64
‘- FORAERONAUTICS TECHNICAL NOTE 3491 EXPERIMENTAL INVESTIGATION OF FRICTION, SHORT -,-- ECCENTRICITY AND OIL FLOW OF LONG AND JOURNAL BEARINGS WITH _uMD -NUMBER CHARXS By G.B.Du.Bois, F.W. Ocvirk, L,Wehe andR. Cornell L- RATIO, Washington September1955 ., , ,. -,. . -.’;<d-J~d r..-.,,, ,.+’ . L.. 0 . ..- ----- .. . .. -—

Journal Bearing

Embed Size (px)

DESCRIPTION

Journal Bearing

Citation preview

Page 1: Journal Bearing

‘-

FORAERONAUTICS

TECHNICAL NOTE 3491

EXPERIMENTAL INVESTIGATION OF

FRICTION,

SHORT

-,--

ECCENTRICITY

AND OIL FLOW OF LONG AND

JOURNAL BEARINGS WITH

_uMD -NUMBER CHARXS

By G.B.Du.Bois,F.W. Ocvirk,L,WeheandR.

Cornell

L-

RATIO,

Washington

September1955

., ,

,.-,. . -.’;<d-J~dr...-.,,,,.+’. L.. 0

. ..- ----- . . . . . -—

Page 2: Journal Bearing

TECHLIBRARYfCAFB.NM

u lIIMll!llllNATIONALADVISORYcoMlmrrEEFORAERONAUTICSDOLL55J

,.

TECHNICALNOTE3491

EXPRIMENTMINVESTIGATIONOFECCENTRICITYRATIO,

FRICTION,ANDOILFLOWOF IONGAND

SHORTJOURNALBEARINGSWITH

ILMD-NUMBER

By G.B.-iS,andR. L.

CHART;

F.W. Ocvirk,Wehe

Theperformancesofplainbebringsundercomparedandsummarizedby single-linecurves

steadycentralloadingcoveringtherangeof

are

length-diameterratiosbothaboveandbelow1. Experimentaldataoneccentrici~ratio,friction,andoilflowforlength-diameterratiosof 1,1.,and2 areshownforcomparisonwithearnerdataforlength-

diameterratiosof1/4,1/2,and1. Thecaibineddataprovidechartsofplain-bearingperformancewhichcoverthepracticalrangeoflength-dismeterratio.

Theloadnumiberl/Cn inisthecapacitynumber,p istheoilviscosi~,N’ isthe

theform p/pN’(c~d)2(d/Z)2,where Cnthecentralunitbearingload,p isjournalspeed,cd isthedismetral

bearingclearance,d isthebesringdiameter,and Z isthebearinglength,isusedasthe.basicvariableonwhicheccentrici~,friction,andoilflowratedepend.Chartsarepresentedto showthatthe.eccentrici~-ratiodatafallnearlyona single13_neforbothlongandshortbearingsifthe (d/Z)2 termintheloadnumberistakenasuni~forbearingsof Z/d greaterthan1;ineffect,theloadnumberforlongbearingsbecomesthereciprocaloftheScmmerfeldnumber1/s.Frictionandoilflowrate,however,areshowntodependontheloadnumberwithoutthismalification,forbothlongandshortbearings.

Plotsoffrictiondataintermsoffrictionratio F/F. arepre-sentedtofecusattentionontheclifferencebetweenjournalfrictionandbearingfriction.Experimentaljournal-frictiondatafromothersourcessreincluded.

.. -—- —.—— .—. — ——. —————— ..—,. ——————.——.— . .— —

Page 3: Journal Bearing

2 NACATN3491

Analyticalcurvesby SOmtnerfeld,Cameron,andWoodandtheshort-bearingapproximationareshownforcomparisonwiththeexperimentaldataforeccentrici~ratioandfriction.CurvesresultingfromtheintegrationofSommerfeld’spressure-distributionfunctionforanextentof18ooofthepressurefilmarealsoshown.

