14
3 33 CHROMATOGRAPHY BEYOND ANALYSIS C.S.G. PHILLIPS Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QR (U.K.) SUMMARY The application of chromatography to non-analytical problems is illustrated by particular reference to studies of heterogeneous catalysis. Emphasis i s laid on the unusual variations of the chromatographic method which may be use- fully employed and the advantages which can arise from the ability to probe surfaces with a variety of molecules. Some possible preparative, synthetic and pedagogic applications of chromatography are also discussed. 1. INTRODUCTION Chromatography i s now very firmly established as the most powerful of ana- lytical methods. It i s thus the valued servant of almost every science. Each year we see the publication of a host of papers which illustrate its use to solve new and even more varied analytical problems. In many laboratoires it has become as commonplace as the test tube, the burette and the balance. Other papers i n t h i s Symposium will illustrate this analytical diversity, and show how even further improvements and extensions of the analytical power of chro- matography may be expected. I will be concerned, however, with what I see as the wider and possibly a more dominant role for chromatography i n science. My prime interest will be the use of chromatographic methods to investigate a whole range of physico- chemical phenomena. I propose to illustrate this by specific reference to an area i n which I have been personally most involved i n recent years, and yet in which, so it seems t o me, we have o n l y begun as it were "to scratch the surfa- ce". This i s the study of heterogeneous catalysis by gas-chromatographic me- thods. However the general principles are of much wider application, and of course embrace both gas and l i q u i d chromatography.

[Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

  • Upload
    csg

  • View
    224

  • Download
    8

Embed Size (px)

Citation preview

Page 1: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

3 33

CHROMATOGRAPHY BEYOND ANALYSIS

C.S.G. PHILLIPS Ino rgan ic Chemistry Labora tory , Oxford U n i v e r s i t y , South Parks Road, Oxford OX1 3QR ( U . K . )

SUMMARY

The a p p l i c a t i o n o f chromatography t o n o n - a n a l y t i c a l problems i s i l l u s t r a t e d

by p a r t i c u l a r re fe rence t o s tud ies o f heterogeneous c a t a l y s i s . Emphasis i s

l a i d on t h e unusual v a r i a t i o n s o f t h e chromatographic method which may be use-

f u l l y employed and t h e advantages which can a r i s e f rom t h e a b i l i t y t o probe

sur faces w i t h a v a r i e t y o f molecules. Some p o s s i b l e p r e p a r a t i v e , s y n t h e t i c

and pedagogic a p p l i c a t i o n s o f chromatography a r e a l s o discussed.

1 . INTRODUCTION

Chromatography i s now v e r y f i rm ly e s t a b l i s h e d as t h e most power fu l o f ana-

l y t i c a l methods. It i s thus t h e va lued se rvan t of a lmost eve ry sc ience. Each

yea r we see t h e p u b l i c a t i o n o f a hos t o f papers which i l l u s t r a t e i t s use t o

so l ve new and even more v a r i e d a n a l y t i c a l problems. I n many l a b o r a t o i r e s i t

has become as commonplace as t h e t e s t tube, t h e b u r e t t e and t h e balance. Other

papers i n t h i s Symposium w i l l i l l u s t r a t e t h i s a n a l y t i c a l d i v e r s i t y , and show

how even f u r t h e r improvements and ex tens ions o f t h e a n a l y t i c a l power o f ch ro -

matography may be expected.

I w i l l be concerned, however, w i t h what I see as t h e w ide r and p o s s i b l y a

more dominant r o l e f o r chromatography i n sc ience. My pr ime i n t e r e s t w i l l be

the use o f chromatographic methods t o i n v e s t i g a t e a whole range o f phys ico-

chemical phenomena. I propose t o i l l u s t r a t e t h i s by s p e c i f i c r e f e r e n c e t o an

area i n which I have been p e r s o n a l l y most i n v o l v e d i n r e c e n t years , and y e t i n

which, so i t seems t o me, we have o n l y begun as i t were " t o s c r a t c h t h e s u r f a -

ce". Th is i s t h e s tudy of heterogeneous c a t a l y s i s by gas-chromatographic me-

thods. However t h e general p r i n c i p l e s a r e o f much w ide r a p p l i c a t i o n , and o f

course embrace bo th gas and l i q u i d chromatography.

Page 2: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

334

I n such a s tudy we a r e e s s e n t i a l l y s e t t i n g o u t t o f e e l o r probe c a t a l y s t

sur faces w i t h molecules r a t h e r than say w i t h e l e c t r o n s or photons, and thus

under c o n d i t i o n s much c l o s e r t o those met i n t h e i r p r a c t i c a l a p p l i c a t i o n . A

p a r t i c u l a r f e a t u r e o f such chromatographic i n v e s t i g a t i o n s i s t h e i n f o r m a t i o n

which i s p rov ided by t h e ready exchange o f one mo lecu la r probe f o r another :

t h i s w i l l be a r e c u r r i n g theme th roughout t h i s paper. I t i s a l s o p o s s i b l e t o

f o l l o w t h e r e a c t i o n s themselves w i t h i n va r ious chromatographic systems, and t o

make use o f s u b t l e combinat ions o f r e a c t i o n and separa t i on t o p r o v i d e an e x t r a

dimension t o t h e s tudy o f c a t a l y t i c processes.

I n such work, v a r i a t i o n s o f chromatcgraphy a r e commonly employed which a r e

n o t u s u a l l y f a m i l i a r t o those concerned e s s e n t i a l l y w i t h i t s a n a l y t i c a l a p p l i -

ca t i ons . Some o f these v a r i a t i o n s w i l l be r e f e r r e d t o i n va r ious p a r t s o f t h i s

paper. These a r e l i s t e d i n Table I t oge the r w i t h re fe rences i n which they a r e

descr ibed i n more d e t a i l .

Table 1 Some v a r i a t i o n s o f Chromatographic Method

Dusted Column E l u t i o n on a P la teau F r o n t a l Ana lys i s and E l u t i on by C'harac t e r i s t i c Po i n t Heater Displacement I so tope Exchange (Tracer Pul se) Peak Shape Ana lys i s Pulse T i t r a t i o n Reversed Flow Sample Vacancy Stopped Flow Thermal Desorp t ion

1,2 2

2 9 3 495

6,7,8 2 Y 9 l o y l l ,12 13 14 2,15 16,17

I n t h e l a s t p a r t o f my paper, I wish a l s o t o draw a t t e n t i o n t o some

p o s s i b l e i m p l i c a t i o n s f o r Chromatography i n p r e p a r a t i v e and s y n t h e t i c chemis-

t r y , and t o suggest f u r t h e r t h a t chromatography cou ld p l a y a q u i t e fundamental

r o l e i n t h e teach ing o f chemis t ry and p a r t i c u l a r l y i n i t s most f o r m a t i v e

stages.

