44
Konstantinos Drosatos, PhD Assistant Professor Laboratory of Metabolic Biology Center for Translational Medicine Department of Pharmacology Klf5 Regulates Cardiac PPARα and Med13 and affects Fatty Acid Metabolism And Obesity

Klf5 Regulates Cardiac PPARα and Med13 › idc › groups › ahamah... · CD-14. Sepsis-associated cardiac dysfunction etiology. Cardiac ... SGLT2 inhibition — a novel strategy

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Konstantinos Drosatos, PhDAssistant Professor

    Laboratory of Metabolic BiologyCenter for Translational Medicine

    Department of Pharmacology

    Klf5 Regulates Cardiac PPARα and Med13 and affects Fatty Acid Metabolism And Obesity

  • Name: Konstantinos DrosatosTitle: Klf5 Regulates Cardiac PPARα and Med13 and affects Fatty Acid Metabolism And Obesity

    No conflict of interest to be disclosed

  • Sepsis/endotoxic shock

    •Systemic inflammatory response that follows bacterial infection.

    •Hypotension and organ failure.

    Infection/ Injury

    Systemic Inflammatory Response Syndrome

    Sepsis

    Septic shock

    SIRS + Infection

    Severe sepsis

    Sepsis + Organ dysfunction

    Severe sepsis HypotensionVasodilation

    *

    *SIRS = 2 of the following: Temperature ≥38oC or ≤36oC, HR ≥90 beats/min, Respirations ≥20/min, WBC count ≥12,000/mm3 or ≤4,000/mm3 or >10% immature neutrophils

  • Sepsis-associated cardiac dysfunction etiology

    Cardiac dysfunction

    Inflammatory Hypothesis

    ↑TNFα↑ IL-1↑ ΙL-6

    NF-κΒ

    Energetic Hypothesis↓Fatty acid

    oxidation

    ↓PPARα

    LPSLBP

    TLR4CD-14

  • Sepsis-associated cardiac dysfunction etiology

    Cardiac dysfunction

    Inflammatory Hypothesis

    ↑TNFα↑ IL-1↑ ΙL-6

    NF-κΒ

    Energetic Hypothesis↓Fatty acid

    oxidation

    ↓PPARα

    LPSLBP

    TLR4CD-14

  • Endothelial cell

    Cardiomyocyte

    Lipoprotein lipaseFatty acid

    O

    OH.

    HSPG

    Chylomicron

    O

    OH.

    Chyloremnant

    O

    OH.

    VLDL

    GPI-HBP1HSPGGPI-HBP1

    Albumin

    O

    OH.

    O

    OH.

    Chyloremnant

    VLDLr

    VLDL

    LRP LRPCD36

    O

    OH.

    O

    OH.

    O

    OH.

    O

    OH.

    O

    OH.

    O

    OH.

    VLDLr

    O

    SCoA.

    O

    OH. O OH.

    O

    OH.

    O

    SCoA.

    O

    SCoA.

    O

    SCoA.

    ACSO

    Ο.

    O

    Ο.

    O

    Ο.

    - C|

    - C|

    - C

    TriglyceridesO

    Ο.

    - C|

    - C|

    - C

    O

    Ο.

    O

    Ο.

    - C|

    - C|

    - C

    DAG MAG

    GPATMGATDGAT

    ATGL HSL MGL β-oxidation

  • Peroxisome Proliferator Activating Receptors PPARs

    Nuclear receptors family members

    Isoforms Major function Natural ligands Synthetic ligands

    PPARα Fatty acid oxidation

    Fatty acids Fibrates, WY14643

    PPARγ Lipogenesis & Fatty acid oxidation

    Fatty acidsProstanoid

    Thiazolidinediones (TZD)

    PPARδ Fatty acidoxidation

    Prostacyclins, FAs GW0742 Wikipedia

  • Stimulation of cardiac fatty acid oxidation and energy productiontreats septic cardiac dysfunction

  • Inhibition of JNK prevents inhibition of cardiac PPARα and FAO and protects cardiac function in sepsis

