23
1 Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, University of Graz Heinrichstrasse 28, A-8010 Graz, Austria [email protected] www.maos.net Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250; Chem. Soc. Rev. 2008, 37, 1127 Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry” Wiley-VCH, 2005 Van der Eycken, E.; Kappe, C. O. (Eds.) “Microwave-Assisted Synthesis of Heterocycles”, Springer, 2006 Applications Transition Metal Catalyzed C-X Bond Formation Other Metal-Mediated Processes Metathesis, CH-Bond Activation Cycloaddition Reactions Rearrangements Enantioselective Reactions Organocatalysis, Biocatalysis Radical Reactions Oxidations, Reductions Heterocycle Synthesis Total Synthesis Solid- /Fluorous Phase Synthesis Immobilized Reagents,Scavengers and Catalysts Solid Phase Peptide Synthesis Microwave Heating in Modern Organic Synthesis

July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

1

Microwaves for the Synthesis of Heterocycles

July 29-31 2008, Edinburgh

Doris Dallinger

Christian Doppler Laboratory for Microwave Chemistry (CDLMC)and Institute of Chemistry, University of GrazHeinrichstrasse 28, A-8010 Graz, [email protected]

Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250; Chem. Soc. Rev. 2008, 37, 1127 Kappe, C. O.; Stadler, A. “Microwaves in Organic and Medicinal Chemistry” Wiley-VCH, 2005Van der Eycken, E.; Kappe, C. O. (Eds.) “Microwave-Assisted Synthesis of Heterocycles”, Springer, 2006

Applications

• Transition Metal Catalyzed C-X Bond Formation• Other Metal-Mediated Processes• Metathesis, CH-Bond Activation• Cycloaddition Reactions• Rearrangements• Enantioselective Reactions• Organocatalysis, Biocatalysis• Radical Reactions• Oxidations, Reductions• Heterocycle Synthesis• Total Synthesis

• Solid- /Fluorous Phase Synthesis• Immobilized Reagents,Scavengers and Catalysts• Solid Phase Peptide Synthesis

Microwave Heating in Modern Organic Synthesis

Page 2: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

2

Outline

• Quinolinones

• Bisquinolones

• Desulfitative C-C cross-couplings

Heterocycle Synthesis

SiC Passive Heating Elements

• Heating aids

• Modulation of MW power (MW effects)

N OR1

R2

OR3

R4

R5

R6

R7 N O

H

CO2EtOMe

Cl

F3C

N OH

CH2OHOMe

Cl

F3C

• active in in vivo animal model of male ED

Bristol-Myers Squibb (BMS) Compounds

Hewawasam,P. et al. J. Med. Chem. 2003, 46, 2819

Hewawasam,P. et al. (BMS), Int. Pat. WO 00/34244 (2000)

4-Aryl-2-quinolinones as Maxi-K+ Channel Openers for the Treatment of Erectile Dysfunction

Page 3: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

3

Suzuki

HeckN OH

CO2Et

OMe

Cl

F3C

Transition Metal-Catalyzed Chemistry

• highly diverse• flexible• amenable to high-speed MAOS• commercially available building blocks

A Modular Strategy

Glasnov, T. N. et al. J. Org. Chem. 2005, 70, 3864

Multistep Synthesis of 4-Aryl-2-quinolinones –“First Choice”, not “Last Resort”

NH2

F3C

NH

F3CO O

NH

CF3CH2(COCl)2 DCM

(lit.)

95 %

N OH

F3COH

P4O10 in MeSO3H (Eaton's Reagent)

MW, 120 °C, 20 min

65 %

7 steps total, 32% overall yield, no chromatography!

NH2

F3C

NH

F3CO O

NH

CF3CH2(COCl)2 DCM

(lit.)