2. THERMODYNAMIC ASPECTS OF ADSORPTION

Chromatographic da ta p r o v i d e v e r y p r e c i s e and d e t a i l e d i n f o r m a t i o n on t h e

Page 3: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

335

d i s t r i b u t i o n o f molecules between a gas and a s t a t i o n a r y phase. I n t h e case

o f sur faces they l ead thus d i r e c t l y t o f r e e energ ies , heats and e n t r o p i e s of

adso rp t i on a t a v a r i e t y o f su r face coverages, t o adso rp t i on iso therms and t o

su r face areas ( r e f . 2 ) . It i s wor th s t r e s s i n g moreover t h a t q u i t e smal l ener -

g i e s o f i n t e r a c t i o n a r e ch romatog raph ica l l y s i g n i f i c a n t . Thus i n t h e s tudy o f

complex fo rma t ion (e.g., between a vapour l i g a n d and a metal su r face atom)

tens o f j o u l e s have r e a l chromatographic impact, w h i l e i n t h e normal prepara-

t i o n o f s t a b l e complexes one would be concerned w i t h tens o f k i l o j o u l e s . I t

i s thus p o s s i b l e t o i n v e s t i g a t e complexec, such as those f o r example between

o l e f i n s and Cd2+ o r Zn2+ ions , which have never been i s o l a t e d by t h e prepara-

t i v e chemis t ( re f .18 , 19) . Furthermore these i n t e r a c t i o n s a r e o f t e n enhanced

when t h e metal i o n i s exposed on a su r face r a t n t r than embedded i n a s o l u t i o n .

Thus

s e l e c t i v e r e t a r d a t i o n o f o l e f i n s over p a r a f f i n s cor respond ing t o a few carbon

atoms, b u t w i t h AgNO, adsorbed on A120, t h i s s e l e c t i v i t y i s extended t o some

f i f t y carbon atoms.

t h e use o f s o l u t i o n s o f AgNO, f o r g a s - l i q u i d chromatography can g i v e a

Two examples w i l l i l l u s t r a t e t h e use o f s imp le e l u t i o n chromatography t o

i l l u m i n a t e c a t a l y t i c s tud ies . I n t h e f i r s t ( r e f . 20) i t was observed t h a t

bo th t h e a c t i v i t y and t h e s e l e c t i v i t y (e.g., bu tad iene from butene, o r acro-

l e i n f rom propene) o f a Bi2MoO6 s e l e c t i v e - o x i d a t i o n c a t a l y s t were d r a m a t i c a l -

l y improved as t h e b u l k c a t a l y s t compos i t ion changed from one t h a t was s l i -

g h t l y B i - r i c h t o one t h a t was s l i g h t l y Mo- r ich . A t t h e same t ime t h e chroma-

tog raph ic p r o p e r t i e s o f t h e su r face a l s o changed comple te ly ( f o r example t h e

r e l a t i v e r e t e n t i o n o f o f benzene as a g a i n s t cyclohexane increased by a f a c t o r

o f 16 ) , and i n a manner ve ry s i m i l a r t o t h a t found on pass ing f rom a B i203 t o

an Moo3 su r face . Pho toe lec t ron spectroscopy then conf i rmed t h a t smal l b u l k

dev ia t i ons f rom s t o i c h i o m e t r y wert accompanied by d r a s t i c changes i n t h e com-

p o s i t i o n o f t h e sur face . The smal l excess o f Bi20, or Moo3 was thus concent ra -

t e d on the r e l a t i v e l y smal l area (2m2g-l) o f t h e su r face and gave r i s e t o t h e

p r e c i p i t a t e change i n c a t a l y t i c p r o p e r t i e s .

The second example ( r e f . 15) concerns t h e mechanism o f wa te r e l i m i n a t i o n

f rom a l coho ls on t h e su r faces o f m o d i f i e d aluminas. I n t h i s case mo lecu la r

models o f t h e a l t e r n a t i v e cis- and t m n s - e l i m i n a t i o n mechanisms showed t h a t

t h e r e should be d i f f e r e n c e s i n t h e number o f CH2-groups which migh t be expe-

Page 4: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

336

c ted t o be a t tached t o t h e c a t a l y s t su r face i n t h e t r a n s i t i o n s t a t e s . From t h e

d i f f e r e n c e i n t h e r e t e n t i o n t imes o f two ad jacen t alkanes when chromatographed

on t h e c a t a l y s t su r face i t was then s imp le t o compute t h e d i f f e r e n c e s i n t h e

f r e e energ ies of these t r a n s i t i o n s t a t e s and hence t h e expected r a t i o s o f t h e

var ious produc t o l e f i n s . The exper imenta l r e s u l t s , o f which examples a r e g i ven

i n Table 2, f i t t e d q u i t e remarkably w e l l w i t h t h e t r a n s - e l i m i n a t i o n mechanism

and n o t t h e cis.

Table 2 P red ic ted and Exper imental Ra t ios o f Produc t O le f i ns

P red ic ted p roduc t r a t i o s c i s - E l i m i n a t i o n traans-El i m i n a t i o n Products observed Alcohol

n-Heptan-4-01 ____ 0.6 trans c i s

___ 1.8 trans cis

__ 1.86 trans cis

n- Bu t an- 2- o 1 Large ( 5 0 ) % n-but-1-ene

__ __ 0 . 6 trans t rans

cis 1.8 CiS

1-ene t t runs +-ene+truns 1 - e n e + t r m s i .e., c i s 3.2 cis 1.4 cis 1.20

n-Pentan-2-01 Small % n-pent-1-ene trans traans lrans __ cis 1 .8 cis 0.6 c i s + l - e n e 0.83

n- Hexan- 2- o 1 No n-hex-1 -ene trans trans trans c1.s 1.8 c i s 0.6 c i s + l -ene 0.58 - -

n-Octan-2-01 No n-oct-1 -ene No n-oct-1-ene

2- Methyl-n-pentan-2-01

trans c i s 1.8 __ trans

~ 0.6 c i s

a1 k-1 -ene a1 k-2-ene 1.5

- 0.60 trans cis

11 k-1 -ene a1 k - l -ene 1.53

By employing d i f f e r e n t sample molecules i t i s o f course p o s s i b l e t o probe

s e l e c t i v e l y d i f f e r e n t p a r t s o f t h e sur face . Thus, f o r example, a z e o l i t e - s u p -

po r ted metal cou ld be probed w i t h N, t o determine i t s t o t a l s u r f a c e area, w i t h

molecules o f d i f f e r e n t mo lecu la r geometr ies t o i n v e s t i g a t e i t s pore s t r u c t u r e ,

and w i t h H, and CO t o de termine t h e na tu re and amount o f f r e e meta l exposed

( r e f . 10 ) . A f u r t h e r ex tens ion o f t h i s concept i s p rov ided by a s tudy o f a

N i / S i O , hydrocrack ing c a t a l y s t u s i n g isotope-exchange chromatography ( r e f . 7 ) .

