Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

Embed Size (px)

Citation preview

  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    1/14

    http://jtc.sagepub.com/Composite Materials

    Journal of Thermoplastic

    http://jtc.sagepub.com/content/26/5/627Theonline version of this article can be found at:

    DOI: 10.1177/0892705711427345December 2011

    2013 26: 627 originally published online 6Journal of Thermoplastic Composite MaterialsMS Nurul and M Mariatti

    compositesEffect of thermal conductive fillers on the properties of polypropylene

    Published by:

    http://www.sagepublications.com

    at:can be foundJournal of Thermoplastic Composite MaterialsAdditional services and information for

    http://jtc.sagepub.com/cgi/alertsEmail Alerts:

    http://jtc.sagepub.com/subscriptionsSubscriptions:

    http://www.sagepub.com/journalsReprints.navReprints:

    http://www.sagepub.com/journalsPermissions.navPermissions:

    http://jtc.sagepub.com/content/26/5/627.refs.htmlCitations:

    What is This?

    - Dec 6, 2011OnlineFirst Version of Record

    - May 23, 2013Version of Record>>

    by guest on September 7, 2014jtc.sagepub.comDownloaded from by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/content/26/5/627http://jtc.sagepub.com/content/26/5/627http://jtc.sagepub.com/content/26/5/627http://www.sagepublications.com/http://jtc.sagepub.com/cgi/alertshttp://jtc.sagepub.com/cgi/alertshttp://jtc.sagepub.com/subscriptionshttp://jtc.sagepub.com/subscriptionshttp://www.sagepub.com/journalsReprints.navhttp://www.sagepub.com/journalsReprints.navhttp://www.sagepub.com/journalsPermissions.navhttp://jtc.sagepub.com/content/26/5/627.refs.htmlhttp://jtc.sagepub.com/content/26/5/627.refs.htmlhttp://online.sagepub.com/site/sphelp/vorhelp.xhtmlhttp://online.sagepub.com/site/sphelp/vorhelp.xhtmlhttp://jtc.sagepub.com/content/early/2011/12/02/0892705711427345.full.pdfhttp://jtc.sagepub.com/content/26/5/627.full.pdfhttp://jtc.sagepub.com/content/26/5/627.full.pdfhttp://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://online.sagepub.com/site/sphelp/vorhelp.xhtmlhttp://jtc.sagepub.com/content/early/2011/12/02/0892705711427345.full.pdfhttp://jtc.sagepub.com/content/26/5/627.full.pdfhttp://jtc.sagepub.com/content/26/5/627.refs.htmlhttp://www.sagepub.com/journalsPermissions.navhttp://www.sagepub.com/journalsReprints.navhttp://jtc.sagepub.com/subscriptionshttp://jtc.sagepub.com/cgi/alertshttp://www.sagepublications.com/http://jtc.sagepub.com/content/26/5/627http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    2/14

    Article

    Effect of thermal

    conductive fillers onthe properties ofpolypropylenecomposites

    MS Nurul and M Mariatti

    Abstract

    We investigated the effects of various fillers such as carbon nanotube (CNT), syn-thetic diamond (SND), boron nitride (BN), and copper (Cu) on the properties ofpolypropylene (PP) composites. The thermal conductivity and stability of PP wereenhanced upon the addition of thermally conductive fillers. Youngs modulus increasedwith filler loading, while tensile strength increased at up to 2 vol.% then decreasedwith elongation in all filler types. The morphology of the composite samples showedagglomeration and void content in PP/Cu composites, leading to the deterioration ofthermal and mechanical properties at high-volume loading. Findings indicate that PP/CNT has better thermal and mechanical properties compared with the other typesof fillers.

    Keywords

    Thermal properties, tensile properties, conductive fillers, polypropylene, composites

    IntroductionConductive polymer composites (CPCs) are among the versatile materials that can be

    used in several applications such as self-regulated heating, electromagnetic shielding,

    vapor sensing, and bipolar plates in the fuel cell.1 Reinforcement of polymers with con-

    ductive fillers such as carbon nanotube (CNT), silica, synthetic diamond (SND), silicon

    School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong

    Tebal, Penang, Malaysia

    Corresponding author:

    M Mariatti, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering

    Campus, 14300 Nibong Tebal, Penang, Malaysia.

