24
The Effect of Increased Flows on the Treatability of Emerging Contaminants at a Wastewater Treatment Plant during Rain Events Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

  • Upload
    naasir

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

The Effect of Increased Flows on the Treatability of Emerging Contaminants at a Wastewater Treatment Plant during Rain Events. Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark. Objectives. Introduction/Purpose of research Background of emerging contaminants - PowerPoint PPT Presentation

Citation preview

Page 1: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

The Effect of Increased Flows on the Treatability of Emerging Contaminants at

a Wastewater Treatment Plant during Rain Events

Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Page 2: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Objectives

• Introduction/Purpose of research• Background of emerging contaminants• Description of the treatment plant• Procedures• Results/Discussion• Conclusions• Acknowledgements

Page 3: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Emerging Contaminants

• “Emerging contaminants" can be broadly defined as any synthetic or naturally occurring chemical or any microorganism that is not commonly monitored in the environment but has the potential to enter the environment and cause known or suspected adverse ecological and (or) human health effects. USGS

Page 4: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

History of Emerging Contaminants Research

• Pharmaceuticals were first reported in U.S. surface waters during investigations in the 1970s, although they were not regulated as legacy pollutants such as PCBs and DDTs (Snyder 2006).

• There have been many publications documenting the presence of antibiotics in groundwaters, surface waters, wastewaters and landfill leachates, including the National Reconnaissance study sponsored by the U.S. EPA and the U.S Geological Survey (Xu 2007; Kolpin 2003).

Page 5: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

The Purpose of This Research

• To evaluate the effects of stormwater on wastewater treatability for each unit process.

• To understand other factors that affect the treatability of emerging contaminants and compare them to the effects of wet weather flows.

• To determine the concentrations of emerging contaminants that enter and leave the treatment plant.

• To compare wet weather emerging contaminant loadings at the treatment plant with stormwater sheetflow emerging contaminant characteristics.

Page 6: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Types of Emerging Contaminants• Pharmaceuticals and Personal Care Products (PPCPs)• Estrogens• Pesticides• Microorganisms• Heavy metals• Polycyclic aromatic hydrocarbons (PAHs)

Widely varying chemical characteristics of these compounds results in their varying fates and treatabilities (mostly relating to their associations with organic solids and their water solubilities).

Page 7: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Chemical Name (Pharmaceutical)

MW (g/mol)

Log kow Solubility (mg/L)

Half-life(hours)

Carbamazepine

236.1 2.45 17.7 10-20

Fluoxetine

309.3 4.05 38.4 24-72

Gemfibrozil

250.12 4.78 5.0 1.5

Ibuprofen

206 3.5-4.0 41.5 2

Sulfamethoxazole

253 0.9 600 10

Triclosan

289.5 4.8-5.4 2-4.6 125

Trimethoprim

290.32 0.79 400 8-10

Reported Characteristics of Pharmaceuticals that Affect their Treatability and Fate

Page 8: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Chemical Name MW(g/mol)

log kow Solubility (mg/L) Half Life(days)

naphthalene

128.2 3.37 31.5 3

acenaphthylene

152.2 3.89 3.80 21-121

acenaphthene

154.2 4.02 16.1 10-60 (soils)1-25 (surface waters)

fluorene

166.2 4.12 1.90 2-64

anthracene

178.2 4.53 0.045 108-139

phenanthrene

178.2 4.48 1.12 5.1

pyrene

202.2 5.12

0.132

16-200

fluoranthene

202.2 5.14 0.260 880

Reported Characteristics of PAHs that Affect their Treatability and Fate

Page 9: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Chemical Name (Pesticides)

MW (g/mol) Solubility in water (mg/L)

log kow Half-life

Methoxychlor

345.65 0.1 4.68-5.08 >100 days

Aldrin

364.91 0.027 6.5 20-100 days

Dieldrin

380.91 0.1 6.2 5 years

Chlordane

409.76 insoluble ~5.54 4 years

Arochlor Σ

257.9-453 insoluble 5.6-6.8 various

Lindane

290.83 17 3.8 15 months

Heptachlor

373.32 0.056 6.10 6 months-3.5 years

Heptachlor-epoxide

389.40 0.35 5.40 na

Reported Characteristics of Pesticides that Affect their Treatability and Fate

Page 10: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark
Page 11: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

• Hilliard Fletcher Wastewater Treatment Plant– A secondary treatment system with a pretreatment phase, a primary

clarifier, an aeration tank, a secondary clarifier and UV disinfection system.

