36
Jump to first page

Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Embed Size (px)

Citation preview

Page 1: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Page 2: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

The Generalised Mapping Regressor (GMR) neural

network for inverse discontinuous problems

The Generalised Mapping Regressor (GMR) neural

network for inverse discontinuous problems

Student : Chuan LU

Promotor : Prof. Sabine Van Huffel

Daily Supervisor : Dr. Giansalvo Cirrincione

Page 3: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Mapping Approximation Problem

Feedforward neural networks are : universal approximators of nonlinear continuous

functions (many-to-one, one-to-one) they don’t yield multiple solutions they don’t yield infinite solutions they don’t approximate mapping discontinuities

Page 4: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Inverse and Discontinuous Problems

Mapping : multi-valued, complex structure.

conditional average of the target data

Poor representation of the mapping by least squares approach (sum-of-squares error function) for feedforward neural networks.

Mapping with discontinuities.

Page 5: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

gatinggatingnetworknetwork

Network 1 Network 2 Network 3

inputinput

outputoutputmixture-of-experts

It partitions the solution between several networks. It uses a separate network to determine the parameters of each kernel, with a further network to determine the coefficients.

winner-take-all

• Jacobs and Jordan• Bishop (ME extension)

kernel blending

Page 6: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Example #1

ME

MLP

Page 7: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Example #2

ME

MLP

Page 8: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Example #3

ME

MLP

Page 9: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Example #4

ME

MLP

Page 10: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Generalised Mapping Regressor( GMR )

(G. Cirrincione and M. Cirrincione, 1998)

approximate every kind of function or relation.

input : collection of components of x and y output : estimation of the remaining components output all solutions, mapping branches, equilevel hypersurfaces.

Characteristics :

nm yxyxM :),(

Page 11: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

coarse-to-fine learning incremental competitive based on mapping recovery (curse of dimensionality)

topological neuron linking distance direction

linking tracking branches contours

open architecture

function approximation pattern recognition

Z (augmented) space unsupervised learning

GMR Basic Ideas

clusters mapping branches

Page 12: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

GMR four phases

object merged

Object Merging

Learning Recall-ing

branch 1branch 2

INPUTINPUT

Linking

links

object 1

pool of neurons

object 2object 3

TrainingTrainingSetSet

Page 13: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

EXIN Segmentation Neural Network (EXIN SNN)

clustering

(G. Cirrincione, 1998)

w4= x4

vigilance threshold

x

Input/weight space

Page 14: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Z (augmented) space

coarse quantization• EXIN SNN• high z ( say 1 )

branch (object)neuron

GMR Learning

Page 15: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Z (augmented) space

• production phase• Voronoi sets domain setting

GMR Learning

Page 16: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Z (augmented) space

• secondary EXIN SNNs• z = 2 < 1

TS#1

TS#2

TS#3

TS#4

TS#5

Other levels are possible

fine quantization

GMR Learning

Page 17: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1PLN Level 1 1=0.2, epoch1=3

x

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1PLN Level 1 1=0.2, epoch1=3

x

GMR Coarse to fine Learning ( Example)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1PLN level 1-2, 1=0.2, epoch1=3;2=0.1, epoch2=3

* 1st PLN: 13*

x

y

* 2nd PLN: 24*

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1PLN level 1-2, 1=0.2, epoch1=3;2=0.1, epoch2=3

* 1st PLN: 13*

x

y

* 2nd PLN: 24*

object neuron

fine VQ neurons

object neuron Voronoi set

Page 18: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

GMR Linking Voronoi set: setup of the neuron radius (domain variable)

neuron i

ri

asymmetric radius

Task 1 :Task 1 : Task 1 :Task 1 :

Page 19: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Weight Space

GMR Linking For one TS presentation:

zi

d1

w1

w5

w3

w4

d1

w2

d5

d3

d4

d2

branch and bound search technique

k-nn

Linking candidates

distance test direction test create a link or strengthen a link

Task 2 :Task 2 : Task 2 :Task 2 :

Linking direction

Page 20: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Branch and Bound Accelerated Linking

neuron tree constructed during learning phase (multilevel EXIN SNN learning)

methods in linking candidate step (k-nearest-neighbors computation): -BnB : < d1 , ( : linking factor predefined) k-BnB : k predefined.

Page 21: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

44 43

3127

6459

5547

7681 80 83

0,00%10,00%20,00%30,00%40,00%50,00%60,00%70,00%80,00%90,00%

2-D (TS 2k): 8 2-D(TS 4k): 24 3-D (TS 3k): 199 linking flops (x100,000)

percents of linking flops saved by branch and bound

2-level d-BnB

2-level k-BnB

3-level d-BnB

3-level k-BnB

GMR Linking

branch-and-bound in linking experimental results:83 %

Page 22: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

branch and bound (cont.)