INTRODUCTION

TnanearMerreport(ref.1), theanalyticalcurvesoftheshort-bearingapproximationwerefoundtobe inusefulagreementwithexperi-mentaldataoneccentricity,friction,andoilflowforcentrallyloadedplainbearingswithvaluesof Z/d of1/4,1/2,and1. A fewearlyexperimentswithbearingsof Z/d of2 indicated@at itwasnecessary,withregsrdto eccentrici~,to limittheusefulnessofthecurvestobearingsof Z/d notexceeding1. Forthisreason,a conclusionwasdrawnthatfurthertestingonbearingsof 2/d between1 and2 wasnec-essaryto covertherangeofbearingconfigurationsusedinpractice.

.Thenewexperimentaldatainthepresentreportwereobtainedfrom

testsconductedintheMachineI!esignLaboratoriesat CornellUniversity,Ithaca,NewYork,asa partofa bearing-researchinvestigationconducted ~underthesponsorshipandwiththefinancialaidoftheNationalAdvisory ,

CommitteeforAeronautics.Experimentaldataonbesringsof1~-inch

diameterwith Z/d ratiosof3/4,1, 1$ and2 arereportidhereinand

correlatedwithetistingdataforvaluesof Z/d of 1/4,1/2,and1.Ihthelong-bearingtests,loadsup to 1,700poundsor8E poundspersquareinchwereusedat speedsup to 7,0~ rpmwithME 10 oil andwithclearancesramgingfrom0.0018to0.0038inch. Thedataarecoqibinedinchartscoveringtherangeofvaluesof Z/d in commonuse. Theinte-grationsforthe%mnerfeldz casearegivenin theappentiwhichwaspreparedbyProfessorWehe.

AnalyticalI?ackground

Analyticalsolutionsby CsmeronandWo&i(ref.2)gitingpointslocatingcurvesfor Z/d ratiosof1/4,1/2,1,andinfinityareavailable.

)Sommerfeldref.3)providesananalyticalsolutionfor

bearingsofinfiniteZ d. Theshort-bearingapproximationappliesbestto shortbearingsandisusefulintherangeofvaluesof Z/d Up to 1.‘Ihus,no analyticalsolutionsfor Z/d intheneighborhoodof2 areavailable.Thisexperimentalinvestigationwasinitiatedtoprovideexperimentaldata,particularlyoneccentricity,usingbearingsof Z/d= 1,1+,and2. A shortbearingof Z/d= 3/4 wasalsoincludedinorderthat

—. .— ——— —

Page 4: Journal Bearing

NACATN3491 -

a parallelinvestigationon(ref.4) couldbe conductidTheequipmentandtechniquethosereportedinreference

3

themisaligningcharacteristicsofbearingsWing thesametestbearingsandjournals.usedintheexperimentationweresimilarto1 fortheshortbearings.

3%hissolutionforbearingsofinfinitelength,SommerfeldshowedthatthebasicnondimensionalgroupingofbearingvariablesonwhicheccentricityandfrictiondependistheSommerfeldnuniber

S_dVd2(d)pc (1)

Forfhit-eshortbe=ings,theshort-bearingappro-tion yieldssingle-linecurvesofeccentricityratioandfrictionusingthecapacitynum-ber ~ asthebasicvariable:

%= %$(U (2)

Itmaybe seenthatthevariablesofequations(1)and(2)areclifferentby thefactor(Z/d)2.

bad NMber

Thereciprocalofthecapaci~nuuiberjorloadnuuiberl/~, isusedinfigures1 to4. Theloadnumber,whichisthereciprocalformofthebasicvariable,is choseninordertoexpandtheinterestinghigh-loadregionandto showthevariationofeccentricity,friction,andoilflowrateindirectproportionto thecentralload.