    LPS-induced activation of JNK suppressedPPARα gene expression and Fatty AcidOxidation

    Inhibition of JNK stimulated PPARα geneexpression, prevented suppression of FAOand improved cardiac function, despiteelevated inflammation

    Drosatos K. et. al., Journal of Biological Chemistry, Oct 2011

  • ↓PPARα

    AP1 binding site

    PPARα promoter

    c-junAP1

    partner

    PPPFatty acid oxidation

    Cardiac dysfunction

    LPSLBP

    CD-14TLR4

    c-jun AP1 partnerPPP

    JNKP

    What is the role of c-Jun in ppara gene regulation?

  • -800bp

    -800bp

    -740bp

    -740bp

    Sense

    Anti-sense

    Sense

    Anti-sense

    Does c-Jun bind on the PPARα promoter and inhibit PPARα gene expression?

  • • Zinc-finger proteins.

    • Repressing or activating transcriptional function.

    • KLF2, KLF3, KLF7 and KLF15 inhibit PPARγ expression

    and adipogenesis

    • KLF4, KLF5 and KLF6 induce PPARγ and adipogenesis

    • KLF5 promotes cardiac hypertrophy

    • KLF5+/- mice have increased FA oxidation in muscle and

    are resistant in diet-induced obesity although they

    consume more food.

    KLFs – Krüppel-like factors

    Beth B. Mcconnell & Vincent W. YangPhysiol Rev 90: 1337–1381, 2010

  • KLF5 and KLF6 show the most prominent increase in LPS-treated C57BL/6 mice

    PPARα

  • William C. ClaycombLSU Health Sciences Center

    0

    0.5

    1

    1.5

    2

    2.5

    CTRL LPS CTRL LPS CTRL LPS

    PPARα KLF5 KLF6

    *

    Gen

    e ex

    pres

    sion

    (fol

    d-ch

    ange

    )

    *

    *p

  • c-junAP1

    partner

    PPP

    KLF5

    PPARα promoter

    Hypothesis: c-Jun and KLF5 are negative regulators of PPARα

    (-) (-)

  • Gen

    e ex

    pres

    sion

    (AU

    )

    c.a. c-Jun decreases while KLF5 increases PPARα gene expression levels in HL-1 cells

    0

    1

    2

    3

    4

    5

    KLF5 PPARα

    Gen

    e ex

    pres

    sion

    (fol

    d-ch

    ange

    )

    AdGFP

    AdKLF5 (high conc.)

    **

    ***

    *p

  • Potential KLF and c-Jun binding sites on PPARa promoter

    0

    1

    2

    3

    4

    5

    6

    (cJunAb)

    (IgGAb)

    (cJunAb)

    (IgGAb)

    Ad-GFP Ad-cJun-Asp

    cJun

    enr

    ichm

    ent

    **

    01

    2

    345

    6

    78

    Ad-GFP(KLF5Ab)

    Ad-GFP(IgG Ab)

    Ad-KLF5(KLF5Ab)

    Ad-KLF5(IgG Ab)

    KLF5

    enr

    ichm

    ent

    **

    -792/-772 bp (PPARa promoter)

    00.5

    11.5

    22.5

    33.5

    44.5

    5

    (cJunAb)

    (IgGAb)

    (cJunAb)

    (IgGAb)

    Ad-GFP Ad-cJun-Asp

    cJun

    enr

    ichm

    ent

    **

    0

    1

    2

    3

    4

    5

    6

    (KLF5Ab)

    (IgGAb)

    (KLF5Ab)

    (IgGAb)

    Ad-GFP Ad-KLF5

    KLF5

    enr

    ichm

    ent

    -719/- 698 bp (PPARa promoter)

  • c-jun AP1 partnerPPP

    KLF5

    PPARα promoter

    c-Jun and KLF5 compete for binding on PPARα promoter

    (-) (+)

  • LPS-induced binding of c-Jun on PPARa promoter prohibits binding of KLF5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    CTRL (cJun Ab) LPS (cJun Ab) CTRL (KLF5 Ab) LPS (KLF5 Ab)