The c a t a l y s t was packed i n t o a chromatographic column and a s t ream o f hy-

Page 5: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

331

drogen used as c a r r i e r gas w i t h a t h e r m a l - c o n d u c t i v i t y d e t e c t o r . Deuter ium gas

was now i n j e c t e d a t t h e column i n l e t . I t s c o r r e c t e d r e t e n t i o n t ime ( i . e . , a f t e r

t h e dead t ime of t h e column) p rov ided then a d i r e c t measure o f t h e exchangea-

b l e hydrogen on t h e su r face o f t h e c a t a l y s t . A t temperatures below about 120°C

t h i s corresponded t o hydrogen chemisorbed on t h e N i - su r face : t h i s was measured

independent ly by p u l s e - t i t r a t i o n chromatography. Above 120°C k i n e t i c a l l y - c o n -

t r o l l e d exchange w i t h adsorbed water began t o be s i g n i f i c a n t reach ing a thermo-

dynamica l l y - con t ro l l ed p la teau a t about 260°C: these observa t ions were checked

q u a n t i t a t i v e l y by i n j e c t i o n s o f known amounts o f water . F i n a l l y , a t s t i l l h i g h e r

temperatures, f u r t h e r k i n e t i c a l l y - c o n t r o l l e d exchange took p lace which appeared

t o i n v o l v e t h e H i n S i O H groups: t h i s was supported by i n f r a - r e d spectroscopy.

I n t h e case o f t h e k i n e t i c a l l y - c o n t r o l l e d exchanges t h e k i n e t i c s were i n v e s t i -

gated i n more d e t a i l by s topped- f low chromatography. I n j e c t i o n o f hydrocarbons

i n t o t h e system then made p o s s i b l e t h e i n v e s t i g a t i o n o f t h e f u r t h e r exchange o f

hydrogen w i t h adsorbed hydrocarbon.

C l e a r l y as w e l l as p rob ing d i f f e r e n t types o f su r face s i t e , e.g., a c i d i c

and bas i c s i t e s w i t h bas i c and a c i d i c vapours r e s p e c t i v e l y , s t r o n g l y adsorbed

molecules may a l s o be used t o s e l e c t i v e l y po ison such s i t e s . Th is i s o f t e n i m -

p o r t a n t and r e v e a l i n g i n t h e general s tudy o f a r e a c t i o n mechanism. I t can ho-

wever become a v i t a l t e s t when t h e r e i s a r i s k t h a t t h e exper imenta l r e s u l t s

observed cou ld be l a r g e l y caused by r e l a t i v e l y smal l t r a c e s o f i m p u r i t y i n t h e

c a t a l y s t , e.g., smal l amounts o f f i n e l y - d i v i d e d metal i n a supposedly a c t i v e

o rganometa l l i c c a t a l y s t .

3 . ADSORPTION K I N E T I C S

I n t h e preced ing s e c t i o n we cons idered t h e way i n which su r faces may be

probed thermodynamical ly by gas-chromatographic methods. It i s , o f course, a l s o

p o s s i b l e t o e x p l o r e ch romatog raph ica l l y t h e k i n e t i c s o f adso rp t i on ( r e f . 2 ) . I n

t h e s imp les t cases, w i t h a l l a d s o r p t i o n s i t e s hav ing s i m i l a r adso rp t i on k i n e -

t i c s , i n c r e a s i n g slowness o f t h e adso rp t i on -deso rp t i on process i s man i fes ted i n

the broadening o f t h e e l u t i o n peak, f o l l o w i n g f o r example t h e c l a s s i c a l t r e a t -

ment o f t h e van Deemter equa t ion ( r e f . 21) . Thus w i t h mo lecu la r s ieve 5A as s t a -

t i o n a r y phase t h e C t e rm o f t h i s equa t ion i s markedly inc reased on pass ing f rom

the non-penet ra t ing branched t o t h e s t r a i g h t cha in hydrocarbons which a r e a b l e

t o pene t ra te i n t o t h e narrow pores o f t h e z e o l i t e s t r u c t u r e .

Page 6: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

338

As Giddings ( r e f . 22) has shown (see a l s o r e f . 23) adso rp t i on on t o two o r

more k i n e t i c a l l y - d i s t i n g u i s h a b l e s i t e s w i l l l e a d t o skewed peaks. These peaks

may be regarded as t h e s u p e r p o s i t i o n o f a symmetr ical peak (produced by those

molecules which adsorb o n l y on t h e f a s t s i t e s d u r i n g t h e i r passage th rough t h e

chromatographic column) and a broad t r a i l i n g peak (produced by those molecules

which have been absorbed a t l e a s t once on s lower s i t e s ) . We have come across

what appears t o be a good example ( r e f . 24) o f t h i s phenomenon i n s t u d i e s made

w i t h a s t a t i o n a r y phase c o n s i s t i n g o f anatase coated w i t h a carbonaceous mate-

r i a l (which had been produced by t h e d i s p r o p o r t i o n a t i o n r e a c t i o n o f 1,3-buta-

d iene ) . The phenomenon i's here brought o u t p a r t i c u l a r l y c l e a r l y as i t s e f f e c t s

a re o n l y apparent w i t h c e r t a i n molecules. Thus n-hexane produces normal symme-

t r i c a l peaks a t a l l temperatures i nves t i ga ted , w h i l e around 200°C, f o r example,

i t s isomer 2,2-dimethyl butane produces a peak which i s much broader than t h a t

o f n-hexane and which t a i l s s i g n i f i c a n t l y . The skewed n a t u r e o f t h i s peak va-

r i e s w i t h bo th temperature and w i t h f l o w - r a t e o f c a r r i e r gas. It can be d e s c r i -

bed ve ry adequatedly i n terms o f t h r e e types o f s i t e i n v o l v i n g f a s t , medium and

slow adsorp t i on -deso rp t i on k i n e t i c s , t h e l a s t be ing o f r e a l s i g n i f i c a n c e o n l y

a t t h e s lowest gas f l ow- ra tes employed. I n p a r t i c u l a r t h e p o s i t i o n o f t h e peak

maximum ( r e l a t i v e t o t h a t o f n-hexane) inc reases w i t h decreas ing f l o w - r a t e as

adso rp t i on on t h e slower s i t e s p lays an i n c r e a s i n g l y impor tan t r o l e . I n s tudy-

i n g a wide range o f molecules t h e skewing and broadening phenomenon was found

t o i nc rease i n general w i t h i nc rease i n cha in b ranch ing and w i t h hydrogenat ion

o f a benzene r i n g .