Theexperimental.dataoneccentricity,friction,andoilflowrate .infigures1 to4 showtheextenttowhichtheSOmmerfeldnuniberandloadnuniherreduceda~ tonearlysingleMne chartsforbearingsof Z/dfrom1/4to 2. Theinfluenceofthe (Z/d)2 terminthisregardisshown. Chartsofexperimentaldatafromreference1 forbearingsofZ/d= 1/4,1/2,and1 axe.reproducedinfiguresl(b),2(b),andA(b)forcomparisonwithchartsofdatareportedhereininfiguresl(a)toA(a)onbearingsof Z/d= 1,% - 2“

FrictionRatio

Jnfigure2,theratioofthefrictiontorquemeasuredonthebearingtotheanalyticalPetrofffrictionatno load,thefriction

— ———..—.-—. _ .—_____ ————_- —— ._. _ —— —-— —-— ..— —

Page 5: Journal Bearing

k

ratio F/Fo,isusedasa%e moreconvenienttouse

NACAm 3491

basicvariable(ref.1). Thisisbelievedtothanthecoefficientoffrictionf %asedon

loadd focusesattentiontothequantitiesonwhichfriction&ectlydepends.A similarratio,thepower-lossratio j,isusedbyWilcockandRosenblatt(ref.5). Thefrictionratioisshownanalyticallytodependontheloadnumberby theshort-bearingapproximation.

ItisgeneralJyrecognizedthatthefrictiontorqueonthejournalisgreaterthanthefrictiontorqueonthebearingbytheamountofthecouplecausedby thelatempldisplacementofthejournalinthebeming.The13ne-ofactionoftheloadanditssupportingreactionareseparatedby thisdisplacementtoforma couple.‘Ihedifferenceinfrictionisconsiderableundercertainconditionsaxlcanbe shownona singlecurveinfi~e 3 by plottingthecouplefrictionratioAF/Fo(d/Z)2againsttheIcednuaiber.

OilFlowFactor

Theoilflowratefromthetestbearingisrepresentedinfigure4bya single-linecurveobtainedbytheuseoftheoilflowfactorq,whichistheratiooftheexperimentalflowratetotheanalyticalendleakagerateoftheconvergingwedgeportionoftheoilfilm. Thisisplottedagainsta modificationoftheloadnumbercalledtheinlet-oil-pressurenuniber

I1 $.> inwhichtheinletoilsupplypressureissub-

stitutedfortheunitbearingpressureintheloadnumber.Thismethcdofplottingoilflowrateisthesameas thatusedintheearlderreportcoveringvaluesof Z/d lessthan1 (ref.1)exceptthatthereciprocalformofthenumiberisusedinthisreport.

SYMBOLSI

Dimensionalquantities: ~

cd diametralbearingclearance,in.

+ radialbearingclearance,dc 2, in.

d bear@gdiameter,in.

e eccentiici@forcentralloading,in.

% lateraldisplacementof journal,in.

0

,,

——— .— —

Page 6: Journal Bearing

NACATN3491 5

‘v

Fb

Fj

F.

1

N

N’

‘film

P

PC

PO

P~

P

p@y

Q

r

%4>tg

u

v

e

$

verticaldisplacementQf journal,in.

frictio~forceonstationarybearingsurface,lb

frictionforceonrotatingjournslsurface,lb

Petrofffrictionforceatno loadandzeroeccentricity,ti~N’2d(d/cd)’,lb

bearinglength,in.

journalspeed,rpm

journalspeed,rps

localfluidfilmpressure,lb/sqin.

appliedcentralunitbearingloadonprojectedarea,lb/sqin.

capsulepressureof

inletoilpressure,

pressureat e = 0

load,lb/sqin.

lb/sqin.

and I-Cin Somerfeldsolution,lb/sqin.

appliedcentralbearingload,lb

componentsofcentralloadparallelandnormaltobearingandjournalcenters,lb

experimentaltotalrateofoilflowfrombearing,

bearingradius,in.

temperatureat stations4 and9,respectively,OF

surfacespeedofjournal,in./sec

centipoiseoilviscosity, orreyns6.9x 106

~ -iab~ gitinglocalfilmpressure,deg

lineof

cuin./sec

attitudeangle,anglebetweenloadlineandlineofcentersofbearingandjournal,deg

- — ..——.—— — -—— —

Page 7: Journal Bearing

6

Nondimensionalquantities:

NACATN3491

&d

Cn

%0

l/&

l/~.

f

F/F.

‘b/Fo

. Fj/Fo

M/F.