    -792/-772 bp (PPARa promoter)

    *

    NS

    *p

  • XKLF5loxP/loxPαMHC-Cre-KLF5+/+

    αMHC-Cre-KLF5+/loxP KLF5loxP/loxP

    X

    αMHC-KLF5-/-

    Provided by Prof. Jeffrey WhitsettCincinnati Children’s Hospital Medical Center

    Generation of cardiomyocyte-specific KLF5-/- mouse model

  • 0

    10

    20

    30

    40

    50

    60

    floxed αMHC-KLF5-/-

    FS (%)

    0

    0.5

    1

    1.5

    2

    2.5

    floxed αMHC-KLF5-/-

    LVIDS

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    floxed αMHC-KLF5-/-

    LVIDd

    αMHC-KLF5-/- have normal cardiac function

  • *

    KLF5

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    CTRL aMHC-KLF5-/-

    PPARα

    **

    *p

  • Cardiomyocyte-specific ablation of KLF5 reduces cardiac PPARα and FAO-related gene expression

  • Reduced cardiac PPARα is associated with cardiac lipotoxicity

    Is diabetes associated with changes in cardiac KLF5 and PPARα?

    C57BL/6

    CTRL (saline) Diabetes (STZ)

  • Streptozotocin-induced diabetes induces mild cardiac dysfunction in C57BL/6 mice

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    45%

    50%

    wt

    Frac

    tiona

    l Sho

    rten

    ing

    (%)

    CTRL STZ

    *

  • Diabetes reduces cardiac KLF5 and PPARα gene expression

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    KLF5 PPARα

    Gen

    e ex

    pres

    sion

    (fol

    d-ch

    ange

    )

    fl/fl

    fl/fl + STZ

    αMHC-KLF5-/- + STZ

    *p

  • Glucose elevation drives KLF5 and PPARα downregulation

    HL-1 cells

    CTRL Glucose (1 mg/ml, 24h)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    KLF5 PPARα

    CTRL

    Glucose

    ***

    ***

    n = 5-6

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    Glut1 Glut4 PDK4 AOX Cpt1b LCAD VLCAD

    CTRL

    Glucose*

    *

    *** ***

    n = 5-6

    *********

  • Hyperglycemic ob/ob mice have reduced cardiac KLF5 and PPARα

    **

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    KLF5 PPARα

    wt

    ob/ob

    ***

    **

    n ≥ 4

    Type-II diabetes model

  • Glucose is reabsorbed prior to excretion through kidneys

    Nature Reviews Drug Discovery (July 2010)SGLT2 inhibition — a novel strategy for diabetes treatment

    Edward C. Chao & Robert R. Henry

  • Correction of hyperglycemia with SGLT2 inhibition restored KLF5 and PPARα levels in C57BL/6 mice

    SGLT2Pharmacological inhibitorDapagliflozin Anti-sense-SGLT2 oligo

  • Floxed

    HF diet

    20

    22

    24

    26

    28

    30

    32

    Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

    WTaMHC-KLF5-/- * *

    *

    *p

  • αMHC-KLF5-/-Floxed αMHC-KLF5-/-Floxed

    *

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    05

    10152025303540

    *

    Wei

    ght g

    ain

    (%)

    WAT

    wei

    ght (

    g)

    αMHC-KLF5-/- mice gain more weight in HF diet

  • CTRL

    αMHC-KLF5-/-

    High fat-fed αMHC-KLF5-/- mice have larger adipocytes in WAT and higher lipid accumulation in BAT

    CTRL

    αMHC-KLF5-/-

  • HFD-fed αMHC-KLF5-/- mice have increased expression of lipid metabolism markers in WAT

    0

    2

    4

    6

    8

    10

    12

    PPARγ2 PPARγ1 LPL CD36 DGAT2 GLUT4

    Gen

    e ex

    pres

    sion

    (fol

    d-ch

    ange

    )

    fl/fl

    αMHC-KLF5-/-

    **

    *********

    ***

    n = 4

    ***

  • αMHC-KLF5-/-

    HF diet

    More profound body weight

    increase

    A change in cardiomyocytes promotes DIO!