    Email: [email protected]

    Journal of Thermoplastic Composite

    Materials

    26(5) 627639

    The Author(s) 2011

    Reprints and permissions:sagepub.co.uk/journalsPermissions.nav

    DOI: 10.1177/0892705711427345

    jtc.sagepub.com

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://www.sagepub.co.uk/journalsPermissions.navhttp://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://www.sagepub.co.uk/journalsPermissions.nav
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    3/14

    nitride, boron nitride (BN), copper (Cu), ferrite, bronze, and aluminum nitride can be

    adapted to satisfy the required characteristics of CPCs.25

    Thus, CPCs are emergingas one of the most economical and effective ways to cope with thermal management

    issues.6

    In general, the effectiveness of reinforcing fillers in composites is inversely propor-

    tional to the size of the filler. Previous studies reported that the absorption energy of a

    smaller particle is higher than that of a larger particle due to its high surface energy.7

    Jung et al.8 and Boudenne et al.9 proved that the nano-sized conductive fillers in com-

    posites give better thermal conductive and stability characteristics, since smaller parti-

    cles have better interaction and can more easily form the conductive path than the

    micron-sized particles.

    Moreover, the geometry of the particle is an important factor in achieving the optimal

    properties of composites. A greater surface-to-volume ratio of filler results in greater

    effectiveness. Volume fraction is another factor that affects the effectiveness of the rein-

    forcing filler; it should be as high as 20 by vol.% to afford satisfactory conductivity prop-

    erties. However, filler loading at higher content is generally required to yield these

    positive effects of fillers. This would detrimentally affect some important properties

    of the polymers matrix, including processability, appearance, density, and ageing

    performance.10

    In this study, we investigated the effects of four types of conductive fillers, specifi-

    cally CNT, SND, BN, and Cu, in polypropylene (PP) composites. The correlationsbetween filler loading ranging from 0 to 4 vol.% and thermal and mechanical properties

    of these composites were investigated.

    Experimental

    Materials

    Homopolymer PP (Titanpro 6431) is a commercial product from Titan Polymer (M) Sdn.

    Bhd, with a melt index of 7 g/10 min and a density of 0.9 g/cm3. CNT, SND, BN, and Cu

    were supplied by Shenzhen Nanotech Port Co., Ltd, Heyuan Zhong Lian Nano-

    technology, TaijiRing Nano-products, and Sigma Aldrich, respectively. The properties

    of these fillers are presented in Table 1.

    Table 1.Typical properties of thermal conductive fillers used in the study.

    Properties (units) SND CNT BN CU

    Thermal conductivity (W/mK) 2000 2000 300 385

    Particle size distribution (nm) 56 2645 3043 379492

    Mean particle size (d50) 5.5 69 36 434

    Density (g/cm3) 3.3 1.3 2.2 8.9

    Shape Sphere Tube Sphere Sphere

    BN: boron nitride, CNT: carbon nanotube, CU: copper, SND: synthetic diamond.

    628 Journal of Thermoplastic Composite Materials 26(5)

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    4/14

    Sample preparation

    Conductive nanofillers were dried in oven at 100C for 3 h to remove moisture before

    mixing with PP ranging at 1, 2, 3 and 4 vol.% of filler loading. Compounding between PPand fillers was performed in a two-roll mill heater at a constant temperature of 185C and

    at 50 rpm for 20 min. Then, the composite sheet was compression molded in an electri-

    cally heated hydraulic press at 185C and subsequently cooled at 1000 psi for 3 min.

    Filler characterizations

    Particle size of the fillers was measured by Nanophox particle size analysis, model

    NX0064. Data on particle size distribution were presented as cumulative distribution as a

    function of particle size. Thermal stability of the filler was determined by thermogravi-

    metric analysis (TGA)/differential thermal analysis (DTA) using Linseis model L75/04.Fillers were heated from room temperature to 800C at a heating rate of 10C/min.

    Composites characterizations

    Flow behaviors of samples were determined using Dynisco Polymer Test model 4004

    following the method described in American Society for Testing and Materials (ASTM)

    D 1238-90b with a load of 2.16 kg at 230C and a melt time of 360 s. Cutting samples

    within an interval of 10 s were weighed and melt index values were calculated in g/10 s.

