Smoking chamber temperature(%)

Engine torque (%) Free CaO (%)

Error (%) 1.12 3.67 0.43 1.82 6.59

Results and Discussion Validation

Table 2โ€“ Mean Relative Error

Figure 10 โ€“ Validation data sampling for the Free CaO Figure 9 โ€“ Validation data sampling for the secondary air temperature

12

Page 13: Kriging modelling applied to the clinker production process

Optimization

Variable Base Case Optimization Deviation(%)

Calciner fuel (tonnes/h) 15.68 16.05 -

Kiln fuel (tonnes/h) 11.31 8.96 -

Feed (tonnes/h) 399.8 399.8 -

Exhaust Speed (%) 67.7 67.7 -

Secondary air temperature(ยฐC) 1070 1081 0.97

O2 in the smoking chamber (%) 4.25 4.07 4.39

Smoking chamber temperature(ยฐC) 1017 1001 1.64

Engine torque(%) 37.9 39.8 5.02

Free CaO (%) 0.82 1.16 -

Table 3 โ€“ Optimization results

Results and Discussion

13

Page 14: Kriging modelling applied to the clinker production process

Conclusions

Preprocessing stage.

Construction and validation of the model.

Reduction of 3.2% (1.53 tonnes/h) in fuel consumption.

Industrial reality.

14

Page 15: Kriging modelling applied to the clinker production process

Acknowledgements

15

Page 16: Kriging modelling applied to the clinker production process

Kriging modelling applied to the clinker production process

Gladson Euler Lima Jรบnior1, Ascendino Pereira de Araรบjo Neto1, Fabricia Araรบjo Sales1, Gilvan Wanderley Farias Neto1 Danilo Pablo Barros Araรบjo1,Romildo Pereira Brito1

Federal University of Campina Grande1, Chemical Engineering Department. May, 2019.