95 %

N OH

F3COH

P4O10 in MeSO3H (Eaton's Reagent)

MW, 120 °C, 20 min

65 %

N OH

F3CCl1. POCl3, dioxane

MW, 120 °C, 20 min

2. MeSO3H, EtOH MW, 120 °C, 25 min

72 %

N OH

OMe

Cl

F3C Br NBS, MeCN

MW, 100 °C, 1 h

97 %

N OH

CO2EtOMe

Cl

F3C

ethyl acrylate Pd(PPh3)4 Et3N, DMF

MW, 150 °C, 45 min

90 %N OH

OMe

Cl

F3C

1.2 equiv ArB(OH) 20.5 mol% Pd(OAc) 2, PPh3 Et3N, DME/H2O (3:1)

MW, 150 °C, 30 min

91 %

Glasnov, T. N. et al. J. Org. Chem. 2005, 70, 3864

Page 4: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

4

N OMe

NBS, MeCN

MW N OMe

Br

N OMe

Br

+

A B

Temperature Time Ratio A : B

0 °C (DMF) 17 h 92 : 825 °C ∆ 4.5 h 83 : 1750 °C ∆ 3 h 55 : 45100°C MW (MeCN) 0.3h 5 : 95

Temperature Dependence Thermodynamic Stability

B ∆ kcal/mol

AM1 -4.86PM3 -3.82B3LYP(3-21G*) -1.25B3LYP(6-31G*) -3.01

Glasnov, T. N. et al. J. Org. Chem. 2005, 70, 3864

Where Microwaves Don ´t Work:Bromination of Quinolin-2-ones

Importance of Symmetrical Biaryl Units

• Part of natural products including alkaloids, coumarins, polyketides, terpenes

• Chiral ligands and reagents, chiral phases for chromatography, chiral liquid crystals

• Pharmaceuticals, agrochemicals

Williams. L. P.; Giralt, E. Chem. Soc. Rev., 2001, 30, 145

NH

OH

Me

OMeOH

OHOMe

Me

HN

OHMe

Me

Me OH

MeHO

michellamine Banti-HIV

PPh2

PPh2

BINAP

O O

O

OOOO

O

O O

paracyclophanes

OHHO

4,4'-biphenollaxative

N N MeMe

2 Cl

paraquatherbicide

Page 5: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

5

Symmetrical 4,4 ´-Bis-quinoline-2(1 H)-ones

• Aza-analogues of biscoumarin natural products

• Fluorescent properties (push-pull carbostyrils)

• Aza-BINAP analogues

Pharkphoom, P. et al. Planta. Med. 1998, 64, 774

Lei, J.-G. et al. Chin. J. Chem. 2002, 20, 1263

N O

R1R2R3

R4

NO

R1 R2

R3

R4

O O

OMe

HO

MeO

OO OH

OMe

OMe

N

N O

O

R3

R4

R4

R3

R1

R1

PPh2

PPh2

R1 = Me, Ph; R2 = H, alkylR3 = R4 = H, OMe

4,4'-biisofraxidin "aza-BINAP"

N OR1R2

R3

R4

NOR1 R2

R3

R4

N OR1R2

R3

R4Cl

OB

OBO

O[B(Pin)] 2

[Pd(0)], dppf, [B(Pin)] 2, base, solvent

[Ni(0)], PPh 3, solvent

cf. Pd(0) + Ni(0): Nelson, T. D.; Crouch, R. D. Org. React. 2004, 63, 265

Pd(0): Nising, F. N. et al. J. Org. Chem. 2004, 69, 6830

Ni(0): Tiecco, M. et al. Synthesis 1984, 736

Janiak, C. et al. Synthesis 1999, 959

Symmetrical Bisquinolones

via Pd(0) catalyzed one-pot borylation/Suzuki cross-coupling or

Ni(0) mediated homocoupling

Page 6: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

6

One-Pot Borylation/Suzuki Cross-Coupling Reaction

Model Reaction

N OMe

OH

N OMe

ClPOCl3, dioxane

82 %

MW, 120 °C, 25 min

OB

OB

O

O

N O

B

Me

OO

MW, temp, time

[Pd], ligand, base, solvent

Best conditions

[Pd]: 10 mol% PdCl2(dppf)ligand: 7 mol% dppfbase: KOH (4.5 equiv)solvent: n-BuCltemp/time: 130 °C, 30 min