Z/d

n

%

nv

q

s

1/s

XJY

z

clearanceratio

pNt d’~’inlet-pressurecapaciwnumber,p()()o cd d

had muiberforvaluesof 2/d lessthan1

inlet-oil-pressurenumber

coefficientoffriction,F/P

frictionratio

bearingfrictionratio

journalfrictionratio

cou@efrictionratio

length-diameterratio

eccentricityratioorattitudeforcentralloading,e/Cr

horizontalcomponentofeccentrici~ratio,%/+.

verticalcomponentofeccentricityratio,ev/Cr

oilflowfactory*

Sommerfe3dnuuiber,()

@’d’,P cd

loadnumberforvaluesof 2/d greaterthan1

coordinates

viscosity,centipoise

.—. .—— ——— ————-----——

Page 8: Journal Bearing

NACATN3491 7

APPARATUS

Thebearing-testingmachineusedintheseexperimentsisillustratedinfigures~ to 8 andisthesameas~t describ~dinreference1. Themannerinwhichthetestelementswere”supportedandlosdedisshowninfigures5 and6. lHgure7 showsthemechanicalsystemformeasuringjournaldisplacements,andfigure8 givesthelocationsofthethermo-couplesWed todeterminebearingtemperatures.

TestBearingandJournals

A singlebronzebearingandfive.steelshaftsof1~-inchnominal

diameterwereusedintheconfigurationshowninfigure~. Eachoftheshaftsrepresenteda givenlength-diameterratioanda givenclear- ,anteas listedbelow:

.

AveragediametralClearance

shaft Z/d clearance, ratio,

%c~d,

in. in./in.

6A 2 0.00252 0.ool&j6B 2 .00376 .oo2~

116C ~ .00196 .oolk26D 1 .00183 .CX)1336E ; .00258 .00187

ThesetestelementswerealsousedinthemisaMnementexmrimentsasreportidinreference4. SAE10 oilwasusedas thetestl-tiricantandwasfedtothetestbearingat a pressureof40 to16opoundspersquareinchthrougha l/8-inch-diameteroilholelocatedoppositethecentralload.Theoilwaspreheatedto140°F nearthepump,butthetemperatureoftheoilwasmeasuredas itenteredthebearingbecauseofsmallheatlossesintheoillines.

Thetestshaftsweredrivenby a high-s~ed,direct-current,variable-speedaircraftmotorhavinga speedrangeof1,000to 10,(NOrpm.

---——— ——— -—— .

Page 9: Journal Bearing

NACATN3491

LoadingAppsxatus

As showninfigure6,thecentralloadwasappliedhydraulicallyby a pressurecapsuleandwastransmittedto thehearingthroughanoil-pressurizedsphericalseat.Theoilflowthroughthesphericalseatfloatsthebearinggivingitfreedomtorotateanddisplaceontheapplicationofcentralload.Thelineofactionoftheloadpassesthroughthecenterofthesphericalseat,whichislocatedaccuratelyatthecenterofthebesring.

DisplacementMeasurements

Thecoordinatedisplacementsofthejournalendsrelativetothebearingweremeasuredlythemechanicalarrangementillustratedinfig-ure7 inwhichhorizontal.andverticalmotionsaretransmittedbybronzeridersonleversthroughverticalralstofourO.0001-inchdialindi-cators.Thisisthessmesystemreportedinreference1 exceptthattheleversweremcd.ifiedtogivea 2:1magnificationofthedisplace-mentsto improvetheaccuracyinreadingthedials.A duplicatesetof .rodsisusedfortemperaturecompensation.

l&ictionTorquemeter

Frictiontorquewasmeasuredlythehydraulictorquemetershowninfigure6. Thetorquemeterconsistsoftwol/2-inchpistonswhichareconnectedtothemastextendingfromthetestbearingsothatthepistonforcesopposeeachother.A flowoflightoilisforcedintothespaceattheheadofeachpistonandisdischargedthroughportspartia12ycoveredby thepistons.Thefrictiontorqueofthebearingappliesaforcetothepistonsto causea slightchangeinthedischargeportarea,resultingina pressuredifferentialonthetwopistonstobalancetheappliedforce.Thepistonsarecenteredintheirboresby apressurizi.ngsystemofre~evedareas,thuseliminatingfrictionalcontact.

