40
PhD Presentation 20 th December 2007 IAEA CRP Chiang Mai 2007 Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of Surrey The role of the Buried Oxide in SOI Structures Dopant Diffusion and Activation

Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of Surrey

  • Upload
    tocho

  • View
    58

  • Download
    0

Embed Size (px)

DESCRIPTION

The role of the Buried Oxide in SOI Structures Dopant Diffusion and Activation. Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of Surrey. PhD Students Justin Hamilton , Jim Sharp, Max Kah Post Docs Andy Smith Colleagues at Surrey - PowerPoint PPT Presentation

Citation preview

Page 1: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Karen Kirkby, Justin Hamilton

Surrey Ion Beam Centre, University of Surrey

The role of the Buried Oxide in SOI Structures Dopant Diffusion and Activation

Page 2: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Thank you • PhD Students

– Justin Hamilton, Jim Sharp, Max Kah• Post Docs

– Andy Smith• Colleagues at Surrey

– Roger Webb, Russell Gwilliam, Brian Sealy, Nick Cowern (Newcastle)• IRC-irst, Trento

– Massimo Bersani and Damiano Giubertoni, Salvatore Gennaro• Bologna

– Andrea Parisini• Toulouse

– Fuccio Christiano• Applied Materials

– Erik Collart (UK)

Page 3: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

ContentsContents• IntroductionIntroduction• Experimental DesignExperimental Design• Experimental ResultsExperimental Results

SOI Vs Bulk Si TempSOI Vs Bulk Si TempEffect of the buried interfaceEffect of the buried interfaceOptimisation & ModellingOptimisation & Modelling

• ConclusionsConclusions

Page 4: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

• Smaller• Faster• Cheaper

Miniaturisation: why?Miniaturisation: why?

Page 5: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Transistor size , device per chip

Gordon Moore noticed in 1965: number of devices on a chip doubled every 18-24 months & predicted this trend would continue

Device down-scaling:Device down-scaling:

Page 6: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Silicon-on-Insulator (SOI)Silicon-on-Insulator (SOI)

• Silicon wafer with a buried Oxide (BOX)

• Advantages of SOI over Bulk SiIncreased SpeedReduced Power ConsumptionIncreased radiation toleranceImmunity from latch-up

• Industry is moving towards SOI

BOXBOX

SiSi

BOXBOX

SiSi

Page 7: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Down-scaling of MOS devices causes leakage current (short channel effects)

Down-scaling challenges:Down-scaling challenges:

• High activation level• Shallow penetration of dopants

S/D extension

Substrate

Lg

Xj

Ultra shallow source/drain extension regions require:

Page 8: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Challenge for further down-scalingChallenge for further down-scaling

2005 ITRS requirements for p-type layers and future trends

• High activation level 800 ohms/sq• Shallow penetration of dopants 15nm

0300600900

120015001800

Junction depth @ 1E18cm-3 (nm)

RS (

ohm

s/sq

) Lg=28nmLg=20nm

Lg=14nm

0 128

Lg=10nm

A 50nm MOSFET in production from a 90nm process (courtesy

of Intel)

4

SOI

Page 9: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Challenge for further down-scalingChallenge for further down-scaling

2006 ITRS requirements for p-type layers and future trends

• High activation level 1200 ohms /sq• Shallow penetration of dopants 8-10nm

A 50nm MOSFET in production from a 90nm process (courtesy

of Intel)

Page 10: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Why pre-amorphisation?Avoids Boron channelling

Improves Boron activation

Solid Phase Epitaxy!

PAI & SPEPAI & SPE

No Channelling in a-Si

Depth (nm)

Con

cent

ratio

n (c

m-3

)

Channelling Tail in c-Si

Page 11: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

F. Cristiano et al, Mat. Sci. Eng. B, 114-115, p174 (2004)

A. Michel et al, Appl. Phys. Lett, 50, 7, p417 (1987)

Transient Enhanced Diffusion (TED)

Boron de-activation

Implant damage:Implant damage:• Implant B in c-Si

• Frenkel Pairs

• Plus One Model

(schematic representation)(schematic representation)

Page 12: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

depth

Amorphisation threshold

Amorphisation

(destruction of crystal structure)