NMe

O

Cl

N O

N O

Me

Me

N

H

MeO

97% conv 3% conv

Hashim, J. et al. J. Org. Chem. 2006, 71, 1707

Reaction Monitoring

• 97% conversion to

product based on

HPLC peak area (%)

NMe

O

Cl

N O

NMe

O

Me

97% conv85% yield

10 mol% PdCl 2(dppf), 7 mol% dppf, 0.7 eq [B(Pin)] 2 4.5 eq KOH, n-BuCl, MW, 130°C, 30 min N

MeO

H

1 2

Optimized Conditions

HPLC of Crude Rxn Mixture (215 nm)

2

1

Page 7: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

7

Ni(0)-Mediated Homocoupling Reaction

NMe

O

Cl

NMe

O

NMe

O

NiCl 2, Zn, PPh3, solventiodide additive

MW, temp, time N

Me

O

H

Model Reaction

Best conditions

[Ni]: NiCl2 (1.3 equiv)Zn: 1.3 equivligand: PPh3 (4.0 equiv)iodide additive: KI (1.8 equiv)solvent: DMFtemp/time: 205 °C, 25 min

90% 4%

General High-Speed Protocols for Symmetrical Biaryl Syntheses

(Het)Ar-X

Method A:PdCl2(dppf), dppf, [B(Pin)]2, KOH, n-BuClMW, 130 °C, 35 min

Method B:NiCl2, Zn, PPh3, KI, DMFMW, 205 °C, 25 min

(Het)Ar-Ar(Het)

X = Cl, Br10 examples

(39-98% yield)

N O

NMe

O

MeO

MeO

Me

N

Ph

O

N OPh

Pd (83%)Ni (39%)

Pd (83%)Ni (70%)

O O

O O

SS

Pd (91%)Ni (65%)

Pd (89%)Ni (65%)

Pd (67%)Ni (98%)

N

N

Pd (91%)Ni (94%)

Examples:

Hashim, J. et al. J. Org. Chem. 2006, 71, 1707

Page 8: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

8

General High-Speed Protocols for Symmetrical Biaryl Syntheses

(Het)Ar-X

Method A:PdCl2(dppf), dppf, [B(Pin)]2, KOH, n-BuClMW, 130 °C, 35 min

Method B:NiCl2, Zn, PPh3, KI, DMFMW, 205 °C, 25 min

(Het)Ar-Ar(Het)

X = Cl, Br10 examples

(39-98% yield)

Disadvantages:

Hashim, J. et al. J. Org. Chem. 2006, 71, 1707

Borylation/Suzuki:

• expensive [B(Pin)]2

• 10 mol% of costly PdCl2(dppf)

Homocoupling:

• stoichiometric amount of Ni(II)

• 4 equiv PPh3 → work-up tedious

• Preparation of bisquinolones in < 50 mg

• Scale-up troublesome

Ni(0)-Catalyzed Homocoupling Reaction

N

R1

O

ClNiCl2(PPh3)2, DPEphos , Zn, KI

dioxane

MW, 130 °C, 30 min

R2

R3

R4

N

R1

O

R2

R3

R4

NR1

OR2

R3

R4

6 examples(71-92%)

O

PPh2 PPh2

R1, R2 = Me, (CH2)3R3, R4 = H, OMe

Ni(0)-mediated

[Ni]: NiCl2 (1.3 equiv)Zn: 1.3 equivligand: PPh3 (4.0 equiv)iodide additive: KI (1.8 equiv)solvent: DMFtemp/time: 205 °C, 25 min

Ni(0)-catalyzed

[Ni]: NiCl2(PPh3)2 (0.25 equiv)Zn: 1.3 equivligand: DPEphos (0.25 equiv)iodide additive: KI (1.8 equiv)solvent: dioxanetemp/time: 130 °C, 30 min

• less metal required

• purification simplified

• equal yields

• scale-up possible (g scale)