Thedifferenceinpressureonthetwopistonsis indicatedbyamercurymanometerandisproportionaltothetorqueonthetestbearing.Manometerreadingswereconvertedtofrictiontorqueby direct’caM-brationunderrunningconditimsby app@inglmuwnincrementsofmomenttothebear~ hubby theweightsshowninfigure6 andrecordingthecorrespondingchangesinthemamxneterreadings.

OilFlow~asurements

AS showninfigure6,a drainholeinthebottomofthemachinehousingallowstheoilflowingfromthetestbesringtobe collected

——— .—. .____ — ———. .—. .

Page 10: Journal Bearing

umcllTN3491 9

in a panwhichmaybe removedforweighing.&oringsamdbaffleswhichpreventthemidng ofthe

shownaretheslingertest-bearin~oilwith

theoilfromthesupportbearingsandthe-sphericalseat. -

-rature Measurement

tion-constaxtanthermocoupleswereusedtomeasurebearingtemper.aturesat14locationsinthebearinghubwithin1/16inchofthebearingsurfaceas showninfigure8. Thermocouple9 gavethebearing-hubtemperatureata point2 inchesradiallyfromtheoilfilm,andthermo-couple16wasusedtodeterminethetemperatureoftheincomingoilattheoilinlettothetestbearing.

TESTPROCEDURE

Forthefiveshafts,twoseriesofexperiments”wereconductedata nmiberofconstantspeedsandinletoilpressus. Displacemmtexperiments,inwhicheccentricitywasmeasured,weremadeonallshafts.IRrictionandoilflowexperimentsweremadeseparatelyfromthedisplace-menttestsbecauseofthenecessityofdisconnectingthebronzeriderswhichwerea sourceofunwantedfriction.Measurementsoffrictionand

oilflowweremadeonthelongerbearingsof ~ = l;and2.

DisplacementExperiments

Variationsindisplacementwereobtainedby varyingthecentralloadat constantspeed.Itwasfoundthatby operatingunderconstantspeedthevariationsinbearingtemperatureweresmall.A nearly.con-stanttemperatureoftheapparatusatthermalequi~briumassuredaminimumthermaleffectinthemeasurements.Beforethedataweretaken,thetestelementsandthemeasuringapparatuswerebroughttoequilibriumtemperatureby rumningthemat constantspeedandcentralloadforaperiodof20to30minutes.

At theendofthewarmuppericxi,thenetcentralloadandtheinletoilpressurewerereducedto zerosothattheindicatordialscouldbesettoa datumpositionrepresentingzerodisplacementofthejournalrelativeto thebearing.An inletoilpressurewasthenapplledandheldconstant.Displacementdataasreadfromthefourdialswerethenrecordedforvariousincrementsofcentralload.Theloadwasincreasedinfourtoeightincrementsandthendecreasedinthesameincrementstopermitaveragingofdata. Thefollowingdatawererecorded:Journaldisplacements,capsulepressureof centralload,bearingtemperalnmesat

.- .— —-—-—— -- —— —..—— ___ .—_— .— —— .—...._.__ ..—. —..._

Page 11: Journal Bearing

10 NACATN3491

criticallocations,inletoilpressure,speed,directionofrotation,inletoiltemperature,roantemperature,andoiltemperatureaftertheheater.Thesameprocedurewasfollowedfortheoppositedirectionofrotationsothatthedatacould%e averagedforthetworotations.AsshownintableI,constant-speedrunsatapproximately500,1,200,2,500,and5,0CK)rpmwereconductedforeachofthefivetestshaftstodeter-minetheeffectsof Z/d andclearanceonthebearingcharacteristics.me ~ app~edcenttiloaciintietestswas1,713poundson s~t 6Candthe~unit loadonprojectedareawas874psionshaft6D.Themaximumbearingtemperaturerecordedwas198°F at 7,000rpmfors~t 6D.

