33
Penn State K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer Department of Meteorology The Pennsylvania State University University Park, PA Mesoscale variability in convective boundary layer structure observed during IHOP: Causes and implications for convective initiation

K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

  • Upload
    rob

  • View
    34

  • Download
    0

Embed Size (px)

DESCRIPTION

Mesoscale variability in convective boundary layer structure observed during IHOP: Causes and implications for convective initiation. K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer Department of Meteorology The Pennsylvania State University - PowerPoint PPT Presentation

Citation preview

Page 1: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Department of MeteorologyThe Pennsylvania State University

University Park, PA

Mesoscale variability in convective boundary layer

structure observed during IHOP:

Causes and implications for convective initiation

Page 2: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Acknowledgements and Collaborators

• DIAL groups– NASA Langley, LASE, Browell, Ismail et al– CNRS France, LEANDRE, Flamant et al– DLR Germany, DLR DIAL, Ehret et al

• University of Wyoming King Air team– Field crew– LeMone et al, NCAR

• Land surface modeling/fluxes– ALEXI project, U. Wisconsin, J. Mecikalski– NOAH LSM, Chen and Manning, NCAR

• Add ground-based profiling groups, NAST• NCAR-ATD

– ISFF group– Parsons, Weckwerth, Tignor, Baeuerele, many others

• UCAR/JOSS• NSF Atmospheric Sciences Division (IHOP)• NASA Land Surface Hydrology program (SGP97)

Page 3: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

overview

• Goals/background

• Products we propose to create

• Preliminary results– Large scale ABL heterogeneity– Small scale ABL heterogeneity– Attempt to model ABL heterogeneity

Page 4: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Background – land surface processes and ABL development

• Modeling studies have suggested that land surface conditions are critical to properly predict moist convection in the Great Plains (Avissar et al). RAMS, cloud fields

• Surface observations have shown little climatological connection between surface energy balance heterogeneity and mesoscale flow (Shaw, Doran et al). OK surface met data

• ABL observations are often absent or scarce in previous studies. The ABL is critical to this question.

• Where available, ABL observations have shown only modest mesoscale flow in the presence of strong but fairly small scale (10-20 km) flux heterogeneity (Sun et al, Ehret et al). BOREAS - DLR

• Larger-scale (~250 km) ABL heterogeneity has been observed and tentatively linked to the surface energy budget (Desai et al, Reen et al). SGP97 – LASE

Page 5: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Goals• Building blocks

– Document mesoscale heterogeneity in the atmospheric boundary layer (ABL). DIAL, DOW, HRDL, UWKA

– Map the surface energy budget over the same mesoscale region. ALEXI, NOAH, ISFF, UWKA

• Role of the land surface– Examine the degree to which land surface heterogeneity is responsible

for ABL heterogeneity. MM5, observations– Examine the potential for land-atmosphere interactions to focus the

initiation of moist convection. MM5, observations• Data assimilation

– Examine the degree to which improved ABL and land surface data improve model predictions of ABL development and moist convection. MM5, observations

• Model development– Evaluate the ability of ABL and land surface models to simulate the

structures observed during IHOP. MM5, observations, ABL and LS model choices

• New area of focii?– Mesoscale rolls – appeared on many BLH day, possibly important for CI– Microscale structure of the entrainment zone

Page 6: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Methods (to date)• Airborne lidar. 200-300 km scale.

– Backscatter for ABL depth. ~10m x 10m resolution.– Differential absorption lidar (DIAL) for ABL H2O mixing ratio– Doppler lidar for turbulent vertical winds

• U. Wyoming King Air. 60 km scale.– Turbulent variables, fluxes

• Surface flux towers– Spaced along King Air flight tracks

• Remote sensing, land surface models. IHOP domain– Map surface energy budget

• Mesoscale model. IHOP domain.– Determine the degree to which the surface energy budget

governs mesoscale heterogeneity in the ABL.• Collect observations for at least 10 days over the same

region. Go beyond case studies. All BLH days.

Page 7: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Completed Missions

• 12 BLH missions with joint airborne H2O lidar and flux aircraft operations.

• No cases that led directly to deep convection.

• Dates spanning 19 May through 22 June, 2002.

Page 8: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

BL

Het

erog

enei

ty M

issi

on

Exa

mpl

e29

May

, 200

2

Page 9: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Expected Products

• High-resolution ABL depth and water vapor maps for all BLH missions (joint with lidar groups). Add ground-based profilers, NAST?

• Surface energy balance maps for all BLH missions (joint with NCAR, UWisconsin).

• MM5 reanalysis fields for all BLH missions, including airborne lidar data assimilation.

Suitable to submit to JOSS as merged “data” products? Would IHOP scientists use these products?