Hashim, J.; Kappe, C. O. Adv. Synth. Catal. 2007, 349, 2353

Page 9: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

9

Arshad, N. et al. J. Org. Chem. 2008, 73, 4755

Aza-BINAP Ligand Synthesis

N

Cl

MeO

NMe

O

NMe

O

N

Me

O

NMe

O

XBr

NiCl 2(PPh3)2DPEphos, Zn, KI

dioxane

MW, 130 °C, 30 min

NBS, DMF

[Pd] = Herrmann's palladacycle

X = Br: 82%X = H: 62%

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeOMeO

MeO

rt, 35-50 min

NMe

O

NMe

O

H

PPh2

Ph2PH, [Pd]KOAc, DMF

MW, 160 °C, 10 min

X = H MeO

MeO

MeO

MeO

75%

NMe

O

NMe

O

PPh2

PPh2

Ph2PH, [Pd]KOAc, DMF

MW, 160 °C, 10 min

X = BrMeO

MeO

MeO

MeO

73%

High-Speed, High-Throughput DHPM Decoration

Polymer-Supported Reagents and Scavengers, Solid-Phase Extraction, Fluorous Reagents and Scavengers

Me N

NH

O

MeO

O

F

Me NH

NMeO

O

F

Cl

S

Me N

Ni-PrO

O

NO2

O

O Cl

Me N

NEtO

O

OMe

COOMe

Me NH

NHEtO

O

O

NH

O

Me NH

NHNH

O

S

Cl

Me N

NHO

O

OMe

NH

NH

O

Me O

F

F

Br

NH

NHO

O

O

S

NNN

Et

CF3

17 examplesSL 2002, 1901

44 examplesOL 2003, 1205MD 2003, 229

17 examplesT 2006, 4261

27 examplesJCC 2004, 884

6 examplesOL 2004, 771

10 examplesJCC 2005, 574

19 examplesJCC 2005, 574

10 examplesT 2006, 4261

30 examplesJCC 2007, 415

Me NH

NH

Z

X

RX

O

Page 10: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

10

N

NEtS

O

Me O

H

H

86%

N

NEtS

O

Me O

H

S

Me

62%

N

NEtS

O

Me O

H

H

OMeOMe

76%

N

NEtS

O

Me O

H

H

CF3

66%

Br

Examples

Synthesis of C5 Thiol Esters

OHN

H

R1

OTMSCl, MeCN

MW, 120°C, 10 min N

NEtS

O

Me

R2

O

HR1

R2

+

Me O

(53-90%)6 examples

O

EtS NH2

Synthesis of 5-Aroyl-DHPMs Step 1: The Biginelli Reaction

cf. Kadis, V. et al. Khim. Geterotsikl. Soedin. 1985, 117Prokopcová, H. et al. Synlett 2007, 43Pisani, L. et al. J. Comb. Chem. 2007, 9, 415

Liebeskind-Srogl Ketone Synthesis

• base free

• orthogonal to Suzuki reaction

• catalytic in Pd(0)

• stoichiometric amounts of Cu(I) carboxylate

• other Cu(I) salts not effective

Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979

Proposed Mechanism

PdLL

SR1OC

O

2-thienylOCu

BOH

R3

HO

PdLL

R3R1OC

-(OH)2BTC

-CuSR2

R2

Carbon-Carbon Coupling of Thiol Esters

CuTC =S COOCu

B(OH)2

[Pd], ligand,Cu(I) cofactor (CuTC)

THF, 50 °C, 18 h

O

S R1R2O

R3 R1

13 examples(52-93%)

R3

Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260

OOMe O O

ClCF3

OO2N

88% 81% 57% 63%

N

N

Examples:

Page 11: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

11

N

NEtS

O R1

O

H

R2

Me

B(OH)2

N

NR3

O R1

O

H

R2

Me

10 mol% Pd(OAc) 220 mol% PPh 3

3 equiv CuTC, dioxane

MW, 130 °C, 1 h+ R3

Synthesis of 5-Aroyl-DHPMs Step 2: Thiol Ester-Boronic Acid Coupling

Scale Up

2 mmol

Pisani, L. et al. J. Comb. Chem. 2007, 9, 415

• automated vessel transfer

• liquid handler

• reaction optimization

• sealed vessels (0.2-5 mL)