– Current capacity is 30 MGD; being upgraded to 45 MGD by 2013.– Separate sanitary sewer system

11City of Tuscaloosa photo

Page 12: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Treatability of Tuscaloosa WWTP

Page 13: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Wastewater Treatment Flows and Rains during Wet Weather Sampling

Rainfall (in)

Flow rate (MGD)

01/16/10 0.55 18.2

03/02/10 0.68 23.3

04/24/10 1.01 16.5

06/25/10 trace 20.7

10/24/10 trace 15.7

11/02/10 trace 20.5

03/09/11 2.7 42.2

09/20/11 2.2 26.5

13

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

35

40

45

Treatment Plant Flow and Observed Rainfall

Rainfall (inches)

Daily

Flo

w (M

GD)

Increased daily flows at wastewater treatment plant associated with rains greater than about 1.5 or 2 inches

Page 14: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Comparison of pH and pka

Wet weather date

Influent pH

Effluent pH

01/16/10 7.23 6.80

03/02/10 7.42 6.79

04/24/10 6.94 6.61

06/25/10 6.93 6.62

10/24/10 7.02 6.72

11/02/10 6.92 6.48

03/09/11 7.24 6.64

09/20/11 7.09 7.04

Pharmaceutical pka

Carbamazepine 13.9

Fluoxetine 9.5

Gemfibrozil 4.5

Ibuprofen 4.91

Sulfamethoxazole pka1=1.7, pka2=5.6

Triclosan 8.0

Trimethoprim 6.6

Page 15: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Sample Collection

• Four composite one liter samples collected during each event:– At the inlet right before the screen and grit chamber– After wastewater leaves the primary clarifier– After biological treatment and wastewater leaves the secondary clarifier– After final effluent is treated by UV

• Seven wet weather samples and seven dry weather samples collected during a range of treatment flow conditions and analyzed for:– pharmaceuticals– PAHs– Pesticides

• Wet weather sheetflow samples also being collected in area• This presentation presents a preliminary evaluation of the available

data15

Page 16: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Analyses• Acidic and basic pharmaceuticals

– EPA standard method 1268 (modified)– Solid phase extraction – High performance liquid chromatography (HPLC) analysis with UV detector

• PAHs– EPA standard method 8270 SIM targeted ions– Separation flask with Kuderna-Danish (KD) concentration– Gas chromatography with mass spectrophotometer detector (GC-MSD)

analysis• Pesticides

– EPA standard method 508– Separation flask with Kuderna-Danish (KD) concentration– Gas chromatography with electron capture detector (GC-ECD) analysis

16

Page 17: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Preliminary PAH results

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(x10,000)

TICTICTICTICTICTICTICTIC

20/

19/B

enzo

(a)p

yren

e

15/F

lour

anth

ene

16/

17/

18/P

yren

e

6/ 7/8/ 9/

10/A

nthr

acen

e11

/12

/13

/14

/

5/Fl

uore

ne

2/3/

Acen

apht

hyle

ne4/

Acen

apht

hene

1/N

apht

hale

ne

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.00.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

(x10,000)

TICTICTICTICTICTICTICTIC

2/

1/N

apht

hale

ne

Page 18: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Preliminary Pharmaceutical Data

Minutes

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

mA

u

0

250

500

750

1000

1250

1500

1750

mA

u

0

250

500

750

1000

1250

1500

1750

1

333

4427

6 1

.928

45.

294

2

543

6345 2

.652

7.3

85

3

108

1828

2 6

.512

14.

695

4

232

075 7

.056

0.3

15

5 6

8201

73 7.4

60 9

.264

6

242

2533 7

.988

3.2

91

7 5

7127

33 8.2

52 7

.760

8 1

3212

46 9.0

76 1

.795

9

218

2001 9

.408

2.9

64

10

546

341 1

0.48

4 0.7

42

11 1

0771

20 10.

928 1

.463

12

138

044 1

2.14

4 0.1

88

13 4

7580

9 12.

620 0

.646

14

318

647 1

3.40

4 0.4

33

15

1793

21 14.

208 0

.244

16

4700

2 14.

356 0

.064

17

1818

71 14.

520 0

.247

18

9768

5 15.

108 0

.133

19

2655

17 15.

420 0

.361

20

1363

38 15.

820 0

.185

21

9074

6 16.