I

V

Ge PAI

Net excess interstitials after local

recombination of I with V

No point defects survive

I

ImplantB

Pre-amorphisation & SPERPre-amorphisation & SPER

• Ge amorphises Si

• B implanted

• I & V recombine

• Net excess I

(schematic representation)(schematic representation)

(con

cent

ratio

n)

10 16

10 18

10 20

10 22

depth

Page 13: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

B initially shallow

and above solubility

SPEre-growth

Pre-amorphisation & SPERPre-amorphisation & SPER

• Ge amorphises Si

• B implanted

• I & V recombine

• Net excess I

• SPE re-growth

• EOR defect band

(schematic representation)(schematic representation)

(con

cent

ratio

n)

10 16

10 18

10 20

10 22

depth

Page 14: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

De-activation & diffusionDe-activation & diffusion

(schematic representation)(schematic representation)

(con

cent

ratio

n)

10 16

10 18

10 20

10 22

depth

BICs

• I flux toward surface

• BIC formation

• TED

• What happens in SOI material?

I flux

TED

BOX

Page 15: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Experimental DesignExperimental Design

• PAI at a dose of 1x1015cm-2 Ge, with energies of 8keV & 20keV, bulk Si & SOI

Page 16: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

BO

X

20 keV GeB

55 nm38 nm

Surface

19 nm

8 keV Ge BO

XB

55 nm

Page 17: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Experimental DesignExperimental Design• PAI at a dose of 1x1015cm-2 Ge, with

energies of 8keV & 20keV, bulk Si & SOI

• Implanted with 500eV Boron at dose of 2x1013cm-2, 2x1014cm-2 and 2x1015cm-2

• Re-growth study (570ºC for 30 – 150s), check for wafer re-crystallisation

• Activation & diffusion study, isochronal anneals (700ºC – 1000ºC for 60s)

Page 18: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Experiment OneExperiment One

Do SOI and bulk Si samples experience a difference in temperature when

annealed together?

Page 19: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

• No effect of PAI energy on the re-growth rateNo effect of PAI energy on the re-growth rate

RBS – RBS – Re-growth RatesRe-growth Rates

• Re-growth rate increases with Boron doseRe-growth rate increases with Boron dose

Boron 8keV Ge Bulk 8keV Ge SOI 20keV Ge Bulk 20keV Ge SOI0 N/A N/A 0.27 0.26

2x1013cm-2 0.35 0.37 0.37 0.392x1014cm-2 0.4 0.42 0.4 0.442x1015cm-2 0.52 0.48 0.52 0.50

Re-growth Rate (nm/sec)

B dose incr.

• No real difference between Bulk Si and SOINo real difference between Bulk Si and SOI

Table of re-growth rate for increasing Boron doseTable of re-growth rate for increasing Boron dose

J.J. Hamilton, et al. Nucl. Instr. and J.J. Hamilton, et al. Nucl. Instr. and Meth. in Res. B 237, 107 (2005).Meth. in Res. B 237, 107 (2005).

Page 20: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Experiment TwoExperiment Two

What are the electrical and structural differences between SOI and bulk Si?

Page 21: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Hall MeasurementsHall MeasurementsBulk Si & SOI implanted with Boron at a dose 2x1015 cm-2 and

pre-amorphised with 8keV Ge – EOR at 20nm

Small difference between 8keV SOI Vs bulkSmall difference between 8keV SOI Vs bulk J.J. Hamilton, et al. Appl. Phys. J.J. Hamilton, et al. Appl. Phys. Lett. 89, 42111 (2006).Lett. 89, 42111 (2006).

700 750 800 850 900 950 10000

400

800

1200

1600

2000

2400S

heet

Res

ista

nce

(ohm

s/sq

.)

Temperature ºC

Bulk Si SOI

Page 22: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

700 750 800 850 900 950 10000

300

600

900

1200

1500

1800S

heet

Res

ista

nce

(ohm

s/sq

.)

Temperature ºC

Bulk Si SOI

PAI & SPER Bulk Si Vs SOIPAI & SPER Bulk Si Vs SOIBulk Si & SOI implanted with Boron at a dose 2x1015 cm-2 and

pre-amorphised with 20keV Ge – EOR at 40nm

Less deactivation for 20keV SOI Vs bulkLess deactivation for 20keV SOI Vs bulk

~850ohm/sq.