I n many circumstances t h e d i s t i n c t i o n between f a s t and s low adsorp t ion-de-

s o r p t i o n k i n e t i c s inc reases even f u r t h e r so t h a t t h e chromatographic e l u t i o n

peak c o n s i s t s o f an apparen t l y normal symmetr ical peak toge the r w i t h a l ong

and very low t a i l . Th is t a i l i s produced by those molecules which have been

invo lved i n adso rp t i on -deso rp t i on processes which a r e now ve ry s low

r i s o n w i t h those i n which t h e symmetr ical peak molecules have been invo lved . It

i s a l l t o o easy then t o be unaware o f t h e ve ry ex i s tence o f such a t a i l , a l t h o -

ugh i t should be suspected i n v iew o f t h e l a c k o f q u a n t i t a t i v e sample recovery .

Indeed such a l o s s would appear t o occur a l l t o o f r e q u e n t l y i n some o f t h e no r -

mal a n a l y t i c a l a p p l i c a t i o n s o f gas chromatography. Th is l o n g t a i l may be revea-

l e d by t h e use o f s topped- f low chromatography i n which molecules s l o w l y desor-

b i n g f rom t h e surface a r e accumi la ted by s topp ing t h e gas f l o w f o r a p e r i o d o f

i n compa-

Page 7: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

339

t ime. An example i s p rov ided i n some s t u d i e s w i t h ion-exchange r e s i n s as gas-

-chromatographic s t a t i o n a r y phases . ( re f . 25 ) .

4. CATALYTIC REACTIONS

The s tudy o f c a t a l y s i s i s , o f course, commonly a s s i s t e d by t h e use o f gas

chromatography as a p u r e l y a n a l y t i c a l dev ice . Such s t u d i e s may o f t e n be sim-

p l i f i e d cons ide rab ly by a more i n t i m a t e connect ion between t h e c a t a l y t i c reac -

t o r and t h e a n a l y t i c a l chromatographic column as i n t h e now c l a s s i c a l m ic ro -

r e a c t o r techn ique ( r e f . 2 6 ) . The i n j e c t i o n system o f t h e chromatographic column

can sometimes be s imp ly adapted t o f u n c t i o n as t h e m ic ro reac to r , and t h e t i m e

spent on t h e c a t a l y s t i n t h e m i c r o r e a c t o r v a r i e d by s topp ing t h e gas f l o w i m -

med ia te l y a f t e r i n j e c t i o n ( r e f . 27, 28) . By t h e use o f sample-vacancy chromato-

graphy ( r e f . 14 ) , i n which a sample o f t h e r e a c t a n t f eed i s i n j e c t e d between

t h e coup led r e a c t o r and chromatographic column w h i l e r e a c t a n t i s f e d cont inuou-

s l y i n t o t h e r e a c t o r , d i f f e r e n t i a l r e a c t i o n chromatograms may be generated. I n

these nega t i ve peaks correspond t o r e a c t i o n produc ts , a p o s i t i v e peak measures

the amount o f r e a c t a n t which has reac ted , w h i l e non - reac t i ng i m p u r i t i e s a r e

e l i m i n a t e d f rom t h e chromatogram and n o n - v o l a t i l e r e a c t i o n produc ts may be e s t i -

mated f rom t h e d i f f e r e n c e between p o s i t i v e and nega t i ve peaks.

However much a l s o may be l ea rned by combining i n t h e same column, o r even

i n t h e same pack ing m a t e r i a l , bo th a n a l y t i c a l and chromatographic c h a r a c t e r i -

s t i c s : see f o r example t h e rev iew a r t i c l e s by van Swaay ( r e f . 29) on "The Stu-

dy of React ion K i n e t i c s by t h e D i s t o r t i o n o f Chromatographic E l u t i o n Peaks" and

by Langer and Pa t ton ( r e f . 30) on "Chemical Reactor A p p l i c a t i o n s o f t h e Gas

Chromatographic Column", and Chapter 13 on "On-Column React ions" i n Conder and

Young ( r e f . 2 ) . I t i s a p i t y t h a t t h e te rm " r e a c t i o n chromatography" cannot now

be a p p l i e d t o such s t u d i e s , s i n c e i t has become t h e p r a c t i c e t o employ i t t o

cover almost e x c l u s i v e l y r e a c t i o n s o c c u r r i n g b e f o r e o r a f t e r b u t n o t w i t h i n a

chromatographic column (e.g. , r e f . 31 ) . Th is i s a f u r t h e r i l l u s t r a t i o n o f t h e

heavy a n a l y t i c a l b i a s o f gas chromatography.

One immediate advantage o f u s i n g t h e same m a t e r i a l as bo th c a t a l y s t and

chromatographic s t a t i o n a r y phase i s t h a t thermodynamic and a d s o r p t i o n - k i n e t i c

s tud ies o f t h e sur face , such as those o u t l i n e d i n t h e two p rev ious sec t i ons ,

may be made w i t h e s s e n t i a l l y t h e same exper imenta l system. Moreover a l l t hese

s tud ies a r e then c a r r i e d o u t under c o n d i t i o n s very s i m i l a r t o those i n which

Page 8: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

340

t h e c a t a l y t i c r e a c t i o n s m igh t be o c c u r r i n g i n say i n d u s t r i a l p r a c t i c e , r a t h e r

than t h e more abs t rac ted c o n d i t i o n s (e.g., under h i g h vacuum o r s u b j e c t t o

e l e c t r o n bombardment) o f t e n used i n modern phys i ca l s tud ies o f c a t a l y s i s and

c a t a l y t i c sur faces . There a r e a l s o many o t h e r advantages i n c l u d i n g r a p i d i t y

and p r e c i s i o n o f measurement, and o f course, once aga in , t h e ready a b i l i t y t o

probe t h e su r face w i t h a whole range o f mo lecu la r species.