  • Grueter CE et al.; A cardiac microRNA governs systemicenergy homeostasis by regulation of MED13. Cell. 2012

    αMHC-MED13-/- mice gain more weight in HF diet

  • Gen

    e ex

    pres

    sion

    (fol

    d-ch

    ange

    )

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    MED13

    *** ***

    ***

    αMHC-KLF5-/- mice have reduced cardiac MED13 expression without changes in miR-208

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    miR-208am

    iR-2

    08a

    expr

    essi

    on (f

    old-

    chan

    ge)

    fl/fl male

    αMHC-KLF5-/- male

    fl/fl female

    αMHC-KLF5-/- female

  • 0

    0.5

    1

    1.5

    2

    2.5

    AdGFP AdKLF5 AdGFP AdKLF5

    KLF5 MED13

    Adenovirus-mediated overexpression of KLF5 increases MED13 gene expression in HL-1 cells

    **

    Ad-KLF5 provided by Ceshi Chen, Ph.D.Center for Cell Biology and Cancer Research

    Albany Medical College

  • KLF5 binds the promoter of mMED13 gene

    0.00.51.01.52.02.53.03.54.04.55.0

    Ad-GFP(KLF5 Ab)

    Ad-GFP(IgG Ab)

    Ad-KLF5(KLF5 Ab)

    Ad-KLF5(IgG Ab)

    KLF5

    enr

    ichm

    ent

    -730 bp

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    Ad-GFP(KLF5Ab)

    Ad-GFP(IgG Ab)

    Ad-KLF5(KLF5Ab)

    Ad-KLF5(IgG Ab)

    -142 bp

    KLF5

    enr

    ichm

    ent

    *

  • ↑MED13

    KLF binding site

    MED13promoter

    KLF5

    Increased systemic metabolic

    rate

    KLF5

    ↓MED13

    KLF binding site

    MED13promoter

    Obesity

    KLF5X Reduced systemic metabolic

    rate

    Proposed model

  • Summary

    1.KLF5 and cJun compete for binding on PPARα gene promoter insepsis.

    2.KLF5 is a positive regulator of PPARα gene expression that isdriven by hyperglycemia.

    3.KLF5 is a positive regulator of MED13 gene expression.

    4.Cardiomyocyte-specific KLF5 deletion leads to downregulationof MED13 and accelerates diet-induced obesity.

  • Long-term plan

    KLF5

    Activation

    ↑Cardiac PPARα ↑Cardiac MED13

    Improved cardiac fatty acid oxidationand alleviation of

    cardiac lipotoxicity

    Improved systemic metabolism and

    inhibition of obesity

  • Acknowledgements

    Ira J. Goldberg

    Leslie Anderson

    P. Christian Schulze

    Yunying Hu

    Chad Trent

    K99/R00 award, 2012-2017

    Nina Pollak

    Iannis AifantisHHMI & NYU

    Panos Ntziachristos

    Temple University

    Mesele Valenti Walker Lyons

    New York UniversityUniv of Graz, Austria

    Columbia University

    Florian Willecke

  • Laboratory of Metabolic BiologyCenter for Translational Medicine

    Department of PharmacologyTemple University School of Medicine

    www.Drosatos.com

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Stimulation of cardiac fatty acid oxidation and energy production�treats septic cardiac dysfunctionInhibition of JNK prevents inhibition of cardiac PPARα and FAO and protects cardiac function in sepsisSlide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Reduced cardiac PPARα is associated with cardiac lipotoxicitySlide Number 25Diabetes reduces cardiac KLF5 and PPARα gene expressionGlucose elevation drives KLF5 and PPARα downregulationHyperglycemic ob/ob mice have reduced cardiac KLF5 and PPARαSlide Number 29Correction of hyperglycemia with SGLT2 inhibition �restored KLF5 and PPARα levels in C57BL/6 miceSlide Number 31Slide Number 32Slide Number 33HFD-fed αMHC-KLF5-/- mice have increased expression of lipid metabolism markers in WATSlide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44