FrictionandOilFlowExperiments

Frictiontorqueandoilflowrateweremeasuredsimultaneously,withthedisplacement-measuringapparatustemporarilydisconnectedinordertoeliminatethefrictionoftheridersandtheoilflowtothem.Theprocedureofwarmingup andapplyingincrementsofloadat constantspeedwasthesameas inthedisplacementexperiments.At eachload,aftertheoilflowstabilized,thefric$iontorquemeterwasread,andtheflowratewasdeterminedbyweighingtheoilcollectedinperiaisof1 to 2 minutes.

Thefollowingdatawererecordedforeachloadcondition:l&lctiontorqueas indicatedby themanometer,weightof oilflowfromthetestbearing,timeofoilflow,capsulepressure,bearingtemperatureatcriticallocations,inletoilpressure,speed,directionofrotation,inletoiltemperature, roomtemperature,andoiltemperatureaftertheheater.Thesamedataweretakenfortheoppositedirectionofshaftrotationsothatdatacouldbe averagedforthetworotations.AsshownintableII,constant-speedreinsat approximately5~, l,2~jand5,0~ rpmwereconductedonthelongj~ruals6A,6B,and6c. The c.msximumappliedcentralloadwas1,688poiihdswitha maximumunitloadonprojectedareaof59 poundspersqusreinchonshaft6c. me maxi-mumbearingtemperaturerecordedwas181°F at5,OOOrpn.

REsuErs

Theexperimentaldataoneccentricityratio,friction,andoilflowrateareshowninfigures1 to4 ina formintendedtobe tiefulinthedesignofplainbesringswithvaluesof Z/d ashighas 2. Thenondimensionalcoordinatesshownarethosedeterminedfromtheanalyt-icalsolutionofreference1. ‘I!&coorctha.tepointvaluesshownweredeterminedfromthefollowingexpressionsby usingtheWmwn quantitiesfromtheexperimen&ltests.

Page 12: Journal Bearing

NACATN3491

IOadnuniber:

Eccentricityratio:

n = e/~ =

nv= +cr

&v)2+(%)2

nh= e~Cr

Bearingfrictionratio:

‘b~=

Couplefrictionratio:

L@()()

Oilflowfactor:

Qq=

YCd2C@’@)Il

Ihlet-oil-pressurenuniber:

/1 %0 = (l/@(pO/p)

.’

(4)

(5)

(6)

(7)

. ..— .. .. . ..— —.-—. .—_._. ._. .————. ._ _ ____ _——

Page 13: Journal Bearing

12 ‘TtACATN3491

.LoadNunber

Theexperimentalquantitiesintheloadnuuiher(eq.(3)) aretheload,viscosi~,speed,diametralclearance,andbearingdiameterandlength.Theunitload p ona projectedareawasdeterminedfromP P/td andthetotalnetload P appliedby thepistonwascalcu-la=tidfrom P = 5.0(pc- 12.5) where pc isthecapsulepressureactingonthepistonareaof5.0squareinches.Thetareweightofthebearingandattachedappsratusisrepresentedinthesetestsby a pressureof12.5poundspersquareinch.

Viscosi@valuesfortheSAIZ10 oilweretakenfromthecurveof .figure9 andconvertedtoreynsby divl~ thecentipoisevaluesby6.9x 106. Oilfilmviscosityp wasdeterminedfromthetemperatureofthermocouplek located1/16inchfromthebearingsurface.

Dismetralclearanceatroomtemperaturewasdeterminedfrommeasure-mentsofbearingandjournalwithelectrolhitgages.Forrunningcon-ditions,clearancewasdeterminedby subtractingthechangein clearance .giveninfigure10fromroom-temperatureclearance.Theclearanceinfigure10representsthecalculatedclearancechsmgecausedby differ-entialthermalexpansionofbearingandjourna1 asa functionofthetemperaturegradientinthebearinghousing.Thermocouplesk and9 were1/16inchand2 iJ2Chf33, respectively,fromthebearingsurfaces,givingtemperaturedifferences(* - @) inMcativeofthegradient.Theslopeofthecurveinfigure10isappro-tely one-thirdoftheslopeofthatusedinreference1. Additionalstudyindicatedthattheear~erslopeshouldbe smaller.Thedifferentialexpansionproblemwasreevalu-atedanalyticallyby themethodofmshenko (ref.6).