404 0

.123

22

2142

1 16.

868 0

.029

23

3402

6 16.

992 0

.046

24

6117

3 17.

360 0

.083

25

165

2915 1

8.36

0 2.2

45

26

315

7 23.

016 0

.004

27

341

23.

192 0

.000

28

337 2

6.16

4 0.0

00

SPD-M20A-263 nm0518Inf0309

NamePk #AreaRetention TimeArea Percent

Minutes

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

mA

u

0

100

200

300

400

mA

u

0

100

200

300

400

1 4

6926

2.25

6 0.3

13

2 1

0270

601

3.2

12 6

8.44

9

3 7

0296

7 4.0

88 4

.685

4 2

1158

54 7.3

68 1

4.10

1

5 8

63 1

1.68

4 0.0

06

6 4

2759

18.8

60 0.2

85 7

601

43 19

.356 0

.401

8 4

8967

2 20.

152 3

.263

9 9

7946

9 21.

500 6

.528

10

0 2

2.40

8 0.0

00 1

1 17

8614 2

2.95

6 1.1

90

12

6738

3 25.

464 0

.449

13

7048

27.

408 0

.047

14

1318

1 28.

252 0

.088

15 1

0213

28.9

76 0.0

68

16

1628

4 29.

616 0

.109

17

2866

29.

860 0

.019

SPD-M20A-263 nmFIN 030911 Acid

NamePk #AreaRetention TimeArea Percent

Page 19: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Preliminary Pharmaceutical Data

Minutes

12 14 16 18 20 22 24 26 28

mA

u

20

40

60

80

100

120

mA

u

20

40

60

80

100

120

1 2

0339

12.

776

2 1

3977

0 13

.108

3 3

386

13.3

684

157

806

13.6

68

5 4

1064

14.

340

6 6

2425

14.

648

7 9

2586

15.

260

8 4

6396

4 15

.616

9 1

4430

08 1

6.40

0

10 3

0141

9 17

.232

11 7

7673

8 17

.532

12 1

3663

33 1

7.77

213

136

4187

18.

092

14 2

6980

9 18

.536

15 4

1159

5 18

.916

16 9

7265

4 19

.480

17 1

5731

78 1

9.98

418

452

432 2

0.27

619

753

36 2

0.57

620

136

02 2

0.78

421

231

731 2

1.13

6

22 4

4516

3 21

.532

23 4

0603

0 21

.860

24 2

0604

6 22

.248

25 1

575

22.7

36

26 1

6733

0 23.

160

27 6

1777

23.

520

28 7

0325

24.

072

29 3

3146

24.

468

30 1

2720

25.

468

31 7

483

25.8

00

32 5

0261

26.

652

33 7

967

27.0

9634

149

4 27

.432

35 6

5616

27.

820

36 6

1154

28.

708

37 5

4432

28.

984

38 2

6871

29.

508

SPD-M20A-263 nm0510Influ010116Acid

Pk #AreaRetention Time

Minutes

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

mA

u

0

20

40

60

mA

u

0

20

40

60

1 1

6480

12.

500

2 1

4389

13.

068

3 1

9796

13.

444

4 1

612

13.

772

5 8

327

14.

232

6 6

87 1

4.50

87

223

66 1

4.95

28

487

71 1

5.55

29

1 1

5.76

410

195

960

16.3

0811

138

021

16.7

7212

167

221

17.1

7213

209

190

17.5

8414

406

059

18.0

6815

191

337

18.5

0816

300

781

18.9

0817

285

845

19.1

9218

974

25 1

9.52

419

896

1 1

9.92

8

20 3

1880

20.

724

21 1

8119

5 21

.904

22 6

3438

23.

088

23 1

5697

23.

492

24 2

2686

23.

960

25 1

4424

24.

448

26 1

4368

25.

420

27 7

117

25.

728

28 1

641

26.

328

29 4

639

26.

532

30 1

806

27.

000

31 2

638

27.

368

32 4

721

27.

744

33 2

6622

28.

704

34 1

0723

28.

972

35 5

268

29.

300

36 1

0458

29.

592

SPD-M20A-263 nm0510Final010116Acid

Pk #AreaRetention Time

Page 20: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Preliminary Conclusions• Stormwater only affects the flow rate at the treatment facility

during large rainfall events (>1.5 inches). However, the preliminary data shows stormwater infiltration into the separate sanitary system does contribute to the mass load of ECs to the wastewater treatment plant: there were increases in masses for both PAHs and pharmaceuticals during some of the rain events.