The i m p o s i t i o n o f a chemical r e a c t i o n on t o t h e normal chromatographic

process n a t u r a l l y leads t o a more complex chromatogram. I n p r i n c i p l e t h i s com-

p l e x i t y can be t rans formed t o g i v e the k i n e t i c s o f t h e r e a c t i o n (see espec ia l -

l y r e f . 30) . Thus i n t h e case o f a s imple r e v e r s i b l e r e a c t i o n A B, i n j e c t i o n

o f A w i l l l ead t o a chromatogram spanning t h e normal e l u t i o n peaks o f A and

o f B f rom t h e a n a l y s i s o f which ( r e f . 30, 32) t h e fo rward and reve rse r a t e

cons tan ts (and hence t h e e q u i l i b r i u m cons tan t ) may be determined. Exper imental

examples i n c l u d e the i s o m e r i s a t i o n o f oyn- and an t i -ace ta ldox ime ( r e f . 30), t h e

enan t iomer i za t i on o f l -ch lo r0-2 ,2-d imethy l a z i n i d i n e on a r e s o l v i n g s t a t i o n a -

ry phase c o n t a i n i n g n i c k e l (11) b i s 3-(trifluoroacetyl)-l-R-.camphorate ( r e f .

33), and t h e i n t e r c o n v e r s i o n o f ortho and para hydrogen ( r e f . 34) . For a de-

compos i t ion r e a c t i o n (p roduc ing r e a c t i o n produc ts l e s s s t r o n g l y r e t a r d e d chro-

ma tog raph ica l l y than t h e r e a c t a n t ) e.g., d i cyc lopen tad iene -

( r e f . 30) , t h e chromatogram c o n s i s t s o f a normal peak o f unreac ted r e a c t a n t

preceded by a l o n g t r a i l i n g peak o f p roduc ts . T h i s l a t t e r peak s t a r t s s tepwise

( i n t h e case o f more than one p roduc t ) a t t h e r e t e n t i o n t imes o f t h e normal

e l u t i o n peaks o f t h e produc ts ( i . e . , cor respond ing t o p roduc ts produced a t t h e

very beg inn ing o f bo th t h e r e a c t i o n and t h e column) and t r a i l s r i g h t back t o

t h e r e a c t a n t peak. Once aga in t h i s chromatogram r e f l e c t s and can be t r a n s f o r -

med t o g i v e r e a c t i o n - k i n e t i c i n fo rma t ion .

pentad iene

However, whenever t h e r e i s a r e l a t i v e l y l a r g e chromatographic separa t i on

( b u t see a l s o r e f . 13) between r e a c t a n t and produc ts (e.g., decomposi t ion,

c rack ing , e l i m i n a t i o n , Fischer-Tropsch r e a c t i o n s ) , t h e a n a l y s i s o f t h e reac-

t i o n may be cons ide rab ly extended and s i m p l i f i e d by t h e use o f s topped- f low

chromatography ( r e f . 15) . Here t h e gas f l o w i s p e r i o d i c a l l y stopped d u r i n g

the passage o f t h e r e a c t a n t th rough the column, so t h a t t h e r e a c t i o n and t h e

chromatographic processes a r e e f f e c t i v e l y uncoupled. The fo rmer cont inues wh i -

l e t h e l a t t e r s tops d u r i n g t h e f l o w i n t e r r u p t i o n s . Each t i m e t h e gas f l o w i s

Page 9: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

341

stopped, r e a c t i o n produc ts accumulate a t t h a t p o i n t i n t h e column where t h e

r e a c t a n t was s i t t i n g d u r i n g t h e s top . On r e s t a r t i n g t h e f l o w , these accumula-

t i o n s o f p roduc t then behave as though they had been i n j e c t e d a t t h i s p a r t i c u -

l a r p o i n t and produce sharp chromatographic peaks superimposed on t h e broad

r e a c t i o n chromatogram. I n favourab le cases i t i s p o s s i b l e t o genera te more

than two hundred s e t s o f such peaks d u r i n g one passage o f r e a c t a n t th rough t h e

column. F u r t h e r i n f o r m a t i o n can be ob ta ined e.g., by v a r y i n g t h e s t o p t i m e

( t o i d e n t i f y a u t o c a t a l y t i c and success ive r e a c t i o n s ) , by i n t r o d u c i n g p o t e n t i a l

i n h i b i t o r s and c o c a t a l y s t s i n t o the column ( t h e i r p o s i t i o n s i f they a r e V O l a t i -

l e be ing r e a d i l y determined a t any t i m e from t h e i r chromatographic behav iou r ) ,

and by c a r r y i n g o u t s imu l taneous ly more than one r e a c t i o n a t d i f f e r e n t p a r t s

o r a t t h e same p a r t o f t h e column. There a r e o t h e r ways i n which advantage may

be taken o f t h e v a r i e t y o f mo lecu la r probes. Thus t h e hydrogenat ion o f an ad-

sorbed C, spec ies on a N i / S i O , su r face ( r e f . 3 5 ) can be i n v e s t i g a t e d by produ-

c i n g C, spec ies f rom methane, f rom C O Y o r v i a t h e i d r o c r a c k i n g o f p a r a f f i n

hydrocarbons. So a l s o t h e d e t a i l s o f a s e r i e s o f success ive r e a c t i o n s ( r e f . 36)

may be u n r a v e l l e d by i n j e c t i o n o f t h e produc ts .

Even t h e r e a c t i o n s themselves may be used t o s tudy t h e n a t u r e o f t h e s u r -

face. Thus on c e r t a i n sur faces some e l i m i n a t i o n r e a c t i o n s (e.g., water f rom

a l coho ls o r hydrogen c h l o r i d e f rom a l k y l c h l o r i d e s t o g i v e o l e f i n s i n each ca-

se) t a k e p lace w i t h o u t any p e r c e p t i b l e movement o f r e a c t a n t on t h e column ( t h e

r e t e n t i o n t imes o f t h e p roduc t o l e f i r l s remain cons tan t f o r a whole s e r i e s o f

successive s topped- f low chromatograms). The a n a l y s i s o f t h e k i n e t i c s then

leads t o a cho ice between two mechanisms, one i n v o l v i n g f i r s t - o r d e r r e a c t i o n s

on a s e r i e s o f s i t e s o f d i f f e r e n t a c t i v i t y and t h e o t h e r a h ighe r -o rde r rea -

c t i o n ( r e f . 37) . The second mechanism can be e f f e c t i v e l y d isproved by demon-