    Physical ashing test was performed according to ASTM D2584 to determine filler weightfraction (Wf) in the composites after compounding. Void content was determined from a

    relationship between the theoretical density and the experimental density of the compo-

    sites. Thermal conductivity was tested using a hot disc thermal constant analyzer model

    TPS 2500 according to ASTM D792-98. The heat source was placed between two

    4 4 8 mm samples and connected to thermal conductivity detector. TGA was per-formed using model Perkin Elmer Pyris TGA-6. The sample was heated from room tem-

    perature to 600C at 10C/min in a nitrogen environment. Melting and crystallization

    behavior of the composites was studied, employing differential scanning calorimeter

    (DSC) using a Perkin-Elmer DSC-6 at a heating rate of 10C/min. Melting temperature

    Tm and crystallization temperature Tc were derived from endothermic and exothermic

    peak temperatures. The degree of crystallinity Xc was calculated from heat of fusion

    by taking 207 J/g as the enthalpy to crystallize 100% PP.11 Tensile test was conducted

    by Instron 3366 with gauge length of 50 mm and speed of 50 mm/min according to

    ASTM D 638-98. The morphology of tensile fracture specimens was captured by ZEISS

    SUPRA 35 VP field emission scanning electron microscope (FESEM).

    Results and discussion

    Melt flow index

    Figure 1 illustrates the decreasing trends of melt flow index (MFI) as the conductive

    filler loading was increased. These trends were expected because the incorporation of

    Nurul and Mariatti 629

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    5/14

    fillers hinders polymer flow and increases the viscosity of composites. PP/CNT exhib-

    ited the lowest MFI due to the high aspect ratio of CNT, leading to strong intermolecularinteraction between the nanotubes. In contrast, the greater size of Cu (micron-sized)

    resulted in a higher MFI value, which slightly increased at high Cu loading (i.e. 3 and

    4 vol.%). This trend can be attributed to the metallic properties of Cu, such that it is able

    to induce and catalyze the degradation of polymer composites. In addition, the heat

    energy absorbed by Cu will spread to the surrounding PP matrix. Thus, the polymer

    chains will be cut down, allowing MFI to increase.12

    Tensile properties

    The correlation between average tensile strength and void content of PP and PP com-

    posites is presented in Figure 2. SND and BN systems exhibited higher tensile strength

    compared with CNT and Cu systems. The maximum tensile strength was observed at

    2 vol.%, after which a decreasing trend was observed. Tensile strength was reduced at

    higher nanofiller loading due to strong interactions between particleparticle rather than

    particlematrix. This trend is supported by the increasing void content as filler content

    was increased. In the CNT- and Cu-filled PP systems, a decreasing trend in tensile

    strength compared with that of PP was observed. This may be related to the large particle

    size of Cu, which functions as a defect, and the high void content in the two-composite

    systems. Increasing void content could cause detrimental effects on mechanical proper-

    ties that create stress concentration and inhibit stress transfer from the matrix to the fil-

    ler.1316 The distribution of fillers in the PP matrix at 4 vol.% was revealed by sectional

    fractography of tensile test by SEM (Figure 3). PP surface (Figure 3a) was dramatically

    Filler loading (vol.%)

    0 1 2 3 4

    Meltflowindex(g/10s)

    0

    5

    10

    15

    20

    25

    PP/CNT

    PP/SND

    PP/BN

    PP/CU

    Figure 1.Melt flow index (MFI) curves of polypropylene (PP) and PP composites as a function of

    filler loading.

    630 Journal of Thermoplastic Composite Materials 26(5)

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    6/14

    changed by the presence of thermal conductive particles. SND and BN in Figure 3(b) and

    (c) were well dispersed; the filler appears to be embedded in the PP matrix, suggestingthat the tensile strength of these systems is high. The worst dispersion and distribution

    were observed in PP/Cu composites, as indicated by the presence of agglomerations and

    voids in Figure 3(d). CNT was poorly distributed but was well dispersed in PP matrix

    (Figure 3e). These properties of PP/Cu and PP/CNT are responsible for the increased

    stress behavior and the ineffective transfer of load applied in PP composites, leading

    to decreased tensile strength of CNT and Cu systems.

    Xc also influences the mechanical properties of composites.17,18 Theoretically, the

    mechanical strength of a crystalline polymer is determined by its crystalline structure.