• up to 120 reactions

• 250 °C, 20 bar

Emrys Liberator

0.3 mmol

Automated Sequential Library Synthesis

6 thiol esters 5 boronic acids 30 examples(57-88%)

• 48 vessels• filling volume 6-25 mL• 200 °C, 20 bar• screw-cap with cone-shaped seal• metal safety disk (30 bar)• p/T-sensor for reference vessel

HTP Rotor48 (Synthos 3000) Reaction Homogeneity

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Vessel Number

Con

vers

ion

[%]

• good homogeneity between individual vessels• good translation from single-mode rxns

Parallel Processing (Multimode Cavity)

O OH O OEtOH/1 M H2SO4 = 2:1

MW, 140 °C, 20 min

Pisani, L. et al. J. Comb. Chem. 2007, 9, 415

Page 12: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

12

Pisani, L. et al. J. Comb. Chem. 2007, 9, 415Kremsner, J. et al. J. Comb. Chem. 2007, 9, 285

Parallel Library Synthesis

N

NEtS

O R1

O

H

R2

Me

B(OH)2

N

NR3

O R1

O

H

R2

Me

10 mol% Pd(OAc) 220 mol% PPh 3

3 equiv CuTC, dioxane

MW, 130 °C, 1 h+

16 examples(63-86%)

5 thiol esters 5 boronic acids

R3

• 16 compounds synthesized in rotor• total irradiation time: 1 h• minimal yield deviation between

single-mode and multimode run (typically 3-4%)

48 vessel rotor200 °C, 20 bar6-25 mL

• 16 compounds synthesized in rotor• total irradiation time: 1 h• minimal yield deviation between

single-mode and multimode run (typically 3-4%)

48 well plate200 °C, 20 bar0.05-0.3 mL

Comparison of Yields:Sequential vs Parallel Synthesis

N

N

O

MeH

O

H

S: 86%P: 80%

N

N

O

MeH

O

HCl

S: 64%P: 62%

Br

N

N

O

MeH

O

H

F

S: 66%P: 63%

CF3

N

N

O

MeH

O

HCl

S: 74%P: 71%

MeOOMe

N

N

O

MeMe

O

H

S: 68%P: 66%

N

N

O

MeMe

O

H

S: 82%P: 86%

S

N

N

O

MeH

O

H

S: 63%P: 64%

MeOOMe

N

N

O

Me

H

O

H

S: 66%P: 69%

Br

F

Me

S

Me

Examples of 5-Aroyl Dihydropyrimidines

Page 13: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

13

Gartner, M. et al. ChemBioChem 2005, 6, 1173Garcia-Saes, I. et al. J. Biol. Chem. 2007, 282, 9740Review : Sarli, V.; Giannis, A. ChemMedChem 2006, 1, 293

Mitotic Kinesin Eg5 Inhibitors X-Ray of Human Eg5 / (R)-mon-97Complex

NH

NH

S

O

Me

MeNH

NHEtO

Me S

O

N

NHPh

Me S

O

(S)-MonastrolIC50 14.000 nM

DimethylenastronIC50 200 nM

(R)-mon-97IC50 110 nM

NN

F

F

O Me

OH

(S)-Pyr azole (Merck)IC50 26 nM

OH OH

OH

Me

Application

F

ClCHO

OMe

MeO2CNH2

H2N S

NH

NH

Me

MeO2C

S

F

ClYb(OTf) 3, MeCN

MW, 120 °C, 20 min+

87 %

ArB(OH) 2Pd(PPh3)4, CuTC

THF

MW, 100 °C, 25-60 minNH

N

Me

MeO2C

F

Cl

Ar

NH

NMeO2C

Me

F

Cl

N

F

FBay 41-4109

14-81%

Ar = Ph, 4-ClPh, 3-MePh, 2,6-F 2Ph, 2-thiopheneScience 2003, 299, 893

Lengar, A.; Kappe, C. O. Org. Lett. 2004, 6, 771

Synthesis of 2-Aryldihydropyrimidines (Bay 41-4109 Analogs)