Page 10: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Preliminary findings

• Surface energy budget heterogeneity was extreme Kang– Persistent, climatological east-west gradient– Local variations due to recent precipitation

• ABL heterogeneity was evident– East-west gradient was realized in different ways

depending on atmospheric environment Craig– Some local heterogeneity was also persistent over

time, suggesting land-surface origins Kang, Craig• Comparisons of ABL-LSM schemes within MM5

show a great deal of variability among model formulations. Reen

Page 11: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

East – West moisture gradient and its impact on the ABL

Page 12: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Station7(E)

Station1(W)

Station4(C)

Persistent west to east soil moisture gradient

Station 1 = west. Station 4 = central. Station 7 = east.

Intense rainfall associated with frontal passage.

Page 13: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

station1 station2 station3

East – west soil moisture gradient is reflected in U. Wyoming King Air flux measurements

WEST: L=125 W m-2

Line represents 10kmUWKA latent heatflux measurements.

EAST: L=300 W m-2

Apparent error ineastern flux towers on this date.

Page 14: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Eas

t-w

est

soil

moi

stur

e gr

adie

nt a

lso

evid

ent

in in

dire

ct f

lux

estim

ates

der

ived

via

co

mpu

ter

mod

els,

and

bas

ed o

n sa

telli

te s

urfa

ce

tem

ps.

Page 15: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

19 May 12 UTC 29 May 12 UTC

SOUNDINGS (Dodge City)

Strong capping inversionStrong surface energy balance gradient

Weak capping inversionStrong surface energy balance gradient

Page 16: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

19 May 2002

1845-1926 UTC

29 May 2002

1839-1913 UTC

LEANDRE FLIGHT TRACKS

Strong capping inversionStrong surface energy balance gradient

Weak capping inversionStrong surface energy balance gradient

Page 17: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn StateWest East35 km

LEANDRE: 19 May 2002P

re-f

ront

of

23-2

4 M

ay.

Str

ong

capp

ing

inve

rsio

n.30

0 km

sca

le C

BL

hete

roge

neity

.C

BL

dept

h as

see

n vi

a lid

ar b

acks

catt

er.

Page 18: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

LEANDRE: 19 May 2002

35 kmWest East

Page 19: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn StateWest East37 km

LEANDRE: 29 May 2002P

ost-

fron

t of

23-

24 M

ay.

Wea

k ca

ppin

g in

vers

ion.

300

km s

cale

CB

L he

tero

gene

ity.

CB

L de

pth

as s

een

via

lidar

bac

ksca

tter

.

Page 20: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State37 km

West East

LEANDRE: 29 May 2002

Page 21: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

LEANDRE H2O VAPOR

29 May 2002

Page 22: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

BL

Het

erog

enei

ty M

issi

on

Exa

mpl

e29

May

, 200

2

Page 23: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

LASE: 30 May, 2002.An additional view of CBL heterogeneity with a weak capping inversion.

CBL depth via lidar backscatter, and CBL H2O content via DIAL.

Page 24: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Visible Satellite: 30 May 2002, 2007 UTC

Page 25: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Smaller scale heterogeneity: Along the UW King Air flight track

Page 26: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

station7 station9station8

Eastern soil moisture conditions remain fairlyhomogeneous throughout the study.

Page 27: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

station2

station1

station3

Western soil moisture conditions become quiteHeterogeneous, especially around 27 May.

Page 28: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

station1 station2

station3

U Wyoming King Air flux latent heat flux observations (line) reflect the south to north soil moisture gradient along the

“Homestead track”

Page 29: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

BL

Het

erog

enei

ty M

issi

on

Exa

mpl

e29

May

, 200

2

Page 30: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

DLR lidar shows the context of the UW King Airobservations along this N-S gradient.

Is the ABL heterogeneity closely tied to soil conditions?

Pattern was repeated on multiple DLR Falcon passes over 3 hours.

Sou

th N

ort

h

Page 31: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Case study: Southern Great Plains 97 Experiment, 12-13 July, 1997

Desai et al, in prep; Reen et al, in prep

NA

SA

LA

SE

bac

ksca

tter

fro

m t

he N

AS

A P

-3. W

avel

et A

BL

top

deriv

atio

n, D

avis

et

al,

2000

.25

0 km

, N

-S f

light

tra

ck in

cen

tral

Okl

ahom

a.

Moi

st s

oils

, N

orth

; D

ry s

oils

, S

outh

.

Page 32: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Attempts to model coupled land surface - ABL development using MM5:

SGP97 example

•Spatial variability is difficult to reproduce. Role of the surface energy balance is not entirely clear.•Different ABL-LSM schemes give very different mean ABL heights and mixing ratios.

Ree

n et

al,

in

prep

Nor

th,

moi

st,

rece

nt

rain

fall S

outh

, dr

y

Approx wet/dry soil line

Page 33: K. Davis, K. Craig, A. Desai, S. Kang, B. Reen, S. Richardson, N. Seaman and D. Stauffer

Penn State

Good ideas?

• Centrally choreographed instrument intercomparison work

• Centrally choreographed data assimilation efforts

• Central guidance on the creation(?) of a project reanalysis product