Eccentiici@Ratio

Calctitionsofexperimentalvaluesofeccentricityratio n infigurel(a)weredeterminedfromthecoordinateverticalandhorizontidisplacementsoftheshaftmeasuredat theriderslocatedbeyondthe

endsofthebearingl= inchfromthecenterMne ofthebearing(cf.16

fig.5). Eightobservatimaofa coordinatedisplacementwereaveragedtodeterminethemeanvalueata givenload.Readingsoftwodials,oneateachend,astheloadingwasbeingincreasedandthendecreased,gave.fourobservations.Fourmoreobservationswereavailablefortheoppositedirectionofrotation.

Ihorderto correctthevaluesoftheeccentricityratio,theslightdisplacementsat zeroloadandzeroinletoilpressure,atwhichitwasassumedthatthejournalandbearingaxeswerecoincident,were

Page 14: Journal Bearing

NACATN3491 13

averagedandsubtractedfromtheaveragedvaluesofdisplacementunderload. Ml displacementswerehalvedbecauseofthe2:1multiplicationofthemeasuringsystem.

Anothercorrectionwasmadeto accountfortheeffectofshaftdeflectionondisplacementmeasurements.Calculationsofshaftbendi&deflectionsweremadeassmninga uniformlydistributedloadoverthelengthofthebearingandvar@ngmmen%sofinertiaM-the sMghtlysteppedshaft:Mflectioncorrectionsweremade,onmeasuredverticaldisplacementsonly.,Becausethejournalwithinthebearinglengthisdeflectedtoa fourth-degreeparabola,thecorrectionsweremadetosimulatetheverticaldisplacementofan ideaUystraightjournallocatedone-fifthoftheheightoftheparabolabelow~“ a~x. Theverticalandhorizontalcomponentsofeccentrici~ratio + and ~ werecal-culatedby dividingthecorrectedcoordinatedisplacementsby %heradial.clearance(eqs.(4)),andtheeccentricityratio n wascalculate&asthesqme rootofthesumofthesquaresoftheccmiponents.

Theexperimentaldataofeccentricityratioshowninfigurel(b)forshortbearingsarefromreference1 andsreshownforcomparisonwithfigurel(a)forlongbearings.

BearingIZrictionRatio

ExperimentalvaluesofbearingfrictionratiO l?b/l?oin figure2(a)werecalculatedfromeqwtion(5)inwhichthefrictionforce Fb wasdeterminedfromthemercurymanometerreadingsofthetorquemeter.Multiplicationofthemanometervaluesby thecalibrationfactorFcgavethefrictiontorque.Theaverqgevalueof Fc was0.475pound-inchoftorqueperinchdifferenceofmercury.Dividingthefrictiontorqueby thebearingr@ius gavethefrictionforce ~.

Theexperimentalfrictiondatdforshortbearingsfromreference1areshowninfigure2(b)forcomparisonwiththelong-bearingdatainfigure2(a).

‘lhefriction-ratio

Couplel?rictionRatio

datashuwninfigure2 representmeasuredvaluesoffrictionactingonthebearingofthejournal-bearingcombination.As discussedinanothersection.ofthisreport,thefrictionratioofthejournalFj/Fomaybe obtainedanalyticallyby addingthecouplefrictionratioAF/Fo tothebearingfrictionratio Fb/Fo. Thecouplefrictionratiois ofinterest,sincewhenmultipliedby (d/Z)2 it is

Page 15: Journal Bearing

14 NACATN3491

a single-linefunctionoftheloadnumberas showninfigure3. Thepartofthefrictionontherotatingmeniberwhichisduetothecoupleformedby thecentralloadandthelateraldisplacementoftherotatingmemberrelativetothestationerymeniberisrepresentednondimensionally,by @F..

