19
1 / 19 Killing Rayleigh’s Criterion by Quantum Measurements * (arXiv:1511.00552) Mankei Tsang, Ranjith Nair, and Xiaoming Lu Department of Electrical and Computer Engineering Department of Physics National University of Singapore [email protected] http://mankei.tsang.googlepages.com/ 18 November 2015 * This work is supported by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2011-07.

Killing Rayleigh’s Criterion by Quantum Measurements ...1 / 19 Killing Rayleigh’s Criterion by Quantum Measurements ∗ (arXiv:1511.00552) Mankei Tsang, Ranjith Nair, and Xiaoming

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1 / 19

    Killing Rayleigh’s Criterion by Quantum Measurements ∗

    (arXiv:1511.00552)

    Mankei Tsang, Ranjith Nair, and Xiaoming Lu

    Department of Electrical and Computer EngineeringDepartment of Physics

    National University of Singapore

    [email protected]

    http://mankei.tsang.googlepages.com/

    18 November 2015

    ∗This work is supported by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2011-07.

  • Executive Summary

    2 / 19

    (a)

    (b)

  • Imaging of One Point Source

    3 / 19

  • Point-Spread Function of Hubble Space Telescope

    4 / 19

  • Inferring Position of One Point Source

    5 / 19

    ■ Given N detected photons on camera, root-mean-square error of estimating X1:

    ∆X1 =σ√N, σ ∼ λ

    sinφ. (1)

    ■ Assume classical source (e.g., thermal source,laser source).

    ■ Derive from signal-to-noise ratio, classi-cal/quantum Cramér-Rao bounds, etc.

    ■ Known since Helstrom, Bobroff, etc.

  • Superresolution Microscopy

    6 / 19

    ■ PALM, STED, STORM, etc.: Make fluorescentparticles radiate in isolation. Estimate their po-sitions accurately by locating the centroids.

    ■ https://www.youtube.com/watch?v=2R2ll9SRCeo

    (25:45)■ require special fluorescent particles (doesn’t

    work for stars), slow■ e.g., Betzig, Optics Letters 20, 237 (1995).

    https://www.youtube.com/watch?v=2R2ll9SRCeo

  • Two Point Sources

    7 / 19

    (a)

    (b)

    ■ Rayleigh’s criterion (1879): requires θ2 &σ (heuristic)

  • Centroid and Separation Estimation

    8 / 19

    ■ Bettens et al., Ultramicroscopy 77, 37 (1999);■ Ram, Ward, Ober, PNAS 103, 4457 (2006)■ Assume incoherent sources, Poissonian statis-

    tics for CCD■ classical Cramér-Rao bound for centroid:

    ∆θ1 ∼σ√N, (2)

    ■ CRB for separation estimation: two regimes

    ◆ θ2 ≫ σ:

    ∆θ2 ∼2σ√N, (3)

    ◆ θ2 ≪ σ:

    ∆θ2 →2σ√N

    ×∞ (4)

    Bound blows up when the two spots overlapsignificantly.

    ◆ Curse of Rayleigh’s criterion◆ Localization microscopy: must avoid over-

    lapping spots.

    (a)

    (b)

  • Fisher Information and Cramér-Rao Bound

    9 / 19

    ■ Cramér-Rao bounds:

    ∆θ1 ≥1

    J (ipc)11∆θ2 ≥

    1√

    J (ipc)22(5)

    J (ipc) is Fisher information for CCD (image-plane photon counting).■ Assume Gaussian PSF, similar behavior for other PSF■ Rayleigh’s curse: ∆θ2 blows up when Rayleigh’s criterion is violated.