    Table 2 presents the Xc

    , Tm

    , andTc

    values for PP and PP composites in this study. At

    4 vol.% filler loading, Xc of SND and BN was higher than that of PP because the

    crystalline region acts as a physical crosslink that enhances the tensile strength of PP

    composites. In contrast, CNT and Cu systems exhibited low Xc values since the

    superficial area interferes with crystal growth, thus leading to reduced tensile strength

    of the composites.19,20 Tm values were not significantly changed by the addition of

    conductive fillers and an increase in filler loading. This may be attributed to the

    maintenance of the flexibility of the polymer chain even when fillers are dispersed in

    the polymer matrix.8 Tc values of composites were higher than that of PP and were

    within the range of 110135C, indicating that the conductive fillers can act as

    nucleating agents.Figure 4 illustrates the correlation of Youngs modulus and filler content (Wf) of the

    PP and PP composites. In general, the trends markedly increased with respect to the Wf.

    The highest Youngs modulus were found in CNT followed by BN, SND, and Cu fillers,

    Tensilestrength(MPa)

    26

    28

    30

    32

    34

    36

    38

    40

    PPPP/CNT

    PP/SNDPP/BN

    PP/CU

    Voidcontent(%)

    0

    5

    10

    15

    20

    25

    30

    35

    Filler loading (vol.%)

    0 1 2 3 4

    Figure 2. Tensile strength and void content of polypropylene (PP) and PP composites as a function

    of filler loading. Bar graph refers to the tensile strength and line plot refers to the void content,

    respectively.

    Nurul and Mariatti 631

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    7/14

    with increases of up to 31%, 27%, 25%, and 9% from that of PP, respectively. Incor-

    poration of rigid and stiff reinforcement into the polymer enhanced the stiffness of the

    polymer composites. Higher rigid filler content increased the Youngs modulus signif-

    icantly. The PP/CNT system exhibited the highest maximum Youngs modulus due to

    the high aspect ratio of CN, which leads to greater stiffening compared with particulate

    composites. The lower interfacial area of the sphere shape of SND, BN, and Cu results in

    lower Youngs modulus compared with CNT system. The Cu system had the lowest

    Youngs modulus because of the large particle size of Cu, which results in less inter-

    action between fillerfiller and fillermatrix. Figure 5 illustrates the trends of descending

    Figure 3.Scanning electron microscope (SEM) micrograph of the 4 vol.% filler loading at 5 K

    magnifications. (a) Polypropylene (PP), (b) PP/synthetic diamond (SND), (c) PP/boron nitride (BN),

    (d) PP/copper (CU), and (e) PP/carbon nanotube (CNT).

    632 Journal of Thermoplastic Composite Materials 26(5)

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    8/14

    elongation at break with addition of stiff reinforcement, which decreases the ductility of

    the matrix.

    Thermal conductivity

    Figure 6 presents the thermal conductivity of PP composites at room temperature. We

    found that the thermal conductivity of composites increased monotonically from that of

    PP and increased directly with increased filler amount. This ascending trend may be

    attributed to the ease of heat transfer obtained by increasing contact in the composites.

    CNT was the most effective filler for enhancing thermal conductivity, followed by SND,

    Cu, and BN; this trend seems to follow the hierarchy of thermal conductivities of the

    Y

    oung'smodulus(GPa)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    Weightfraction(%)

    0

    5

    10

    15

    20

    25

    30

    35

    PPPP/CNT

    PP/SNDPP/BN

    PP/CUFiller loading (vol.%)

    0 1 2 3 4

    Figure 4.Youngs modulus and weight fraction of polypropylene (PP) and PP composites as a

    function of filler loading. Bar graph refers to the Youngs modulus and line plot refers to the weight

    fraction, respectively.

    Table 2.DSC and thermal interface resistance (Ri) data for PP and PP composites filled at 4 vol.%

    of CNT, SND, BN, and CU.

    Composites Xc(%) Tm(

    C) Tc(

    C) Ri(nm2

    /w K)

    PP 34.5 164.4 118.4 -

    PP/CNT 30.0 163.9 123.7 0.98

    PP/SND 38.7 163.9 124.3 0.14

    PP/BN 42.4 164.0 125.8 1.3

    PP/CU 33.9 163.9 120.7 1.1

    BN: boron nitride, CNT: carbon nanotube, CU: copper, DSC: differential scanning calorimeter, PP:

    polypropylene, SND: synthetic diamond.