~550ohm/sq.

35% reduction in ∆RsSOI than ∆RsSI

J.J. Hamilton, et al. Appl. Phys. J.J. Hamilton, et al. Appl. Phys. Lett. 89, 42111 (2006).Lett. 89, 42111 (2006).

Page 23: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

SIMS MeasurementsSIMS MeasurementsBulk Si & SOI implanted with Boron at a dose 2x1015 cm-2 and pre-amorphised with 8 & 20keV Ge + annealed at 800ºC for 60s

8keV 20keV

0 10 20 30 40 50 60 70 80

1E17

1E18

1E19

1E20

1E21

Ge 8 keV - bulk Ge 8 keV - SOI

11B

CO

NC

EN

TRA

TIO

N (a

t/cm

3 )

DEPTH (nm)

103

104

105

106

107

0 10 20 30 40 50 60 70 80

1E17

1E18

1E19

1E20

1E21

Ge 20 keV - bulk Ge 20 keV - SOI

11B

CO

NC

EN

TRA

TIO

N (a

t/cm

3 )

DEPTH (nm)

103

104

105

106

107

Higher level of out diffusion for 20keV SOI Vs bulk SiHigher level of out diffusion for 20keV SOI Vs bulk SiLess B trapping in 20keV SOI Vs bulk SiLess B trapping in 20keV SOI Vs bulk Si

Page 24: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

55nm

20keV20keV

40nm

CC DD

40nm

surface

800800ººC for 60s anneal for 8 & 20keV Ge in SOI & Bulk SiC for 60s anneal for 8 & 20keV Ge in SOI & Bulk Si

20nm55nm

Bulk SiBulk Si SOISOI

8keV8keV

AA BBBOXBOX

EOR defects EOR defects

20nm

BOXBOXEOR defectsEOR defects

Page 25: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

0 10 20 30 40 50 60 701E17

1E18

1E19

1E20

1E21

As-implanted 20 keV Ge Bulk Si 20 keV Ge SOI

11B

CO

NC

EN

TRA

TIO

N (a

t/cm

3 )

DEPTH (nm)

0 10 20 30 40 50 60 70

1E17

1E18

1E19

1E20

1E21

As-implanted 20 keV Ge Bulk Si 20 keV Ge SOI

11B

CO

NC

EN

TRA

TIO

N (a

t/cm

3 )

DEPTH (nm)

800ºC

SIMS MeasurementsSIMS MeasurementsBulk Si & SOI implanted with Boron at a dose 2x1015 cm-2 and

pre-amorphised with 20keV Ge + annealed for 60s at 800ºC & 850ºC

850ºC

Significant less B trapping in SOI Vs Bulk SiSignificant less B trapping in SOI Vs Bulk Si J.J. Hamilton, et al. Appl. Phys. J.J. Hamilton, et al. Appl. Phys. Lett. 89, 42111 (2006).Lett. 89, 42111 (2006).

Page 26: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Interstitia

l Flux

20keV Ge Bulk

20keV Ge SOI

BOX

Interstitial Flux

20keV Ge Bulk

20keV Ge SOI

BOX

De-activation & TED

Back interface sink for I Faster EOR dissolution

Physical MechanismPhysical Mechanism

(schematic representation)(schematic representation)

Page 27: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Experiment ThreeExperiment Three

Optimisation of amorphisation

conditions in SOI

Page 28: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Experimental DesignExperimental Design

• PAI at a dose of 1x1015cm-2 Ge, with energies of 8, 20, 24, 32 & 36keV, both Si & SOI

• Implanted with 500eV Boron at dose of 2x1015cm-2

• Isochronal annealing study (700ºC – 1000ºC for 60s)

Page 29: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

PAI dose of 1x1015cm-2 Ge, both Si & SOI+ 500eV Boron at dose of 2x1015cm-2Surface

20nm

8keV Ge

BO

X

55nm

B

40nm

20keV Ge

55nm

BO

XB

45nm

24keV Ge

BO

X

B

55nm

32keV Ge

55nm

BO

X

~55nm

B

Page 30: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

XTEM MeasurementsXTEM MeasurementsSOI and Bulk Si implanted with Boron at a dose 2x1015 cm-2 and pre-amorphised with 32keV Ge as-implanted + annealed at 700ºC for 60s