s t r a t i n g t h a t t h e e l i m i n a t i o n r e a c t i o n o f one mo lecu la r species i s u n a f f e c t e d

by t h a t o f another s i m i l a r mo lecu la r species and, more s u b t l y , by p a r t i a l l y

r e a c t i n g one mo lecu la r species (and thus on t h e a l t e r n a t i v e hypo thes i s f r e e i n g

t h e more r e a c t i v e s i t e s ) and then i n j e c t i n g and f o l l o w i n g t h e r e a c t i o n o f ano-

t h e r . The d e t a i l e d computer a n a l y s i s o f t h e k i n e t i c s pe rm i t s a c a l c u l a t i o n o f

t h e d i s t r i b u t i o n on t h e su r face o f s i t e s o f v a r y i n g c a t a l y t i c a c t i v i t y , i n es-

s e n t i a l l y t h e same manner as i n d i v i d u a l r a d i o a c t i v e i so topes may be i d e n t i f i e d

by d e t a i l e d a n a l y s i s o f t h e decay r a t e s o f a m i x t u r e o f i so topes measured ove r

a p e r i o d o f t ime.

Page 10: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

342

5. PREPARATIVE AND SYNTHETIC CHEMISTRY

I t u r n now t o a d i f f e r e n t n o n - a n a l y t i c a l aspec t o f chromatography: i t s w i -

der a p p l i c a t i o n i n p r e p a r a t i v e and s y n t h e t i c chemis t ry . Chromatography has o f

course been used f o r a ve ry l o n g t i m e as a p r e p a r a t i v e t o o l . However i t s poten-

t i a l i t i e s seem n o t even y e t t o have been f u l l y developed. I propose t o comment

i n p a r t i c u l a r on two mat te rs namely (A) t h e a b i l i t y t o d r i v e a chemical r e a c t i o n

beyond i t s normal thermodynamic l i m i t s and ( B ) t h e p o s s i b i l i t y o f c o n t r o l l i n g

the n a t u r e o f t h e s y n t h e t i c i n v e s t i g a t i o n s themselves.

(A) As has been i n d i c a t e d above i n t h e d i s c u s s i o n o f heterogeneous c a t a l y -

s i s , chemical r e a c t i o n s ( c a t a l y s e d o r uncata lysed) may be c a r r i e d o u t i n a ch ro -

matographic column w h i l e a t t h e same t ime t h e column i s separa t i ng r e a c t a n t s

and t h e va r ious produc ts . L e t us take , f o r example, a r e v e r s i b l e r e a c t i o n such

as t h a t i n v o l v i n g t h e i n t e r c o n v e r s i o n o f t h e va r ious hexane isomers ove r a

Pt/A1,0, c a t a l y s t . Then by u s i n g heater d i sp lacemen t chromatography , n-hexane

may n o t on l y te conver ted i n t o i t s isomers and t h e va r ious isomers then separa-

ted, b u t one can ar range t h a t t h e lass-branched isomers ( s t a r t i n g w i t h n-hexa-

ne i t s e l f ) a r e success i ve l y and s e l e c t i v e l y re isomer ised. I n t h i s way t h e reac-

t i o n i s d r i v e n t o produce a lmost comp le te l y t h e most-branched isomer, 2,2-dime-

thy1 butane ( r e f . 4 ) . I t i s thus poss ib le , i n p r i n c i p l e a t l e a s t , t o c o n t r o l

chemical r e a c t i o n s so as t o produce almost 100 % o f a p roduc t wh ich m igh t o n l y

be formed a t r a t h e r low y i e l d s by convent iona l means.

( B ) Th i s leads on t o a b roader aspect o f t h e r o l e o f chromatography i n syn-

t h e s i s . H i t h e r t o chromatography has been used a lmost e n t i r e l y as t h e handmaiden

of t h e s y n t h e t i c chemist . He dec ides what r e a c t i o n s and what t a r g e t m o l v u l e s

t o s tudy and mere ly c a l l s i n chromatographic a n a l y s i s t o t e l l him how w e l l he

has achieved h i s goa ls . I t seems t o me, however, t h a t chromatography shou ld a t

t imes take a more commanding p o s i t i o n a t t h e i n i t i a l des ign o f t h e s y n t h e t i c

exper iments. Thus r e a c t i o n s c o u l d be u s e f u l l y s t u d i e d which were s e l e c t e d t o

g i v e manv new produc ts i n s t e a d o f one t a r g e t molecule. As a s imp le examDle one

may quote some work i n which my group was i n v o l v e d many years ago i n t h e prepa-

r a t i o n of s i l i con-german ium hydr ides , boraz ines and Group I V a l k y l s . Here a

hos t o f h i t h e r t o unknown molecu les were produced, separated and r a p i d l y i d e n t i -

f i e d by a v a r i e t y o f gas-chromatographic methods. Thus gas-chromatographic co-

lumns, va r ious de tec to rs , and a n c i l l i a r y apparatus were hooked up t o p r o v i d e t h e

e q u i v a l e n t o f t h e t r a d i t i o n a l high-vacuum p r e p a r a t i v e l i n e , b u t w i t h f l o w i n g

Page 11: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

343

gas streams r e p l a c i n g vacuum.(ref . 38).

I t cou ld w e l l be o f cons ide rab le va lue t o s tudy a l l t h e produc ts o f a syn-

t h e t i c process. Th is c o u l d n o t o n l y p r o v i d e a much f u l l e r i n s i g h t i n t o t h e na-

t u r e of t h e s y n t h e t i c r e a c t i o n s b u t c o u l d l e a d t o new and more d i r e c t s y n t h e t i c

rou tes . Thus q u i t e minor p roduc ts o f t h e r e a c t i o n under one s e t o f c i rcumstan-

ces may become s i g n i f i c a n t s y n t h e t i c p roduc ts o f t h e r e a c t i o n when t h e c i rcum-

stances a r e a l t e r e d i n a manner suggested by t h e d e t a i l s o f chromatographic

analyses. What I am t h u s advocat ing i s a sys temat ic s tudy o f what a r e a t p r e -

sent o n l y s i d e r e a c t i o n s . To p u t i t another way, we should s u r e l y s tudy t h e

mu1 t i f a r i o u s produc ts o f a r t i f i c i a l s y n t h e t i c r e a c t i o n s j u s t as we have s t u d i e d

t h e m u l t i f a r i o u s produc ts o f r e a c t i o n s o c c u r r i n g i n na tu re . How many f a s c i n a -

t i n g species a r e be ing thrown down t h e l a b o r a t o r y s ink , as h i g h po ly r ie rs once

were b e f o r e a whole i n d u s t r y became founded upon them?

