218
Kinetic studies of propane oxidation on Mo and V based mixed oxide catalysts vorgelegt von M. Sc. Chemiker Lénárd-István Csepei aus Zalau/Zilah/Zillenmarkt (Rumänien) Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. A. Thomas Berichter/Gutachter: Prof. Dr. R. Schomäcker Berichter/Gutachter: Prof. Dr. R. Schlögl Berichter/Gutachter: Prof. Dr. M. Muhler Tag der wissenschaftliche Aussprache: 19. August 2011 Berlin 2011 D 83

Kinetic studies of propane oxidation on Mo and V based ... · PDF fileKinetic studies of propane oxidation on ... Timpe for catalyst synthesis; ... gas shift reaction

  • Upload
    dinhnhi

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • Kinetic studies of propane oxidation on

    Mo and V based mixed oxide catalysts

    vorgelegt von

    M. Sc. Chemiker Lnrd-Istvn Csepei

    aus Zalau/Zilah/Zillenmarkt (Rumnien)

    Von der Fakultt II Mathematik und Naturwissenschaften der Technischen Universitt Berlin

    zur Erlangung des akademischen Grades Doktor der Naturwissenschaften

    - Dr. rer. nat. -

    genehmigte Dissertation

    Promotionsausschuss: Vorsitzender: Prof. Dr. A. Thomas Berichter/Gutachter: Prof. Dr. R. Schomcker Berichter/Gutachter: Prof. Dr. R. Schlgl Berichter/Gutachter: Prof. Dr. M. Muhler Tag der wissenschaftliche Aussprache: 19. August 2011

    Berlin 2011 D 83

  • i

    Acknowledgements/Danksagung

    The work presented in this thesis was carried out in the time interval between February

    2007 and June 2011 at the Inorganic Chemistry Department of the Fritz Haber Institute of

    the Max Planck Society in Berlin.

    Foremost, I would like to thank to Prof. Dr. Robert Schlgl for giving me the opportunity

    to carry out the doctoral studies at this Institute. In the same time, I would like to express

    my gratitude for giving me this interesting topic and the constructive criticism during the

    discussions. I also would like to thank Dr. Annette Trunschke for introducing me in the

    topic of the present thesis, for the fruitful discussions and new ideas and for contributing

    to my professional development.

    The substantial contributions of the department members to this work are also

    acknowledged. I thank Yury Kolen`ko, Almudena Celaya Sanfiz, ZiRong Tang and Olaf

    Timpe for catalyst synthesis; Gisela Lorenz for the nitrogen physisorption experiments;

    Gisela Weinberg and Wei Zhang for the SEM-EDX and the STEM measurements; Edith

    Kitzelmann for the XRD measurements; Sabine Wrabetz for the microcalorimetric

    experiments; Raoul Blume, Michael Hvecker and Detre Teschner for the XPS

    experiments and data analysis; Benjamin Frank, Kazu Amakawa, Pter Schnrch, Tom

    Cotter, Manfred Schuster, Anton Nagy and Sylvia Reiche for the helpful discussions.

    Special thanks are addressed to Siegfried Engelschalt and Raoul Naumann d`Alnoncourt

    for their help in setting up the reactor system and to Frank Girgsdies for the in-situ XRD

    experiment and data analysis on the effect of steam and the redox potential. Finally, the

    help of all the members of the department and the workshops is acknowledged.

    Last but not least, I would like to express my gratitude to my parents and my former

    supervisor Dr. Csaba Bolla for encouraging me to undertake the doctoral studies abroad

    and for their continuous moral support along these years.

  • ii

    To my parents

  • iii

    Eidesstattliche Versicherung Hiermit erklre ich, dass ich die Dissertation selbst angefertigt habe. Die Arbeit enthlt auch in Anteilen keine Kopien andere Arbeiten. Verwendete Hilfsmittel und Quellen sind vollstndig angegeben. Die Namen alle Wissenschaftler die mit mir zusammengearbeiten haben, sind in den Anlagen vollstndig genannt.

  • iv

    Abstract

    The present work concentrates on the systematic kinetic study of the one-step propane

    oxidation to acrylic acid over a well defined, phase-pure M1 MoVTeNbOx catalyst. The

    bulk structural stability of the catalyst is a key issue for kinetic studies. The stability of

    the phase-pure M1 MoVTeNbOx catalyst under various conditions (steam-containing,

    steam-free, net reducing, stoichiometric and net oxidizing feed compositions) was

    evidenced by an in-situ XRD experiment which suggested that the bulk structure is

    homogeneous and constant under reaction conditions. Thereby, the heterogeneously

    catalyzed reactivity is exclusively determined by the surface properties, which in turn, are

    controlled by the chemical potential of the gas phase.

    A kinetic study on the reaction variables (temperature, steam content and redox potential)

    was carried out. Stable catalytic performance was observed for all the conditions. Cycling

    experiments showed the reversibility of the conversion and selectivity decrease upon

    exposing the catalyst to dry and reducing feed, respectively. Further catalytic experiments

    revealed that the reactivity spans over 5 orders of magnitude in the order of acrolein

    oxidation>>propylene oxidation>propane oxidation>>carbon monoxide oxidation~water

    gas shift reaction. The negligible CO oxidation activity suggested that the CO and CO2

    are formed via two independent pathways in propane oxidation over M1. The stage-wise

    addition of oxygen lead to an improvement of the catalytic performance by 5% compared

    to the conventional single-tube reactor. Further experiments in the two-stage reactor

    revealed that the phase-pure M1 is not reoxidized by N2O. The addition of propylene in

    the two-stage reactor revealed a slight competitive adsorption on the active sites with

    propane, which observation was supported by the results of microcalorimetric

    experiments. On the other hand, the addition of CO and CO2 in the two-stage reactor

    showed that these products do not adsorb competitively with the educt or intermediates.