    Nurul and Mariatti 633

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    9/14

    filler (refer to Table 1). The correlation with thermal interface resistance would influencethe effectiveness of the phonon to pass through in the composites systems. The thermal

    resistance at the interface between the matrix and the filler, known as Kapitza resistance

    (Ri), was analyzed according to Eq. (1).21

    Elongationatbreak(%

    )

    2

    3

    4

    5

    6

    7

    8

    9

    Filler loading (vol.%)

    0 1 2 3 4

    PPPP/CNT

    PP/SNDPP/BN

    PP/CU

    Figure 5.Elongation at break of polypropylene (PP) and PP composites as a function of filler loading.

    Thermalconductivity

    (W/m.K)

    0.22

    0.24

    0.26

    0.28

    0.30

    0.32

    0.34

    0.36

    PP/CNT

    PP/SND

    PP/BN

    PP/CU

    Filler loading (vol.%)

    0 1 2 3 4

    Figure 6.Thermal conductivity of the polypropylene (PP) composites as a function of filler loading.

    634 Journal of Thermoplastic Composite Materials 26(5)

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    10/14

    Kc Km KmL

    2RiKfL

    vf

    3 1

    whereKc,Km, andKfare the thermal conductivity of the composite, matrix, and filler,

    respectively;Ri is the interfacial thermal resistance; L is the length of filler assumed

    at diameter d50; and vf is the volume fraction taken at 4 vol.% filler loading. The

    predicted values of Ri are summarized in Table 2. Lower thermal resistance was

    exhibited by the SND and CNT systems due to their high thermal conductivity.

    However, the CNT filler can produce higher thermal conductivities at identically lower

    filler content due to its high aspect ratio, so that it is able to form a conductive network

    for easier phonon-dominated ballistic heat transport compared with the spherical SND.

    HighRiwas observed in the Cu and BN systems due to their low thermal conductivity.

    However, the PP/Cu system exhibited minimum thermal conductivity at 2 vol.% load-ing only, with decreasing values obtained with further addition of filler loadings. This

    is related to the poor adhesion and poor dispersion and distribution of Cu seen in SEM

    morphology (Figure 3d). Variations in agglomeration size, high void content, and the

    lack of contact between particles suggest that Cu particles were relatively nonhomo-

    genously dispersed in the matrix. This subsequently resulted in low heat transfer in the

    Cu system, which led to low thermal conductivity of the composite. In contrast, the

    nearly uniform size of particles indicating good dispersion in the PP matrix (Figure

    3b, c, and e) resulted in better thermal interaction in CNT-, SND-, and BN-filled

    PP composites.

    Thermogravimetry analysis

    The TGA curves for PP and PP composites at 4 vol.% filler loading are presented

    in Figure 7. The curve shows single-step degradation where it shifted to the right

    (i.e. higher temperature) with the addition of filler. This indicates that PP composites

    achieve a stabilization effect through the barrier effect of filler loading, which hinders

    volatilization of bulk samples into gas phase.22 TGA curves reveal that composites

    are stable at up to 350C, with weight reduction of around 0.5%. The TGA profile can

    be clearly depicted by the derivative weight % (DTG) curve in Figure 8. The points

    where degradation starts shifted to a higher temperature in composites compared

    with PP. TGA trends of the composite materials are supported by the TGA analysis

    of fillers (Figure 9), which revealed weight reduction in fillers as indicated by the

    minus () sign in the y axis as a function of temperature. CNT exhibited the highestcurve, suggesting that CNT has better thermal stability compared with the other

    fillers. Weight reductions at different temperature (Table 3) follow the sequence of

    CNT, SND, Cu, and BN. As shown in Figure 7, increasing filler loading leads to

    increased thermal behavior of the composites due to the higher thermal stability of

    fillers compared with the matrix. In general, all composite systems exhibited slightly

    similar weight residue, which explains why fillers are retained without decomposition.

    Most of the fillers will decompose at very high temperatures, while PP will be com-

    pletely degraded.

    Nurul and Mariatti 635

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    11/14

    ConclusionsIn this study, we performed characterization of fillers and investigation of the effect of

    thermally conductive fillers on the mechanical, flow, and thermal properties of PP

    composites. Findings suggest that CNT has better thermal properties compared with

    Temperature (C)

    300 350 400 450 500 550

    Weightloss(%)

    0

    20

    40

    60

    80

    100

    PP

    PP/CNT1

    PP/CNT4

    PP/SND4

    PP/BN4

    PP/CU4

    Figure 7.Thermogravimetric analysis (TGA) curve of polypropylene (PP) and PP composites as a

    function of temperature. The numbers 1 and 4 refer to 1 and 4 vol.% of filler loading, respectively.