6. CHROMATOGRAPHY I N EDUCATION

My f i n a l peep i n t o t h e f u t u r e i s concerned w i t h t h e use o f chromatography

i n educat ion. I f one looks , f o r example, th rough t h e "Journa l o f Chemical Edu-

c a t i o n " one f i n d s each yea r some dozen o r so re fe rences t o chromatographic ex-

per iments . However t h e y a r e v i r t u a l l y a l l concerned w i t h demonst ra t ing how chro-

matography works o r w i t h i t s use f o r s p e c i f i c ana lyses . Now I see chromatogra-

phy hav ing a much more fundamental pedagogic r o l e , p a r t i c u l a r l y as chromato-

graphs become w i d e l y a v a i l a b l e and as t h e computer and t h e VDU became f a m i l i a r

i n our schools. What b e t t e r t o o l i s t h e r e than chromatography f o r demonst ra t ing

so many o f t h e bas i c p r i n c i p l e s o f mo lecu la r chemis t r y? It i s much more e f f e c t i -

ve than t h e t e s t t ube and s u r e l y more i n f o r m a t i v e , i f l e s s spec tacu la r , than

t h e t r a d i t i o n a l bangs and sme l l s w i t h which t h e average s tuden t i s i n i t i a t e d

i n t o t h e mys te r ies o f chemis t ry .

L e t me b r i e f l y o u t l i n e a p o s s i b l e s e r i e s o f i n t r o d u c t o r y exper iments. A

m i x t u r e o f t h e lower p a r a f f i n hydrocarbons i s f i r s t separated r a p i d l y , e.g., by

c a p i l l a r y gas chromatography. The s t r a i g h t - c h a i n molecules a r e a t once i d e n t i -

f i e d by t h e r e g u l a r p a t t e r n o f t h e i r r e t e n t i o n times, and t h e v a r i o u s isomers

then p i cked o u t and t h e i r number and behav iour r a t i o n a l i s e d . The d i s t i n c t i o n s

between t h e d i f f e r e n t mo lecu les can then be f u r t h e r i n v e s t i g a t e d by t h e use of

mo lecu la r s ieves , s e l e c t i v e v o l a t i l i t y and s e l e c t i v e d i f f u s i o n . Thus i n a v e r y

s h o r t space o f t i m e t h e s tuden t becomes f a m i l i a r w i th t h e n a t u r e and p r o p e r t i e s

Page 12: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

344

o f a whole range o f s i g n i f i c a n t and na tu ra l l y -abundan t species. From then on i t

i s a s t r a i g h t f o r w a r d m a t t e r t o develop i n t o mo lecu les w i t h d i f f e r e n t a c t i v e

groups and t o a v a r i e t y o f chemical reac t i ons , a l l o f which may be s t u d i e d r a -

p i d l y and conv inc ing l y w i t h a r e l a t i v e l y s imp le gas chromatograph. What one

needs f o r such a programme i s j u s t a simple, w ide ly -used and r e l a t i v e l y inexpen-

s i v e chromatographic des ign toge the r w i t h t h e d e d i c a t i o n o f an i n s p i r e d teacher

t o dev i se a s e t o f w e l l - t e s t e d and graded exper iments t o i n t r o d u c e s tudents e f -

f i c i e n t l y and c o n v i n c i n g l y t o t h e r i c h e s o f mo lecu la r chemis t ry .

7. WHY CHROMATOGRAPHY AND WHY NOT?

F i n a l l y one may pose two r a t h e r bas i c ques t ions . ( A ) Why shou ld one t r y t o

persuade people t o use chromatographic methods i n o t h e r than t h e i r normal ana-

l y t i c a l r o l e ? ( B ) Why a r e chromatographic methods as y e t so l i t t l e accepted

o u t s i d e ana lys i s?

(A) To t h e f i r s t ques t ion , t h e r e a re o f course many answers wel l -known t o

the p a r t i c i p a n t s a t t h i s meet ing. I would w ish t o h i g h l i g h t p a r t i c u l a r l y t h e

f a c t t h a t "it i s there" , t h a t i s t h a t chromatographic apparatus i s now v e r y

w ide ly d i s t r i b u t e d in a l l s o r t s o f s c i e n t i f i c l a b o r a t o r i e s , and indeed i n com-

pa r i son w i t h so many o t h e r techn iques i s v e r y easy t o s e t up and t o employ.

Chromatographic exper iments a r e u s u a l l y remarkab ly rap id . They r e q u i r e o n l y

smal l amounts o f m a t e r i a l and i n many cases these need n o t even be pure, s ince

the chromatographic method con t inuous ly separates and d i s t i n g u i s h e s t h e va r ious

components o f a m ix tu re . Yet t h e methods, e s p e c i a l l y w i t h a l i t t l e i n g e n u i t y

can y i e l d a wea l th o f r a t h e r p r e c i s e i n fo rma t ion .

Moreover t h e r e a r e now two q u i t e e x c e l l e r t books ( r e f . 2, 39) wh ich s p e l l

o u t ex t remely c l e a r l y a l l t h a t one needs t o know t o app ly gas-chromatographic

methods t o physicochemical measurements. The ex tens ion o f these ideas t o t h e

use o f l i q u i d chromatography i s e s s e n t i a l l y s t r a i g h t f o r w a r d .

(B) Yet, and here I come t o t h e second ques t ion , i t must be admi t ted t h a t

chromatographic methods a r e s u r p r i s i n g l y l i t t l e used o u t s i d e ana lys i s , and then

o n l y f o r t h e most p a r t by those whose background and c e n t r a l i n t e r e s t l i e i n

a n a l y t i c a l chromatography (see e.g., r e f . 40). Why i s t h i s ? I n p a r t I t h i n k i t

stems from t h e cu r ious i n t e l l e c t u a l c loud t h a t somehow hangs over a n a l y t i c a l

procedures. There seems t o be something o f magic and w i t c h c r a f t about them, a

v iew perhaps a s s i s t e d by t h e e x o t i c chemicals t h e y o f t e n employ, and i n t h e ca-

Page 13: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

345

se o f chromatography the m u l t i p l i c i t y o f phys i ca l processes which a r e i n v o l v e d

and which need t o be un rave l l ed . Now i t may appear t o some t h a t t h i s must a l -

ways be so, b u t I b e l i e v e t h a t sc ience i s s t i l l ve ry o f t e n a ma t te r o f f ash ion .