    In the literature much of the kinetic data was reported for ill-defined catalyst surfaces. In

    contrast to that, the present work reports the kinetic study of propane selective oxidation

    to acrylic acid on a well defined phase-pure and structurally stable M1 MoVTeNbOx

    catalyst. This study may contribute to the better kinetic and mechanistic understanding of

    the propane selective oxidation reaction.

  • v

    Zusammenfassung

    Die vorliegende Arbeit enthlt systematische kinetische Untersuchungen zur einstufigen,

    selektiven Oxidation von Propan zu Acrylsure an wohl definierten, phasenreinen M1-

    MoVTeNbOx-Katalysatoren. Die Stabilitt der phasenreinen M1-Katalysatoren unter

    verschiedenen Reaktionsbedingungen (in Wasserdampf, wasserdampffrei, netto-

    reduzierende, stchiometrische und netto-oxidierende Feed-Zusammensetzung) konnte in

    In-situ-XRD-Experimenten bewiesen werden. Da die Festkrperstruktur homogen ist und

    bestndig unter Reaktionsbedingungen, kann die unterschiedliche Reaktivitt des

    heterogenen Katalysators allein durch seine Oberflcheneigenschaften bestimmt werden,

    welche wiederum stark vom chemischen Potential der Gasphase abhngen.

    Es wurden kinetische Studien zu den Reaktionsparametern Temperatur, Wasserdampf-

    anteil und Redoxpotential durchgefhrt, wobei die Systeme unter allen Bedingungen

    stabile Katalysatorleistungen aufwiesen. Zyklische Experimente zeigten die Reversibilitt

    des Umsatz- und Selektivittsrckgangs, sowohl unter wasserfreiem als auch

    reduzierendem Feed. Zudem konnten in den Katalysetests Unterschiede in den

    Reaktivitten von bis zu 5 Grenordnungen ermittelt werden, mit Acrolein >> Propylen

    > Propan >> CO-Oxidation~Wassergas-Shift. Die bestimmte Oxidationsaktivitt von CO

    war vernachlssigbar klein, was die Bildung von CO und CO2 auf zwei voneinander

    unabhngigen Reaktionspfaden suggeriert. ber eine stufenweise Zufuhr von Sauerstoff

    konnte eine Steigerung der katalytischen Aktivitt um 5% im Vergleich zum

    konventionellen, einstufigen Reaktor erreicht werden. Die Versuche im zweistufigen

    Reaktor zeigten auch, dass der phasenreine M1-Katalysator in N2O nicht reoxidiert.

    Weiterhin konnte unter Zugabe von Propylen im zweistufigen Reaktor eine teilweise

    kompetitive Adsorption zu Propan an die aktiven Zentren des Katalysators beobachtet

    werden. Im Gegensatz dazu, stand die Adsorption von CO und CO2 nicht in Konkurrenz

    mit der Adsorption von Edukten oder Zwischenprodukten.

    Die kinetischen Untersuchungen der, im Gegensatz zu den meisten Systemen in der

    Literatur, wohl definierten, strukturstabilen M1-MoVTeNbOx-Katalysatoren knnten

    einen entscheidenden Beitrag zum Verstndnis von Kinetik und Reaktionsmechanismus

    der Propanoxidation leisten.

  • vi

    Table of contents

    Acknowledgements/Danksagung ............i Eidesstattliche Versicherung...iii Abstract .....iv Zusammenfassung ....v Table of contents ..vi

    Chapter 1 Introduction and motivation .....1 1.1 Introduction ......1 1.2. Overview on the literature results .......3

    1.2.1. The selective oxidation of propylene .......3 1.2.2. Oxidative dehydrogenation of propane ....8 1.2.3. The direct oxidation of propane to acrylic acid ..13 1.2.3.1. Generalities ..13

    1.2.3.2. Identification of propane selective oxidation pathways ..14 1.2.3.3. Active sites on MoVTeNbOx catalysts ........20 1.2.3.4. The effect of acid-base character of the catalyst .. ...24 1.2.3.5. The effect of steam ......25 1.2.3.6. The effect of redox potential of gas phase and oxygen species27

    1.2.4. Reactor designs, operation modes ...31 1.2.4.1. Conventional laboratory scale reactors 31 1.2.4.2. Catalytic membrane- and multi-stage reactor designs .33

    1.2.5. Reaction kinetics .37 1.3. Motivation ..38 References Chapter 1 40

    Chapter 2. Experimental methods .44 2.1. Physico-chemical characterization of the catalysts 44

    2.1.1. Nitrogen physisorption 44 2.1.2. X-Ray Diffraction ...44 2.1.3. Scanning Electron Microscopy (SEM/EDX) and Scanning Transmission Electron Microscopy (STEM) 45 2.1.4. X-Ray Photoelectron Spectroscopy (XPS) .45 2.1.5. Microcalorimetry 45

    2.2. The experimental setup for propane oxidation ..46 2.2.1. The gas dosi