37
KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian Network) Teknik Informatika, Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya 2012 Pengembangan Bahan Ajar sebagai Pendukung Student Centered-Learning (SCL) melalui e-Learning : Share ITS [AIMA] Russel, Stuart J., Peter Norvig, "Artificial Intelligence, A Modern Approach" 3rd Ed., Prentice Hall, New Jersey, 2010

KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Embed Size (px)

Citation preview

Page 1: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models

(Bayesian Network)

Teknik Informatika, Fakultas Teknologi Informasi

Institut Teknologi Sepuluh Nopember Surabaya

2012 Pengembangan Bahan Ajar sebagai Pendukung Student Centered-Learning

(SCL) melalui e-Learning : Share ITS

[AIMA] Russel, Stuart J., Peter Norvig, "Artificial Intelligence, A Modern Approach" 3rd Ed., Prentice Hall, New Jersey, 2010

Page 2: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Daftar Materi 1. Pengenalan Intelligent Agents, Uninfomed Search (pencarian tanpa

informasi tambahan)

2. Informed Search (Heuristics)

3. Local Search & Optimization (pencarian dengan optimasi)

4. Adversarial Search (pencarian dengan melihat status pihak lainnya)

5. Constraint Satisfaction Problems (pencarian dengan batasan kondisi)

6. Reasoning: propositional logic

7. Reasoning: predicate logic

8. Reasoning: first order logic

9. Reasoning: inference in first order logic (forward-backward chaining untuk inference)

10. Learning Probabilistic Models (1+2)

2

Page 3: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Latar Belakang

• Learning Probabilistic Models = solusi yang diambil dari ketidakpastian kondisi

• Kurangnya informasi di problem nyata

• Solusi dari problem nyata dapat ditemukan jika ada pembelajaran kemungkinan kejadian

• Langkah praktis: buat representasi problem nyata menjadi model dugaan berdasarkan probabilitas (probabilistic inference )

• Pendekatan dasar: teknik Bayesian

3

Page 4: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Ketidakpastian (Uncertainty)

Didefinisikan At = ke bandara t menit sebelum penerbangan

Apakah kejadian At membuat penumpang tidak terlambat? Permasalahan: jalan macet, ban bocor dan semacamnya Kemungkinan dugaan kejadian: “A25 memungkinkan penumpang tidak terlambat

penerbangan JIKA tidak ada kecelakaan di jalan, tidak ada kemacetan,

tidak ada hujan, tidak terjadi ban bocor, dll.” (A1440 juga memungkinkan tepat waktu tetapi harus

bermalam hari sebelumnya di hotel bandara …)

Page 5: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Keputusan dengan Ketidakpastian Kondisi

Semisal dugaan kemungkinan P(A25 jadi on time | …) = 0.04

P(A90 jadi on time | …) = 0.70

P(A120 jadi on time | …) = 0.95

P(A1440 jadi on time | …) = 0.9999

Keputusan yang diambil bergantung pada preferences untuk missing flight vs. waktu tunggu di bandara, etc.

– Utility theory is used to represent and infer preferences

– Decision theory = probability theory + utility theory

Page 6: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Probabilitas

• Probabilitas koin (bagian depan, head, dan belakang, tail)

6

P(COIN = tail) =1

2

P(tail) =1

2

Page 7: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Probabilitas

• Probabilitas penderita kanker

7

P(has cancer) = 0.02

Þ P(Ø has cancer) = 0.98

Page 8: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Probabilitas Gabung, Joint Probability

• Variasi kejadian (event): cancer, test result

– Berdasarkan data di lapangan (misal 1000 pasien)

8

P(has cancer, test positive)

Has cancer? Test positive? P(C,TP)

yes yes 0.018

yes no 0.002

no yes 0.196

no no 0.784

18 org + dari hasil tes

784 org - dari hasil tes

Page 9: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Probabilitas Bersyarat, Conditional Probability

• Pertanyaan diagnosa: seberapa mungkin indikasi kanker ditemukan dengan tes?

9

P(has cancer | test positive) =?

P(C | TP) = P(C, TP) /P(TP) = 0.018 / 0.214 = 0.084

Has cancer? Test positive? P(TP, C)

yes yes 0.018

yes no 0.002

no yes 0.196

no no 0.784

Page 10: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Bayes Network (BN) vs Independence

10

MODEL BN: P(cancer) and P(Test positive | cancer) PREDICTION BN: Hitung P(Test positive) DIAGNOSTIC REASONING BN:

Hitung P(Cancer | test positive)

Cancer

Test positive

Cancer

Test positive

versus

Bayes Network Independence

)TP()C(

)TP,C(

PP

P

Page 11: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Notasi Grafik: Coin

X1 X2 Xn

• N independent coin flips

• Tidak ada ketergantungan untuk setiap kejadian pelemparan: absolute independence

11

Page 12: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

Only distributions whose variables are absolutely independent

can be represented by a Bayes’ net with no arcs. 12

Page 13: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Notasi Grafik: Traffic

• Variables: – R: It rains

– T: There is traffic

• Model 1: independence

• Model 2 (better): rain causes traffic

• Model 2 lebih baik karena lebih sesuai dengan kondisi nyata

R

T

13

Page 14: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Example: Traffic

R

T

+r 1/4

r 3/4

+r +t 3/4

t 1/4

r +t 1/2

t 1/2

14

Page 15: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Independence

• 2 variabel disebut independent jika:

– Dengan kata lain:

– Tertulis :

15

Page 16: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh: Independence

• N pelemparan koin (fair, independent):

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

16

Page 17: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh Lain: Independence?