Fashions change and i n t h e end wisdom may y e t p r e v a i l . A f t e r a l l gas chromato-

graphy was f i r s t exemp l i f i ed i n 1512 ( r e f . 41), was c l e a r l y expounded i n 1941

( r e f . 42), b u t o n l y came i n t o i t s own a f t e r 1952 ( r e f . 43). For t h e c r u c i a l

c o n t r i b u t i o n s on t h e l a s t two o f these occasions we a r e o f course indebted t o

the man i n whose honour t h i s meet ing i s he ld.

REFERENCES

1

2

3

4

5

6

7

n

9

10

11

12

13

14

15

16

17

W.K. Al-Thamir, J.H. Purne l l and R.L. Laub, J. Chromatogr., 176 (1979)

J.R. Conder and C.L. Young, Physicochemical Measurement by Gas Chromatogra- phy, John Wiley, New York 1979.

J-C. Huang, D. Rothste in , B-G. Wu and R. Madey, J . Chromatogr., 244 (1982)

C.M.A. Badger, J.A. Har r i s , K.F. Scot t , M.J. Walker and C.S.G. P h i l l i p s , J. Chromatogr., 126 (1976) 11-18.

J.P. tiorrocks, J.A. H a r r i s , C.S.G. P h i l l i p s and K.F. Sco t t , J . Chromatogr.,

A. Ozaki, F. Nozaki, K. Maruga and S. Ogasawara, J . Cata l ys i s , 7 (1967)

K.F. S c o t t and C.S.G. P h i l l i p s , J. Ca ta l ys i s , 51 (1978) 131-134.

J.P. Parcher, 3. Chromatogr., 251 (1983) 281-288.

E . Grushka and S.D. Mott , J . Chromatogr., 186 (1979) 117-127.

F. Notheisz, A.G. Zsigmond and M. Bartok, J . Chromatogr., 241 (1982) 101- -1 02.

A. Baiker and M. New, J . Chromatogr., 238 (1982) 13-28.

T. Paryjczak, W.K. Joz inak and J. Gora lsk i , J . Chromatogr., 166 (1978) 65- -74.

G. Kara iskak is , N.A. Katsanos and A. N i o t i s , J. Chromatogr., 245 (1982)

C.S.G. P h i l l i p s and C.R. M c l l w r i c k , Anal. Chem., 45 (1973) 782-786.

R.M. Lane, B.C. Lane and C.S.G. P h i l l i p s , J . Cata l ys i s , 18 (1970) 281-296.

V.R. Choudhary and S.D. Sansare, J . Chromatogr., 192 (1980) 420-424.

232-236.

15-22.

197 (1980) 109-119.

234-239.

21-29.

T. Paryjczak, J . Rynkowsky and S. Karsk i , J . Chromatogr., 188 (1980) 254- 256.

Page 14: [Journal of Chromatography Library] The Science of Chromatography Lectures Presented at the A J F! Martin Honorary Symposium, Urbino, May 2 7-37, 1985 Volume 32 || Chromatography Beyond

346

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

I . Hadz is te l i os , F. Lawton and C.S.G. P h i l l i p s , J. Chem. SOC. Dal ton, (1973)

J.R. Chret ien, K. Szymaniak, J.E. Dubois, R.F. H i r s c h and R.J. Gaydosh, J. Chromatogr., 294 (1984) 1-14.

A.G. M i t c h e l l , P.M. Lyne, K.F. Sco t t and C.S.G. P h i l l i p s , J. Chem. SOC. Fa- raday Trans. 1 , 77 (1981 ) 241 7-2427.

J.J. van Deemter, F.J. Zuiderweg and A. Kl inkenberg, Chem. Eng. Sc i . , 5

J.C. Giddings, Anal. Chem., 35 (1963) 1999-2002.

D.E. Damiani, E.M. V a l l e s and C.E. Gigola, J. Chromatogr., 196 (1980)

G.J.S. V i n t and C.S.G. P h i l l i p s , J. Chromatogr., 292 (1984) 263-271.

R.F. H i r sch and C.S.G. P h i l l i p s , Anal. Chem., 49 (1977) 1549-1551.

R.T. Kokes, H. Tobin and P.H. Emmett, J. Amer. Chem. SOC., 77 (1955)

K.F. S c o t t and C.S.G. P h i l l i p s , J. Chromatogr., 112 (1975) 61-70.

A.F. Shushonova and L.Yu. Prokhorova, J. Chromatogr., 283 (1984) 365-370.

M. van Swaay, i n J.C. Giddings and R.A. K e l l e r (Eds.) Advances i n Chromato- graphy Vol . 8, Marcel Dekker, New York, 1969, pp. 363-399.

S.H. Langer and J.E. Patton, i n J.H. Purne l l (Ed.), New Developments i n Gas Chromatography, John Wiley, New York, 1973, pp. 293-373.

R.W. F r e i , J. Chromatogr., 165 (1979) 75-86.

R. Kramer, J . Chromatogr.,l07 (1975) 241-252.

N. Burkle, H. Karfunkel and V. Schurig, J . Chromatogr., 288 (1984) 1-14.

E. Cremer and R. Kramer, J. Chromatogr., 107 (1975) 253-263.

K.F. S c o t t and C.S.G. P h i l l i p s , J . Chem. SOC. Faraday I . , 76 (1980) 683-700.

N.D. Perk ins and C.S.G. P h i l l i p s , J. Ca ta l ys i s , 66 (1980) 248-250.

K.F. Scot t , J . Chem. SOC. Faraday I . , 76 (1980) 2065-2079.

C.S.G. P h i l l i p s , P. Powell, J.A. Semlyen and P.L. Timns, Z e i t . Anal. Chem.,

R.J. Laub and R.L. Pecsok, Physicochemical A p p l i c a t i o n s o f Gas Chromatogra- phy, John Wiley, New York, 1978.

Faraday Symposium o f t h e Chemical Society, No. 15, Chromatography, Equ i l i- bra and K ine t i cs , 1980.

H. Brunschwig, L i b e r der a r t e d i s t i l l a n d i (1512) see E. Bayer, Gaschromato- graphie, Spr inger, B e r l i n , 1959, p4.

A.J.P. M a r t i n and R.L.M. Synge, Biochem. J., 35 (1941) 1358-1368.

A.T. James and A.J.P. Mar t in , Biochem. J., 50 (1952) 679-690.

21 59-21 62.

( 1 956) 271 -289.

355-366.

5860-5862.

197.2 (1963) 202-211.