K- factor

Embed Size (px)

DESCRIPTION

Ref only when Battery Charger Sizing

Citation preview

  • 5/20/2018 K- factor

    1/9

    BATTERY CAPACITY CALCULATIONS ( 2V Standby range)

    Example

    Considerations :System rating : 200 KVA

    Inverter efficiency : 96 %

    *No of cells : 192 nos. ( 384V DC bus voltage) * In typical cases, the no. of cells can be arrived at

    End cell voltage : 1.75 VPC ,ie., 336 V by dividing the max charger voltage / max. recommended float volt

    Back up required : 30 mins

    Operating temp. : 15 DegC

    Load pattern : Constant

    Capacity calculation for VRLA type (NMST) 2 V cells:

    Max. discharge Current = KVA(UPS rating) X 1000 X power factor

    ECV X Inverter Efficiency X No of cells

    = 200 X 1000 X 0.8

    1.75 X 0.96 X 192

    = 496 AmpsCapacty factor for 30mins backup to ECV of 1.75 Volts = 1.389 ( from capacity factor table )

    Hence Calculated capacity = 496 X 1.389

    = 689 AH

    Final Capacity =((Calculated capacity) x Ktx KD)/A.F

    where Kt= Temperature correction factor

    KD= Design margin A.F = ageing factor

    Kt= 1 + ((27 - op.temp) x CT)/100, where CTis temperature correction factor at C-10, which is 0.43 for standby range

    KD= Design Margin (minimum of 10%)

    A.F = Ageing factor of 0.8 ( For Plante' , this is 1)

    Hence final capacity = (689 x (1+(12x0.43)/100) x 1.1) / 0.8

    = 996.26 Ah

    NMST 1000Ah capacity can be recommended

  • 5/20/2018 K- factor

    2/9

    Capacity calculation for Tubular type 2 V cells:Max discharge current remains same as above , i.e., 496 Amps

    Capacity factor for 30 mins back up to 1.75 end cell voltage = 1.46 (refer capacity factor table)Calculated capacity= 496 X 1.46

    = 724 Ah approx.

    The Final capacity can eb derived the same way mentioned above by

    applying temperature correction, design margin & ageing factor.

    Capacity calculation for Plante type 2 V cells:

    Again the max discharge current is 496 Amps.

    Capacity factor for 30 minutes (refer capacity factor table) is 1.16

    Hence calculated capacity = 496 X 1.16 = 575 Ah

    The Final capacity can eb derived the same way mentioned above by

    applying temperature correction, design margin , except that the ageing factor.

    for plante' should be considered as 1.

  • 5/20/2018 K- factor

    3/9

    ge.

  • 5/20/2018 K- factor

    4/9

    BATTERY CAPACITY CALCULATIONS ( 12V monobloc range)

    Example

    Considerations :System rating : 20 KVA

    Inverter efficiency : 96 %

    No of cells : 192 nos( 384V DC bus voltage)

    End cell voltage : 1.70 VPC

    Back up required : 1 hr

    Load pattern : Constant

    Capacity calculation for VRLA 12 V monobloc (EP - Powersafe):

    Max. discharge Current = KVA(UPS rating) X 1000 X power factor

    ECV X Inverter Efficiency X No of cells

    = 20 X 1000 X 0.8

    1.70 X 0.96 X 192 = 51.06 Amps

    Capacty factor for 1 hr backup to ECV of 1.70 Volts = 1.49 ( from capacity factor table )

    So Capacity required = 51.06 X 1.49

    = 76.08 Ah

    HENCE EP80-12 CAN BE RECOMMENDED

    Capacity calculation for vented type 12 V monobloc (EL tubular):

    Max discharge current remains same as above , I.E., 51.06 Amps

    Capacty factor for 1 hr backup to ECV of 1.75 Volts = 2 ( from capacity factor table )

    So Capacity required = 51.06 X 2

    = 102.12 AH (approximately)

    HENCE,nearest type, 6EL100 CAN BE RECOMMENDED

    Note: In both the above cases , the temperature correction has not been considered. It can be

    calculated the same way it is shown for 2V standby batteries.

  • 5/20/2018 K- factor

    5/9

    Capacity Calculations for multiple load pattern

    Assumptions

    Battery required = VRLACut-off voltage = 1.85Vpc

    Load Pattern

    Current A I3= 60A

    I1= 40A

    t1= 30 min Time t

    t3= 30 min

    Operating Temp = 20 Deg CDesign Margin required = 20%

    A.F = Ageing factor (0.8 for VRLA)

    Capacity =(( I1x F1 + (I2-I1) x F2 + (I3- I2) x F3) x Ktx KD) / A.F

    Where

    T1= t1+ t2+ t3/ T2= t2+ t3/ T3= t3

    F1 = Cap factor for T1/ F2 = Cap factor for T2/ F3 = Cap factor for T3

    Kt= 1 + ((27 - 20) x CT)/100, where CTis temperature correction factor at C-10, which is 0.43