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ

    2)

    0

    1

    2

    3

    4Quantum and classical Fisher information

    K11

    J(ipc)11

    K22

    J(ipc)22

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds

    1/K22

    1/J(ipc)22

  • Quantum Cramér-Rao Bounds

    10 / 19

    ■ CCD is just one measurement method. Quantum mechanics allows infinite possibilities.■ Helstrom: For any measurement (POVM) of an optical state ρ⊗M (M here is number of copies,

    not magnification)

    Σ ≥ J−1 ≥ K−1, (6)

    Kµν =M trLµLν + LνLµ

    2ρ, (7)

    ∂ρ

    ∂θµ=

    1

    2(Lµρ+ ρLµ) . (8)

    ■ Coherent sources: Tsang, Optica 2, 646 (2015).■ Mixed states [Braunstein and Caves, PRL 72, 3439 (1994)]:

    ρ =∑

    n

    Dn |en〉 〈en| , (9)

    Lµ = 2∑

    n,m;Dn+Dm 6=0

    〈en| ∂ρ∂θµ |em〉Dn +Dm

    |en〉 〈em| . (10)

  • Quantum Optics for Thermal Sources

    11 / 19

    ■ Mandel and Wolf, Optical Coherence and Quantum Optics; Goodman, Statistical Optics■ Consider a thermal source, e.g., stars, fluorescent particles.■ Coherence time ∼ 10 fs. Within each coherence time interval, average photon number ǫ ≪ 1 at

    optical frequencies (visible, UV, X-ray, etc.).

    ■ Quantum state at image plane:

    ρ ≈ (1− ǫ) |vac〉 〈vac|+ ǫ2(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|) , 〈ψ1|ψ2〉 6= 0, (11)

    |ψ1〉 =∫ ∞

    −∞

    dxψ(x−X1) |x〉 , |ψ2〉 =∫ ∞

    −∞

    dxψ(x−X2) |x〉 , |x〉 = a†(x) |vac〉 . (12)

    ■ Multiphoton coincidence events are even rarer because ǫ≪ 1.■ Reproduces standard shot-noise model for photon counting (also used by Ram et al.).■ Sudarshan-Glauber■ Similar model for stellar interferometry in Tsang, PRL 107, 270402 (2011).

  • Classical and Quantum Cramér-Rao Bounds

    12 / 19

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ2)

    0

    1

    2

    3

    4Quantum and classical Fisher information

    K11

    J(ipc)11

    K22

    J(ipc)22

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds

    1/K22

    1/J(ipc)22

    ■ For any ψ(x) with constant phase,

    ∆θ2 ≥1√K22

    =1

    ∆k√N. (13)

    (For Gaussian ψ, σ = 1/(2∆k))■ Fujiwara JPA 39, 12489 (2006): there exists a POVM such that ∆θµ → 1/

    Kµµ asymptoticallyfor large M .

  • Hermite-Gaussian basis

    13 / 19

    ■ Consider POVM measuring the photon in Hermite-Gaussian basis:

    E0 = |vac〉 〈vac| , (14)E1(q) = |φq〉 〈φq | , (15)

    |φq〉 =∫ ∞

    −∞

    dxφq(x) |x〉 , (16)

    φq(x) =

    (

    1

    2πσ2

    )1/4

    Hq

    (

    x√2σ

    )

    exp

    (

    − x2

    4σ2

    )

    . (17)

    ■ Assume PSF ψ(x) is Gaussian.

    1√

    J (HG)22=

    1√K22

    =2σ√N. (18)

    ■ Maximum-likelihood estimator can asymptotically saturate the classical bound.