Re-growth has occurred, therefore has recrystallisedRe-growth has occurred, therefore has recrystallised

Defect trapping within the BOX interface in SOIDefect trapping within the BOX interface in SOI

EOR defects

SOI – as-implantedSOI – as-implanted SOI – annealedSOI – annealed Bulk Si – annealedBulk Si – annealed

~4nm~4nm

Page 31: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

0 10 20 30 40 50 60 701E17

1E18

1E19

1E20

1E21

1E22 Bulk Si SOI

B C

ON

CE

NTR

ATI

ON

(at/c

m3 )

DEPTH (nm)

SIMS MeasurementsSIMS Measurements

EOR defect band overlaps BOXEOR defect band overlaps BOX

Bulk Si & SOI implanted with Boron at a dose 2x1015 cm-2 and pre-amorphised with 32keV Ge, annealed at 850ºC for 60s

BO

X in

terfa

ce

Page 32: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

700 750 800 850 900 950 10000

400

800

1200

1600

2000

She

et R

esis

tanc

e (R

s)

Temperature (ºC)

8keV Ge 20keV Ge

700 750 800 850 900 950 10000

400

800

1200

1600

2000

She

et R

esis

tanc

e (R

s)

Temperature (ºC)

8keV Ge 20keV Ge 24keV Ge 32keV Ge

700 750 800 850 900 950 10000

400

800

1200

1600

2000

She

et R

esis

tanc

e (R

s)

Temperature (ºC)

8keV Ge 20keV Ge 24keV Ge

700 750 800 850 900 950 10000

400

800

1200

1600

2000

She

et R

esis

tanc

e (R

s)

Temperature (ºC)

8keV Ge

Van Der Pauw ResistivityVan Der Pauw ResistivitySOI implanted with Boron at a dose 2x1015 cm-2 and

pre-amorphised with 8, 20, 24 & 32keV Ge – EOR at 20, 40, 45 & ~55nm

Less than 80ohm/sq. RS peak deactivation for 32keV (from 700ºC to 850ºC)

29%

51% 57%

Minimal deactivation for Minimal deactivation for the 32keV PAIthe 32keV PAI

Page 33: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

0 10 20 30 40 501E17

1E18

1E19

1E20

1E21

1E22

As-implanted 8keV

B C

ON

CE

NTR

ATI

ON

(at/c

m3 )

DEPTH (nm)0 10 20 30 40 50

1E17

1E18

1E19

1E20

1E21

1E22

As-implanted 8keV 20keV

B C

ON

CE

NTR

ATI

ON

(at/c

m3 )

DEPTH (nm)0 10 20 30 40 50

1E17

1E18

1E19

1E20

1E21

1E22

As-implanted

B C

ON

CE

NTR

ATI

ON

(at/c

m3 )

DEPTH (nm)

SIMS MeasurementsSIMS MeasurementsSOI implanted with Boron at a dose 2x1015 cm-2 and

pre-amorphised with 8, 20 & 32keV Ge, annealed at 800ºC for 60s

0 10 20 30 40 501E17

1E18

1E19

1E20

1E21

1E22

As-implanted 8keV 20keV 32keV

B C

ON

CE

NTR

ATI

ON

(at/c

m3 )

DEPTH (nm)

32keV PAI shows highest level 32keV PAI shows highest level of activation, least TED and of activation, least TED and largest junction abruptnesslargest junction abruptness

Page 34: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

32keV Ge SOI

BOX

20keV Ge Bulk

20keV Ge SOI

BOX

Physical MechanismPhysical Mechanism

(schematic representation)(schematic representation)

De-activation & TED

Back interface sink for I Faster EOR dissolution

Interstitial Flux

Page 35: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

BOX InterfaceSurface

d

ModellingModelling

x d - x

Centroid

L1

1

L2

1

,1 Lx

CD EORII

2

,2 Lxd

CD EORII

2

21 Ld

LxdF

= fraction of interstitials Flowing towards the surface

Page 36: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007J.J. Hamilton, et al. Appl. Phys. J.J. Hamilton, et al. Appl. Phys. Lett. 91, 92122 (2007).Lett. 91, 92122 (2007).