    KD= Design Margin of 10%

    t2= 120 min

    I2= 20A

  • 5/20/2018 K- factor

    6/9

    Capacity factor for VRLA 2V type

    Final volt 1 min 5 mins 15 mins 30 mins 60 mins 90 mins 2 hrs 3 hrs 4 hrs 5 hrs 6 hrs 8 hrs 10 hrs

    v/cell

    1.85 1.490 1.760 2.110 2.703 3.195 4.219 5.181 6.173 7.194 9.009 10.753

    1.80 1.241 1.499 1.812 2.342 2.809 3.731 4.630 5.556 6.494 8.197 10.000

    1.75 0.417 0.625 1.110 1.389 1.661 2.179 2.653 3.521 4.386 5.319 6.173 7.937 9.615

    1.70 0.412 0.609 1.020 1.311 1.570 2.070 2.538 3.401 4.237 5.128 5.952 7.692 9.259

    1.65 0.408 0.592 0.960 1.258 1.511 2.008 2.457 3.268 4.132 4.975 5.814 7.463 9.091

    1.60 0.398 0.572 0.920 1.225 1.471 1.969 2.398 3.185 4.000 4.831 5.650 7.299 8.929

    Capacity factor for Vented 2V tubular type (NDP)

    Final volt 1 min 5 mins 15 mins 20 mins 30 mins 45 mins 1 hr 2 hrs 3 hrs 4 hrs 5 hrs 6 hrs 7 hrs 8 hrs 9 hrs 10 hrs

    v/cell

    1.85 1.60 1.65 1.95 2.10 2.35 2.50 2.85 3.55 4.50 5.25 6.10 6.85 7.80 8.55 9.30 10.00

    1.80 1.10 1.20 1.34 1.54 1.74 2.02 2.31 3.25 4.18

    1.75 0.86 0.95 1.09 1.30 1.46 1.77 2.00

    1.70 0.68 0.77 1.03 1.12 1.28 1.61

    1.65 0.58 0.67 0.91 1.00 1.17 1.50

    1.60 0.53 0.60 0.72 0.92 1.10 1.44

    Capacity factor for Vented 2V tubular type (HDP)

    Final volt 1 min 5 mins 10 mins 20 mins 30 mins 45 mins 1 hr 2 hrs 3 hrs 4 hrs 5 hrs 6 hrs 7 hrs 8 hrs 9 hrs 10 hrs

    v/cell

    1.85 1.38 1.44 1.54 1.74 2.04 2.12 2.50 3.30 4.15 5.05 5.92 6.75 7.70 8.48 9.25 10.00

    1.80 0.96 1.04 1.16 1.34 1.62 1.87 2.02 2.81 3.70

    1.75 0.74 0.82 0.96 1.13 1.37 1.65 1.67

    1.70 0.60 0.68 0.80 0.98 1.20 1.51

    1.65 0.51 0.58 0.70 0.87 1.10 1.41

    1.60 0.46 0.52 0.63 0.80 1.03 1.35

  • 5/20/2018 K- factor

    7/9

    Capacity factor for Vented 2V Plante type cells

    Final volt 1 min 5 mins 10 mins 15 mins 20 mins 30 mins 45 mins 1 hr 2 hrs 3 hrs 4 hrs 5 hrs 6 hrs 7 hrs 8 hrs 9 hrs

    v/cell

    1.85 1.18 1.28 1.30 1.38 1.48 1.62 1.74 1.80 2.80 3.80 4.65 5.60 6.50 7.45 8.25 9.10

    1.80 0.94 1.00 1.04 1.10 1.20 1.34 1.48 1.60 2.67 3.59

    1.75 0.75 0.82 0.86 0.92 1.00 1.16 1.32 1.54

    1.70 0.63 0.68 0.72 0.80 0.86 1.04 1.22

    1.65 0.52 0.58 0.63 0.70 0.77 0.94 1.15

    1.60 0.46 0.50 0.56 0.64 0.72 0.88 1.10

    Capacity factor for VRLA 12 Volt monobloc.

    Final volt 30 secs 1 min 2 mins 3 mins 4 mins 5 mins 7 mins 10 mins 15 mins 20 mins 30 mins 1 Hr 90 mins 2 Hrs

    v/cell

    1.80 0.25 0.26 0.26 0.27 0.29 0.31 0.36 0.43 0.56 0.67 0.91 1.56 2.38 2.78

    1.70 0.18 0.20 0.20 0.23 0.25 0.28 0.33 0.40 0.53 0.63 0.87 1.49 2.08 2.50

    1.65 0.15 0.17 0.19 0.22 0.24 0.26 0.31 0.37 0.50 0.61 0.83 1.45 2.00 2.44

    1.60 0.13 0.15 0.18 0.20 0.23 0.25 0.30 0.36 0.48 0.59 0.80 1.43 1.96 2.38

    Capacity factor for Tubular 12 Volt monobloc.

    Final volt 1 hr 2 hrs 3 hrs 4 hrs 5 hrs 6 hrs 7 hrs 8 hrs 9 hrs 10 hrsv/cell

    1.8 3.16 4.14 5.13 6.02 6.82 7.61 8.42 9.18 10

    1.75 2

  • 5/20/2018 K- factor

    8/9

  • 5/20/2018 K- factor

    9/9

    10 hrs

    10.00