  • Spatial-Mode Demultiplexing (SPADE)

    14 / 19

  • Binary SPADE

    15 / 19

    image plane

    leaky modes

    leaky modes

    ✸✷❂❁

    ✵ � ✹ ✻ ✽ ✶✵

    ❋✐s

    ❤❡r

    ✐♥❢♦

    r♠❛

    ✁✐♦

    ♥✴

    ✭◆✂

    ✄☎

    ✆ ✮

    ✵✵✳�

    ✵✳✹✵✳✻

    ✵✳✽✶

    ❈❧✝✞✞✟❝✝❧ ✠✟✞✡☛☞ ✟✌✍✎☞✏✝✑✟✎✌

    ❏✒❍✓✔

    ✕✕ ✖ ❑✕✕

    ❏✒✗♣✘✔

    ✕✕

    ❏✒❜✔

    ✕✕

    ✸✷❂�

    ✵ ✶ ✁ ✂ ✹ ✺

    ❋✐s

    ❤❡r

    ✐♥❢♦

    r♠❛✄

    ✐♦♥

    ✴✭✿

    ☎ ◆✆✝

    ❲☎ ✮

    ✵✵✳✁

    ✵✳✹✵✳✻

    ✵✳✽✶

    ✞✟✠✡☛☞ ✟✌✍✎☞✏✑✒✟✎✌ ✍✎☞ ✠✟✌❝ P❙✞❑✓✓

    ❏✔✕♣✖✗

    ✓✓❏

    ✔❜✗✓✓

  • Quantum Optics for Classical Sources

    16 / 19

    ■ Classical thermal sources, linear optics, photon counting■ Compare with Shor’s algorithm, boson sampling, QKD, squeezed/NOON-state metrology, ...■ Why quantum optics/information? Lessons from Shannon

  • Computational Imaging

    17 / 19

  • Conclusion

    18 / 19

    ■ Rayleigh’s criterion is irrelevant.■ SPADE can achieve quantum bound via linear optics and

    photon counting.■ Mankei Tsang, Ranjith Nair, and Xiaoming Lu, “Quantum

    theory of superresolution for two incoherent optical pointsources,” e-print arXiv:1511.00552.

    ■ FAQ: https://sites.google.com/site/mankeitsang/news/rayleigh/faq

    ■ email: [email protected]■ Nair and Tsang (under preparation): simpler measurement

    schemes that work for any PSF and ǫ.

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds

    1/K22

    1/J(ipc)22

    image plane

    leaky modes

    leaky modes

    [email protected]

  • Simulated Errors of Maximum-Likelihood Estimation

    19 / 19✸✷❂❁

    ✵ ✵✳✺ ✶ ✶✳✺ �

    ▼❡❛

    ✁✲s

    q✉

    ❛✂❡

    ❡✂✂

    ♦✂

    ✴✭✹

    ✄☎ ✆

    ✝✮

    ✵✵✳✺

    ✶✶✳✺

    ❙✐♠✞❧✟✠✡❞ ✡rr☛r☞ ❢☛r ❙P❆✌❊

    ✍❂❏✎✏❍●✑

    ✷✷ ✒ ✍❂❑✎✷✷

    ▲ ✒ ✍✓

    ▲ ✒ ✔✓

    ▲ ✒ ✍✓✓

    ✸✷❂❁

    ✵ ✵✳✺ ✶ ✶✳✺ �

    ▼❡❛

    ✁✲s

    q✉

    ❛✂❡

    ❡✂✂♦

    ✂✴

    ✭✹✄

    ☎ ✆✝

    ✮✵

    ✵✳✺✶

    ✶✳✺�

    ❙✐♠✞❧✟✠✡❞ ✡rr☛r☞ ❢☛r ❜✐♥✟r② ❙P❆✌❊

    ✍❏✎✏✑✒

    ✓✓

    ▲▲

    Executive SummaryImaging of One Point SourcePoint-Spread Function of Hubble Space TelescopeInferring Position of One Point SourceSuperresolution MicroscopyTwo Point SourcesCentroid and Separation EstimationFisher Information and Cramér-Rao BoundQuantum Cramér-Rao BoundsQuantum Optics for Thermal SourcesClassical and Quantum Cramér-Rao BoundsHermite-Gaussian basisSpatial-Mode Demultiplexing (SPADE)Binary SPADEQuantum Optics for Classical SourcesComputational ImagingConclusionSimulated Errors of Maximum-Likelihood Estimation