40 35 30 25 20 15 10 5 00

2x1013

4x1013

6x1013

8x1013

1x1014

L2 = / Nc

Dos

e of

exc

ess

Si i

nter

stiti

als

that

flow

to

war

ds th

e su

rface

(cm

-2)

Remaining crystal thickness after amorphization (nm)

40 35 30 25 20 15 10 5 00

2x1013

4x1013

6x1013

8x1013

1x1014

L2 = / Nc L

2 = 100

Dos

e of

exc

ess

Si i

nter

stiti

als

that

flow

to

war

ds th

e su

rface

(cm

-2)

Remaining crystal thickness after amorphization (nm)

40 35 30 25 20 15 10 5 00

2x1013

4x1013

6x1013

8x1013

1x1014

L2 = / Nc L

2 = 100

L2 = 30

Dos

e of

exc

ess

Si i

nter

stiti

als

that

flow

to

war

ds th

e su

rface

(cm

-2)

Remaining crystal thickness after amorphization (nm)

40 35 30 25 20 15 10 5 00

2x1013

4x1013

6x1013

8x1013

1x1014

L2 = / Nc L

2 = 100

L2 = 30

L2 = 10

Dos

e of

exc

ess

Si i

nter

stiti

als

that

flow

to

war

ds th

e su

rface

(cm

-2)

Remaining crystal thickness after amorphization (nm)

40 35 30 25 20 15 10 5 00

2x1013

4x1013

6x1013

8x1013

1x1014

L2 = / Nc

L2 = 100

L2 = 30

L2 = 10

L2 = 0

Dos

e of

exc

ess

Si i

nter

stiti

als

that

flow

to

war

ds th

e su

rface

(cm

-2)

Remaining crystal thickness after amorphization (nm)

40 35 30 25 20 15 10 5 00

2x1013

4x1013

6x1013

8x1013

1x1014

0.0

4.0x1013

8.0x1013

1.2x1014

1.6x1014

2.0x1014

L2 = / Nc

L2 = 100 L

2 = 30

L2 = 10 L

2 = 0

Dos

e of

exc

ess

Si i

nter

stiti

als

that

flow

to

war

ds th

e su

rface

(cm

-2)

Remaining crystal thickness after amorphization (nm)

Rel

ativ

e de

activ

ated

B d

ose

(cm

-2)

Deactivated B

ModellingModelling

Page 37: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Challenge for further down-scalingChallenge for further down-scaling

2006 ITRS requirements for p-type layers and future trends

• High activation level 1200 ohms /sq• Shallow penetration of dopants 8-10nm

A 50nm MOSFET in production from a 90nm process (courtesy

of Intel)

• High activation level 1200 ohms /sq (800 ohms/sq)• Shallow penetration of dopants 8-10nm (20 nm)

Page 38: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

ConclusionsConclusions

Very promising for future USJ applications in SOIVery promising for future USJ applications in SOI

Negligible B de-activationNegligible B de-activationShallow, abrupt junctionShallow, abrupt junction

Two Mechanisms:Two Mechanisms:• BOX acts as a sink for interstitials, with near BOX acts as a sink for interstitials, with near

zero value for recombination lengthzero value for recombination length• EOR overlaps BOX, reducing initial I number to EOR overlaps BOX, reducing initial I number to

interact with Binteract with B

Very little c-Si is required to seed re-growthVery little c-Si is required to seed re-growth

SOI and Bulk Si experience same anneal temp.SOI and Bulk Si experience same anneal temp.

Page 39: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Acknowledgements:Acknowledgements:E.J.H. Collart

Applied Materials

M. Bersani, D. Giubertoni and S. GennaroITC-irst

A. ParisiniCNR-IMM

B. ColombeauChartered Semiconductors

Justin HamiltonJ. A. Sharp, A. J. Smith, N. Bennett and M. Kah

University of Surrey

Nick CowernUniversity of Newcastle

Page 40: Karen Kirkby, Justin Hamilton Surrey Ion Beam Centre, University of  Surrey

PhD Presentation 20th December 2007

IAEA CRP Chiang Mai 2007

Any Questions?Any Questions?