T W P

warm sun 0.4

warm rain 0.1

cold sun 0.2

cold rain 0.3

T W P

warm sun 0.3

warm rain 0.2

cold sun 0.3

cold rain 0.2

T P

warm 0.5

cold 0.5

W P

sun 0.6

rain 0.4

17

T = temperature W = weather

Page 18: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh Bayes Network: Sakit Gigi

18

Cavity

Catch Headache

P(cavity)

P(catch | cavity) P(toothache | cavity)

1 parameter

2 parameters 2 parameters

Versus: 23-1 = 7 parameters

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Page 19: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Conditional Independence • P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries • If I have a Toothache, a dental probe might be more likely to

catch • But: if I have a cavity, the probability that the probe catches

doesn't depend on whether I have a toothache: – P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I don’t have a cavity: – P(+catch | +toothache, cavity) = P(+catch| cavity)

• Catch is conditionally independent of Toothache given Cavity: – P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Equivalent statements: – P(Toothache | Catch , Cavity) = P(Toothache | Cavity) – P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) – One can be derived from the other easily

• Tertulis : 19

Page 20: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh Bayes Network: Rumput & Air

20

Page 21: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh Bayes Network: Rumput & Air

• Apabila fakta bahwa kondisi rumput adalah basah, maka bagaimana kemungkinan terjadinya sprinkler menyala, dan kemungkinan terjadinya hujan.

normalizing constant

kemungkinan

Page 22: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh Bayes Network: Car

22

Page 23: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Contoh: Alarm Network

• Variables

– B: Burglary

– A: Alarm goes off

– M: Mary calls

– J: John calls

– E: Earthquake!

23

Burglary Earthquake

Alarm

John calls

Mary calls

P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A ,J, M) = P(E | A)? No P(E | B, A, J, M) = P(E | A, B)? Yes

Page 24: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Example: Alarm Network

Burglary Earthqk

Alarm

John calls

Mary calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

Page 25: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Bayes Net Semantics

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node – A collection of distributions over X, one for each

combination of parents’ values

– CPT: conditional probability table – Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities 25

Page 26: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Probabilities in BNs

• Bayes nets implicitly encode joint distributions – As a product of local conditional distributions – To see what probability a BN gives to a full assignment, multiply all the

relevant conditionals together:

– Example:

• This lets us reconstruct any entry of the full joint • Not every BN can represent every joint distribution

– The topology enforces certain conditional independencies

26

Page 27: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Bayes’ Nets

• A Bayes’ net is an efficient encoding of a probabilistic model of a domain

• Questions we can ask:

– Inference: given a fixed BN, what is P(X | e)? – Representation: given a BN graph, what kinds of

distributions can it encode? – Modeling: what BN is most appropriate for a given

domain?

27

Page 28: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Causal Chains

• This configuration is a “causal chain”

– Is X independent of Z given Y?

– Evidence along the chain “blocks” the influence

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

28

Page 29: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Common Cause

• Another basic configuration: two effects of the same cause – Are X and Z independent?

– Are X and Z independent given Y?

– Observing the cause blocks influence between effects.

X

Y

Z

Yes!

Y: Alarm

X: John calls

Z: Mary calls

29

Page 30: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Common Effect

• Last configuration: two causes of one effect (v-structures)

– Are X and Z independent? • Yes: the ballgame and the rain cause traffic, but

they are not correlated

• Still need to prove they must be (try it!)

– Are X and Z independent given Y? • No: seeing traffic puts the rain and the ballgame

in competition as explanation?

– This is backwards from the other cases • Observing an effect activates influence between

possible causes.

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

30

Page 31: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

The General Case

• Any complex example can be analyzed using these three canonical cases

• General question: in a given BN, are two variables independent (given evidence)?

• Solution: analyze the graph

31

Page 32: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Reachability

• Recipe: shade evidence nodes

• Attempt 1: Remove shaded nodes. If two nodes are still connected by an undirected path, they are not conditionally independent

• Almost works, but not quite – Where does it break?

– Answer: the v-structure at T doesn’t count as a link in a path unless “active”

R

T

B

D

L

32

Page 33: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Reachability (D-Separation) • Question: Are X and Y

conditionally independent given evidence vars {Z}? – Yes, if X and Y “separated” by Z – Look for active paths from X to Y – No active paths = independence!

• A path is active if each triple is active: – Causal chain A B C where B is

unobserved (either direction) – Common cause A B C where B is

unobserved – Common effect (aka v-structure) A B C where B or one of its

descendents is observed

• All it takes to block a path is a single inactive segment

Active Triples Inactive Triples

Page 34: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Example

34

Yes R

T

B

T’

Page 35: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Example

35

R

T

B

D

L

T’

Yes

Yes

Yes

Page 36: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Example

• Variables:

– R: Raining

– T: Traffic

– D: Roof drips

– S: I’m sad

• Questions:

T

S

D

R

Yes

36

Page 37: KI091322 Kecerdasan Buatan - Share ITSshare.its.ac.id/pluginfile.php/1373/mod_resource/content/1/13... · KI091322 Kecerdasan Buatan Materi 13: Learning Probabilistic Models (Bayesian

Causality?

• When Bayes’ nets reflect the true causal patterns: – Often simpler (nodes have fewer parents) – Often easier to think about – Often easier to elicit from experts

• BNs need not actually be causal – Sometimes no causal net exists over the domain – End up with arrows that reflect correlation, not causation

• What do the arrows really mean? – Topology may happen to encode causal structure – Topology only guaranteed to encode conditional independence

37