• Some inconsistencies in rain and flow. For example, the flow rate was low for April 2010, the rainfall was over one inch and most of the PAHs during this weather event had the highest concentrations and lowest treatability.

• Final conclusions will be based on the complete data set, but these preliminary data indicate performance as expected, with minimal wet weather effects, although wet weather is shown to be a significant source of some of the ECs.

Page 21: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

Acknowledgements

• U.S. Environmental Protection Agency• NSF EPSCOR• The University of Alabama• Penn State-Harrisburg• Miles College

Page 22: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

References(1) Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, M. E.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T. Pharmaceuticals, Hormones, and other Organic Wastewater Contaminants in U.S. streams, 1999-2000: A National Reconnaissance. Environ Sci Technol 2002, 36, 1202-1211. (2) Miao, X. S.; Yang, J. J.; Metcalfe, C. D. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ. Sci. Technol. 2005, 39, 7469-7475. (3) Nentwig, G. Effects of pharmaceuticals on aquatic invertebrates. Part II: The antidepressant drug fluoxetine. Arch. Environ. Contam. Toxicol. 2007, 52, 163-170. (4) PubMed Molecular Biology Database http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~23N7w0:1:fate. (5) Chem Spider-Ibuprofen http://www.chemspider.com/Chemical-Structure.36498.html. (6) Nghiem, L. D.; Schäfer, A. I.; Elimelech, M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005, 39, 7698-7705. (7) Singer, H.; Müller, S.; Tixier, C.; Pillonel, L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002, 36, 4998-5004. (8) Mikes, O.; Trapp, S. Acute toxicity of the dissociating veterinary antibiotics trimethoprim to willow trees at varying pH. Bull. Environ. Contam. Toxicol. 2010, 1-6.

Page 23: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark

References(9) de Maagd, P. G.; ten Hulscher, D. T. E. M.; van den Heuvel, H.; Opperhuizen, A.; Sijm, D. T. H. M. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants. Environmental Toxicology and Chemistry 1998, 17, 251-257. (10) Dabestani, R.; Ivanov, I. N. A Compilation of Physical, Spectroscopic and Photophysical Properties of Polycyclic Aromatic Hydrocarbons. Photochem. Photobiol. 1999, 70, 10-34. (11) Crunkilton, R. L.; DeVita, W. M. Determination of aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs) in an urban stream. Chemosphere 1997, 35, 1447-1463. (12) de Maagd, P. G.; ten Hulscher, D. T. E. M.; van den Heuvel, H.; Opperhuizen, A.; Sijm, D. T. H. M. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants. Environmental Toxicology and Chemistry 1998, 17, 251-257. (13) Monteith, H. D.; Parker, W. J.; Bell, J. P.; Melcer, H. Modeling the Fate of Pesticides in Municipal Wastewater Treatment. Water Environ. Res. 1995, 67, pp. 964-970. (14) Katsoyiannis, A.; Samara, C. Persistent organic pollutants (POPs) in the sewage treatment plant of Thessaloniki, northern Greece: occurrence and removal. Water Res. 2004, 38, 2685-2698. (15) ATSDR 2011 Profile for Methoxychlor. http://www.atsdr.cdc.gov/. (16) IPCS INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ALDRIN AND DIELDRIN; Health and Safety Guide No. 21; UNITED NATIONS ENVIRONMENT PROGRAMME; INTERNATIONAL LABOUR ORGANISATION; WORLD HEALTH ORGANIZATION(17) Williams, J. Endocrine Disruptors in Wastewater. (18) ATSDR 2011 Profile for Arochlor. (19) ATSDR 2011 Profile for Lindane. http://www.atsdr.cdc.gov. (20) ATSDR 2011 Profile for Heptachlor. http://www.atsdr.cdc.gov/. (21) Wikipedia-Tuscaloosa, A. http://en.wikipedia.org/wiki/Tuscaloosa,_Alabama. (22) Information for Tuscaloosa, A. http://www.tuscaloosacountyalabama.com/local/cityinfo.html. (23) City of Tuscaloosa; Wastewater Management http://www.ci.tuscaloosa.al.us/index.asp?NID=229

Page 24: Kenya L. Goodson, Dr. Robert Pitt, Dr. Sam Subramaniam, and Dr. Shirley Clark