Apply branch and bound in learning phase ( labelling ) :

Tree construction k-means EXIN SNN

Experimental results (in the 3-D example) 50% of labeling flops are saved

Page 23: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

GMR Linking Example

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Linking: = 2.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Linking: = 2.5

link

Page 24: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

GMR Merging Example

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Merging: threshold = 1

Obj: 13 -> 3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Merging: threshold = 1

Obj: 13 -> 3

Page 25: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

x = 0.2

Level 1 neurons: 3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

x = 0.2

Level 1 neurons: 3

GMR Recalling Example

)04.0

01.0)2(sin(

4

1)(

2

xxxfy )

04.0

01.0)2(sin(

4

1)(

2

xxxfy

level 1 neuron

level 2 neuron

branch 1

branch 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

y = 0.6

Level 1 neurons: 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

y = 0.6

Level 1 neurons: 1

level one neurons : input within their domain level two neurons : only connected ones level zero neurons : isolated (noise)

Page 26: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Experiments

spiral of Archimedes = a (a = 1)

spiral of Archimedes = a (a = 1)

Page 27: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Experiments

Sparse regions

further normalizing + higher mapping resolution

)04.0

01.0)2(sin(

4

1)(

2

xxxfy )

04.0

01.0)2(sin(

4

1)(

2

xxxfy

Page 28: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Experiments noisy data

1 Bernoulli of lemniscate

222222

a

yxayx 1 Bernoulli of lemniscate

222222

a

yxayx

Page 29: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Solutions for y = -0.5

Level 1 neurons: 6

Experiments

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Solutions for y = -0.1

Level 1 neurons: 10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Solutions for y = 0.5

Level 1 neurons: 5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Solutions for y = 1

Level 1 neurons: 19

5,3 Lissajous of curve

sin,cos

ba

btyatx 5,3 Lissajous of curve

sin,cos

ba

btyatx

Page 30: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Experiments

contours : links among

level one neurons

GMR mapping of 8 spheres in a 3-D scene.

Page 31: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Conclusions

GMR is able to : solve inverse discontinuous problems approximate every kind of mapping

yield all the solutions and the corresponding branches

GMR can be accelerated by applying tree search techniques

GMR needs : interpolation techniques kernels or projection techniques for high dimensional data adaptive parameters

Page 32: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

Jump to first page

Thank you !(shi-a shi-a)

Page 33: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

l1 = 0b1 = 0

l1 = 0b1 = 0

l6 = 0b6 = 0

l6 = 0b6 = 0

l5 = 0b5 = 0

l5 = 0b5 = 0

l2= 0b2= 0

l2= 0b2= 0

l3 = 0b3 = 0

l3 = 0b3 = 0 l4 = 0

b4 = 0

l4 = 0b4 = 0

l7 = 0b7 = 0

l7 = 0b7 = 0

l8= 0b8 = 0

l8= 0b8 = 0

l3 = 2b3 = 1

l3 = 2b3 = 1

GMR Recall

input

w1

w2

w3

w7

w8

w4

w5

w6

r1

l1 = 1b1 = 1

l1 = 1b1 = 1

linking tracking

restricted distance

level one test

connected neuron :level zero level two

branch the winner branch

Page 34: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

GMR Recall

input

w1

w2

w3

w7

w8

l1 = 0b1 = 0

l1 = 0b1 = 0

l6 = 0b6 = 0

l6 = 0b6 = 0

l5 = 0b5 = 0

l5 = 0b5 = 0

l2= 0b2= 0

l2= 0b2= 0

l3 = 0b3 = 0

l3 = 0b3 = 0 l4 = 0

b4 = 0

l4 = 0b4 = 0

l7 = 0b7 = 0

l7 = 0b7 = 0

l8= 0b8 = 0

l8= 0b8 = 0

w4

w5

w6

r2

l1 = 1b1 = 1

l1 = 1b1 = 1

l3 = 2b3 = 1

l3 = 2b3 = 1

l2= 1b2= 2

l2= 1b2= 2 l2= 1b2= 1

l2= 1b2= 1

level one test

linking tracking

branchcross

Page 35: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

GMR Recall

l6 = 0b6 = 0

l6 = 0b6 = 0 l6 = 2b6 = 4

l6 = 2b6 = 4 l6 = 1b6 = 6

l6 = 1b6 = 6

input

w1

w2

w3

l1 = 0b1 = 0

l1 = 0b1 = 0

l5 = 0b5 = 0

l5 = 0b5 = 0

l2= 0b2= 0

l2= 0b2= 0

l3 = 0b3 = 0

l3 = 0b3 = 0 l4 = 0

b4 = 0

l4 = 0b4 = 0

l7 = 0b7 = 0

l7 = 0b7 = 0

l8= 0b8 = 0

l8= 0b8 = 0

w4

w5

w6

l1 = 1b1 = 1

l1 = 1b1 = 1

l3 = 2b3 = 1

l3 = 2b3 = 1

l2= 1b2= 2

l2= 1b2= 2 l2= 1b2= 1

l2= 1b2= 1

l4 = 1b4 = 4

l4 = 1b4 = 4

l5 = 2b5 = 4

l5 = 2b5 = 4 l4 = 1b4 = 5

l4 = 1b4 = 5 l4 = 1b4 = 4

l4 = 1b4 = 4

… until completion of the candidates

level one neurons : input within their domain level two neurons : only connected ones level zero neurons : isolated (noise)

w7

w8

l6 = 1b6 = 4

l6 = 1b6 = 4

clipping

Tow Branches

Tow Branches

Two Branches

Two Branches

Page 36: Jump to first page. The Generalised Mapping Regressor (GMR) neural network for inverse discontinuous problems Student : Chuan LU Promotor : Prof. Sabine

GMR Recall

input

w1

w2

w3

w7

w8

l7 = 0b7 = 0

l7 = 0b7 = 0

l8= 0b8 = 0

l8= 0b8 = 0

w4

w5

w6

Output = weight complements of the level one neurons Output interpolation

l1 = 1b1 = 1

l1 = 1b1 = 1

l3 = 2b3 = 1

l3 = 2b3 = 1

l2= 1b2= 1

l2= 1b2= 1

l4 = 1b4 = 4

l4 = 1b4 = 4

l4 = 1b4 = 4

l4 = 1b4 = 4 l6 = 1

b6 = 4

l6 = 1b6 = 4