    Derivativeweight%

    (%/m)

    30

    20

    10

    0

    PP

    PP/CNT1

    PP/CNT4

    PP/SND4

    PP/BN4

    PP/CU4

    Temperature (C)

    350 400 450 500 550

    Figure 8.Derivative weight percentage (DTG) of polypropylene (PP) and PP composites as a

    function of temperature. The numbers 1 and 4 refer to 1 and 4 vol.% of filler loading.

    636 Journal of Thermoplastic Composite Materials 26(5)

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    12/14

    other conductive fillers. Results demonstrate that CNT, SND, BN, and Cu particles

    variably affect the properties of PP composites. In general, the MFI of composites

    decreased with increased filler loading due to the ability of fillers to hinder plastic flow.

    PP/CNT exhibited the greatest thermal conductivity and thermal stability due to the high

    aspect ratio of CNT, which facilitates the formation of bridges for phonon transformation

    compared with the spherical fillers. However, entanglements of CNT lead to stress

    concentration, resulting in reduced tensile properties. In general, the overall thermal

    properties of composites improved with filler addition. For particulate fillers, lowerd50results in higher tensile strength, Youngs modulus, higherRi, and lower thermal con-ductivity values. The thermal conductivity andRi of the composite materials generally

    seems to follow the hierarchy of thermal conductivities of the filler. Cu with the highest

    d50showed poor thermal and tensile properties due to the agglomeration and voids which

    0 200 400 600 800

    Delta-M(mg)

    25

    20

    15

    10

    5

    0

    CNT

    SND

    BN

    CU

    Temperature (C)

    Figure 9.Thermogravimetric analysis (TGA) curve for conductive fillers used as a function of

    temperature.

    Table 3.Weight reduction (mg) in conductive fillers at 100 and 500C.

    Conductive fillers

    Weight reduction (mg)

    At 100C At 500C

    CNT 0.9 7.0

    SND 1.7 8.6

    CU 3.1 12.7

    BN 4.0 13.2

    BN: boron nitride, CNT: carbon nanotube, CU: copper, SND: synthetic diamond.

    Nurul and Mariatti 637

    by guest on September 7, 2014jtc.sagepub.comDownloaded from

    http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/http://jtc.sagepub.com/
  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    13/14

  • 8/11/2019 Journal of Thermoplastic Composite Materials 2013 Nurul 627 39

    14/14

    15. Naganuma T, Naito K, Kyono J and Kagawa Y. Influence of prepreg conditions on the

    void occurrence and tensile properties of woven glass fiber-reinforced polyimide composites.

    Compos Sci Technol2009; 69(14): 24282433.

    16. Rutz BH and Berg JC. A review of the feasibility of lightening structural polymeric compo-sites with voids without compromising mechanical properties.Adv Colloid Interface Sci2010;

    160(1-2): 5675.

    17. Hartikainen J, Hine P, Szabo JS, Lindner M, Harmia T, Duckett RA, et al. Polypropylene

    hybrid composites reinforced with long glass fibres and particulate filler. Compos Sci Technol

    2005; 65(2): 257267.

    18. Nurazreena, Hussain LB, Ismail H and Mariatti M. Metal filled high density polyethylene

    compositeselectrical and tensile properties. J Thermoplast Compos Mater 2006; 19(4):

    413425.

    19. Zhao Y-Q, Lau K-T, Kim J-K, Xu C-L, Zhao D-D and Li H-L. Nanodiamond/poly (lactic

    acid) nanocomposites: Effect of nanodiamond on structure and properties of poly (lactic acid).Compos B Eng2010; 41(8): 646653.

    20. Kang CH, Yoon KH, Park Y-B, Lee D-Y and Jeong S-S. Properties of polypropylene compo-

    sites containing aluminum/multi-walled carbon nanotubes. Compos A Appl Sci Manuf2010;

    41(47): 919926.

    21. Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A and Jahanshahi M. Effect of car-

    bon nanotubes content on crystallization kinetics and morphology of polypropylene.Polym

    Test2009; 28(1): 4652.

    22. Mukhopadhyay A, Otieno G, Chu BTT, Wallwork A, Green MLH and Todd RI. Thermal and

    electrical properties of aluminoborosilicate glass-ceramics containing multiwalled carbon

    nanotubes.Scripta Mater2011; 65(5): 408411.

    Nurul and Mariatti 639