Nonnucleosidic Inhibitors of Hepatitis B Virus Replication

Page 14: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

14

Summary Heterocycle Synthesis

• Development of a novel general route to pharmacologically important 4-aryl-2-quinolones

• Six Step, all microwave multistep synthesis• Diversity introduced at a late stage of the synthesis via transition metal-

catalyzed protocols

• Synthesis of symmetrical (hetero)biaryls via MW-assisted Pd(0)-catalyzed borylation/Suzuki coupling or Ni(0)-mediated homocoupling

• Development of a Ni(0)-catalyzed homocoupling protocol for the synthesis of symmetrical bisquinolones

• Synthesis of novel types of aza-BINAP analogues derived from the 4,4’-bisquinolone framework

• Diversity generation on the DHPM scaffold via a 2-step Biginelli-C-C coupling rxn• Generation of a small library of 30 5-aroyl-DHPMs via an automated sequential

or parallel protocol• Time reduction by applying parallel processing techniques (16 h vs 1 h for 16

cmpds)

Silicon Carbide as Novel Passive Heating Elements for Organic Synthesis

Page 15: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

15

Low Microwave Absorbing Solvents

Problems:

• Microwave heating relies on polar solvents � dipolar polarization mechanism

• Reaction mixtures involving non-polar solvents often do not absorb microwave energy

• Microwave synthesis in low-absorbing or microwave transparent solvents is often

not feasible

20

40

60

80

100

120

0 50 100 150 200 250 300

Tem

pera

ture

[°C

]

Time [s]

4 mL Solvent, Quartz Vessel, 150 W Single-mode MW Irradiation

CCl4

dioxane

hexane

toluene

xylene

Heating Aids for Low Absorbing Solvents:Standard Methods

20

60

100

140

180

220

0 100 200 300 400 500 600

0.300 M

0.150 M

0.070 M

0.035 M

0.000 M

20

60

100

140

180

0 100 200 300

100% EtOH

15% EtOH

10% EtOH

5% EtOH

2% EtOH

1% EtOH

pure CCl4

20

60

100

140

180

220

0 100 200 300 400

0.06 M

0.015 M

0.0075 M

0.00375 M

0.0 M

NaCl Concentration:

N

N

Me

Me

PF6

DCE Doped with Ionic Liquid

CCl4 Doped with EtOH Water Doped with NaCl

• Invasive• Inadvertently modify the polarity of the

solvent• May be incompatible with the chemistry• Technical difficulties in case of biphasic

mixtures (ionic liquids)

Disadvantages:

Nüchter, M. et al. Chem. Eng. Technol. 2003, 26, 1207Leadbeater, N. E.; Torenius, H. M.; Tye, H. Comb. Chem. High Throughp. Screen. 2004, 7, 511Habermann, J.; Ponzi, S.; Ley, S. V. Mini-Rev. Org. Chem. 2005, 2, 125

Page 16: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

16

General Properties of SiC

Properties of Silicon Carbide (Ed.: Harris, G. L.), Institute of Electrical Engineers, 1995Silicon Carbide: Recent Major Advances (Eds.: Choyke, W. J. et al.), Springer, Berlin, 2004Advances in Silicon Carbide Processing and Applications (Eds.: Saddow, S. E.; Agarwal, A.), Artech House, 2004

• mp > 2700 °C; density 3.10 g/cm3

• specific heat capacity 650 J/kgK• very low thermal expansion coefficient• excellent thermal shock resistance• high thermal conductivity• excellent corrosion resistance• strong microwave absorber

262 °C after 1 min at 600 W

Silicon Carbide as Novel Passive Heating Elements for Organic Synthesis

Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 4651

• sintered (2000 °C) SiC cylinders10 x 18 mm, 4.35 g10 x 10 mm, 1.94 g

• corrosion resistant till 1500 °C• compatible with all existing MW equipment

(including magnetic stirring)

Sintered Silicon Carbide Passive Heating Elements

Page 17: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

17

4 mL CCl4, Constant 150 W, Single Mode

Heating Profiles for Low Absorbing Solvents using SiC Heating Elements

20

60

100

140

180

220

0 20 40 60 80 100 120

Tem

pera

ture

[°C

]

