23
Katharine K. Reeves 1 , Terry G. Forbes 2 , Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science Applications International Corporation Theoretical Predictions of Energy Release in CMEs and Calculations of Flare Emissions Thanks to the NSF- SHINE program for funding this work!

Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Embed Size (px)

Citation preview

Page 1: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Katharine K. Reeves1, Terry G. Forbes2, Jon Linker3 & Zoran Mikić3

1Harvard-Smithsonian Center for Astrophysics2University of New Hampshire3Science Applications International Corporation

Theoretical Predictions of Energy Release in

CMEs and Calculations of Flare Emissions

Thanks to the NSF-SHINE program for funding this work!

Page 2: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

OverviewMain Goal:

Energy dissipated in the current sheet

Flare emissions

Methods:1. Analytic: loss-of-equilibrium model2. Numerical: 2.5D MHD code (SAIC MAS)

Lin & Forbes, 2000

Page 3: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Equilibrium Curve

Forbes & Priest, 1995

Page 4: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Poynting Flux Thermalized

Page 5: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Energy Release

Page 6: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Effect of MA on Energy

Time (s)

En

erg

y (

x 1

031 e

rgs)

MA = 0.001

MA = 0.006

MA = 0.1

Reeves & Forbes, ApJ,

2005

Page 7: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Soft X-ray Telescope (SXT) Light Curves

Observed

Simulated

Data from Reeves & Warren, ApJ, 2002Simulated light curves from Reeves & Forbes, ApJ 2005

Page 8: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Velocities and Light Curves

Red curves

Blue curves

Background Field: 50 GFlux rope mass: 2.1 x 1016 gm

Background Field: 25 GFlux rope mass: 4.0 x 1015 gm

Page 9: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Densities in the flare loops

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Density

Reeves, Warren & Forbes, ApJ, 2007

Page 10: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Simulated Flare Images

TRACE 171Å TRACE 195Å

SXT Al12 SXT Be119Reeves, et

al., ApJ, 2007

Page 11: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Loop-top knots and bars

(e.g. Feldman, et al., 1995)

Yohkoh SXT TRACE 171 TRACE 195(e.g. Doschek & Warren, 2005)

Page 12: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

SAIC MAS MHD model

Page 13: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Density

Temperature

Page 14: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Energy over simulation domain

shearing

flux cancellation

current sheetforms

Page 15: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Current sheet

Page 16: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Energy partition

Page 17: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Energy into current sheet

Page 18: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Energy flow at r0

Page 19: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Energy flow at r1

Page 20: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Simulated light curves

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 21: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

XRT observations

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 22: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Conclusions

• The loss-of-equilibrium model is capable of simulating flare emissions characteristic of observations

• In the SAIC simulations, a higher fraction of the energy leaves the current sheet at the r1 boundary than the r0 boundary.

Page 23: Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science

Conclusions• Conduction, viscous flow

decrease the energy swept in to the current sheet via the Poynting flux.

• The bulk of the energy flow at r0 is conductive flux, which can be used as the input to multi-threaded 1D flare loop simulations, as in Reeves et al. (2007).