Time [s]

CCl4

SiC

Solvent tan δδδδ bp [ °C] T [°C]without SiC

T [°C]with SiC

Time [s]

CCl4 n.d. 76 40 172 81

dioxane n.d. 101 41 206 114

hexane 0.020 69 42 158 77

toluene 0.040 111 54 231 145

THF 0.047 66 93 151 77

Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 4651

CCl4

CCl4 + SiC

Claisen Rearrangement

O OHtoluene, SiC heating element

MW, 250 °C, 105 min

>99% conversion95% purity

cf. with ionic liquid (45 min at 220 °C): Baxendale, I. R.; Lee, A.-L.; Ley, S. V. Synlett 2001, 1482

Heating Profiles (Set Temperature 250 °C)

20

60

100

140

180

220

260

0 100 200 300 400 500 600

toluene (quartz)

20

60

100

140

180

220

260

0 100 200 300 400 500 600

rxn mixture (Pyrex)

toluene (quartz)

run terminated< 1% conv

20

60

100

140

180

220

260

0 100 200 300 400 500 600

rxn mixture with SiC cylinder

rxn mixture (Pyrex)

toluene (quartz)

run terminated< 1% conv

Time [s]

Tem

pera

ture

[°C

]

Applications in Microwave Chemistry

Page 18: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

18

Diels-Alder Cycloaddition

Applications in Microwave Chemistry

Me

Me

CN Me

Me

CNtoluene, SiC heating element

MW, 240 °C, 20 min97%

HN NHCO2Me

N NMeO2C

CO2Metoluene, SiC heating element

MW, 200 °C, 10 min98%

BrN NHNN

toluene, NaHCO 3SiC heating element

MW, 250 °C, 30 min

88%

EtO2C

NMe

Ph

S

NH2

EtO2C

NH

Me

Ph

NH

S

toluene, SiC heating element

MW, 220 °C, 30 min 68%

Michael Addition

N-Alkylation

Dimroth Rearrangement

0

50

100

150

200

250

300

350

0 50 100 150 200

0

50

100

150

200

250

300

350

Pyrex Vessel

0

50

100

150

200

250

300

350

0 50 100 150 200

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

0 50 100 150 200

0

50

100

150

200

250

300

350

Pyrex + SiC

Quartz Vessel

2 mL MeCN, 120 °C Set Temperature (CEM) tan δ (MeCN): 620 x 10-4

tan δ (Pyrex): 10 x 10-4

tan δ (Quartz): 0.6 x 10-4

Tem

pera

ture

[°C

]

Time [s]

Pow

er [W

]

200 WQuartz

Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 4651

140 WPyrex

45 WSiC

P

T

Influence of Passive Heating Elements on Microwave Power

Page 19: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

19

Thermal Effects (Kinetics)

accelerations of chemical transformations that can not be achieved or duplicated by conventional heating, but essentially are thermal effects

accelerations of chemical transformations that can not be rationalized by thermal or specific microwave effects

accelerations of chemical transformations that are a consequence of the high reaction temperatures that can be attained under microwave conditions (Arrhenius equation)

Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250

Microwave Effects - Definitions

Specific Microwave Effects

Non-thermal (Athermal) Microwave Effects

Microwaves in Organic Synthesis, Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006

Early TS���� Small ∆∆∆∆G���� Weak MW-Effect

Late TS���� Large ∆∆∆∆G���� Strong MW-Effect

• Position of TS‘s along the reaction coordinate (Hammond postulate):late TS’s have increased polarity and are favored by MW

• Arrhenius law (k = A exp(-∆G≠/RT):increase in pre-exponential factor Adecrease in activation energy ∆G ≠ (entropy term)

definition: rate acceleration effects that can not be rationalized by thermal or specific microwave effects

• Decrease in activation energy ∆G ≠ (for polar mechanisms):relative stabilization of more polar TS electrostatic molecule-electric field interactions GS

TS∆∆∆∆G∆∆∆∆‡

∆∆∆∆GMW‡

Nonthermal Microwave Effects(direct wave-material interactions/orientation effe cts)

Page 20: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

20

J. Org. Chem. 2008, 73, 36

0

30

60

90

120

150

180

210

240

0 1 2 3 4 5 6 7 8 9Time [min]

Tem

pera

ture

[°C

]

0

100

200

300

400

Pow

er [W

]

with SiC (T)without SiC (T)

with SiC(P)

without SiC (P)

Ph

NH

Me

EtO

O

OEt

O

Me

Ph

NMe

EtO

O

OEt

O

Me

MnO2, DCMMW, 150 °C, 8 min

without SiC: 118 Wwith SiC: 52 W

with + without SiC: 100 %

Entry SiC Temp ( °C) Time (min) Conv (%) Power (W)

1 ─ 120 3 86 97

2 Cyl 120 3 86 48

3 ─ 100 5 65 65

4 Cyl 100 5 64 39

Case Study 1: Oxidation of Dihydropyridines

Razzaq, T. et al. J. Org. Chem. 2008, 73, ASAP

Page 21: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

21

20

30

40

50

60

70

0 50 100 150 200

Time [s]

Tem

pera

ture

[°C

]

without MnO2

withMnO2

100 mg MnO2 in 4 mL CCl4150 W, Quartz

20

40

60

80

100

120

0 20 40 60 80 100

Time [s]

Tem

pera

ture

[°C

]

withoutMnO2

withMnO2

100 mg MnO2 in 4 mL Rxn Mixture(DCM), 150 W, Pyrex

Selective Heating of Heterogeneous Reagent

O

O

O

O

O

Otoluene (SiC)

MW, 100-200 °C, 5-10 min+

a Isolated yield

Entry SiC Temp ( °C) Time (min) Conv (%) Power (W)

1 ─ 200 5 (94)a 113

2 Cyl 200 5 (90)a 60

3 ─ 100 10 63 42

4 Cyl 100 10 67 17

5 ─ 100 5 58 41

6 Cyl 100 5 57 21

Case Study 2: Diels-Alder Reaction

Page 22: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

22

Me

Me Me

O

OH

Me

Me Me

O

OEt

EtBr, K 2CO3acetone (SiC)

MW, 80 °C, 5 min

56% (60 W)53% (39 W, SiC)

O

OHI

NC

OH

O

NC

+

Pd/C, Et 3NMeCN (SiC)

MW, 150 °C, 5 min

64% (113 W)66% (56 W, SiC)

NH

NH

PhEtOOC

Me S NH

N

PhEtOOC

Me Ph

Pd(PPh3)4, CuTCdioxane (SiC)

MW, 120 °C, 20 min+ PhB(OH)2

83% (108 W)86% (33 W, SiC)

Esterification

Heck Reaction

Liebeskind-Srogl

Claisen Rearrangement

O OH

chlorobenzene (SiC)

MW, 250 °C, 25 min54% (190 W)67% (62 W, SiC)

Case Studies 3-6 (Selected Data Points)

Summary SiC Heating Elements

• Non-invasive heating aids for microwave synthesis

• Allow the use of non-polar, low-absorbing solvents

• PHEs are easily removed mechanically

• Compatible with any solvent or reagent

• Compatible with single- and multimode instruments

• Valuable tool in cases where other options to increase the microwave absorbance of the reaction medium (e.g. ionic liquids) are not feasible

• Use of strongly absorbing SiC heating elements uses less power at the same temperature

• For our chemistry examples the amount of microwave power used was irrelevant, only temperature proved important

Page 23: July 29-31 2008, Edinburgh Microwaves for the Synthesis of ...€¦ · Microwaves for the Synthesis of Heterocycles July 29-31 2008, Edinburgh Doris Dallinger Christian Doppler Laboratory

23

C. Oliver Kappe

Acknowledgements

Heterocycle Synthesis

Toma GlasnovJamshed Hashim

Nuzhat ArshadHana ProkopcováLeonardo Pisani

SiC Heating Elements

Jenny KremsnerTahseen Razzaq