Theexperimentaldatashowninfigure3 werereducedfromdatagivenby McKeeandMcKee(ref.7)andPE&u13mhandBlair(ref.8).Bothinvestigatorspresentfrictiondatafromtestsinthefour-bearingmachinewhichmeasuresjournalfriction.McKeeandMcKeepresentdatainexperimentalcurvesof f againstZN/p with cd/d and Z/d ratiosgiven,andPalmlichandBlairgivetabularexperimentaldataof f(d/cd)

2 withthe Z/d ratioagaitit@/p(d/cd)vertedto Fj/Fo and l/~ valuesby the

f = f#P

given.Thesedataarecon-followingexpressions:

(9)

F.= 2&lN’zd(d/Cd)(Petrofffriction)“

TheMcKeesmdMcKeeconversionsare

6.9x 106x 60

i = (~/p)(d/Cd)*(Z/d)2

fp

2x2pNf2d(d/cd)

f(P/Zd)

21-c2pN’(d/Cd)

P-(]cd (%/d)(2/d)2a @’ F (c#d)(Z/d)*

(12)

.

(lo)

(n)

— ——. — ———— .—

Page 16: Journal Bearing

NACATN3491 15

ThePalsulichandBbir conversionswe

Fj (fd/cd)z 2 1—=F. (!()21f2-~

(13)

(14)

Valuesof M/Fo(d/Z)2 showninfigure3 weredeterminedfromequation(6)usingtheexperimentalvaluesof Fj/Fo andtheanalyticalvaluesof Fb/Fo fromtheanalyticalcurveoffigure2.

OilFlowFactor

Theoilflowfactorq infigure4(a)wascalcu&ed fromequation(7)as inreference1. Theoilflowrate Q in cubicinchespersecondwasconvertedfromthemeasuredflowinpoundsperminuteusingthespecificgravi~oftheoilatbearingtemperature.Becausedisplacementmeasurementswerenotsimultaneouswithmeasurementsofoilflow,valuesofeccentricityratio n inequation(7)weretakenfromtheexperimentaldataoffigurel(a)forcorrespondingtestcon-ditions. Theinlet-oil-pressurenumber I1 Cpoj~fist which q iS

plottedinfigure4,wasdeterminedfromtheloadnumberandtheratioofinletoilpressurep. tounitbearingpressurep asinequation(8).

Exper-ntaloilflowfactorsfortheshortbearingsofreference1areshowninfigure4(b)forcomparisonwiththelo~-bearingdatainfigure4(a).

ExperimentaldatafromMcKee(ref.9)forabearingwlthasingleoilholearealsoshowninfigures4(a)and4(b)andcomparewellwiththeexperimentaldataofthisinvestigation.AdditionalMcKeedatafromreference9 enablea curvetobe drawnfora bearinghavinganaxialoil~oovewhichis somewhatshorterthanthelengthofthebearing.

ANALYSISANDDISCUSSION

Thedependenceofeccentrici~ratio,friction,andoilflowontheloadnumberl/~ isshowninfigures1 to4. The (Z/d)2term

———— — . .

Page 17: Journal Bearing

16 NACATN3491

intheloadnumberservestoreduceexperimentaldataforvariousvalues.

of 2/d tonearlya singlecurve.A singleexceptionisthecurveforeccentricityratioinfigurel(a)inwhichtheexperimentaldataclusterneara singleHne onlyifthe (2/d)2termintheloadnunberistaken

&

asunityforthelongbearingsforwhich Z/d is weaterthan1. Forthebearingfrictionr“atioinfigure”2,thecouplefrictionratioinfigure3, andtheoilflowfactorinfigurek, the (Z/d)2termappearstobebasica22yapplicableforbesringswithvaluesof Z/d from1/4to 2.

Figures1 to4 areintendedto serveasdesignchartsforbearingshavingloadnumbersup to 100coveredby theexperimentaldatafromthesetests.As showninfigurel(a),eccentricityratiosaveragingn= 0.93 wereattainedexperimentallyat loadnumbersofapproximately90.Abovethis,thevalueofeccentiici~ratioapparentlybecomesasymptoticto n= 1.00 astheloadnmiberbecomesWinite.

EccentricityRatio.

Twosetsofexperimentaldataoneccentricityratioappearinfig-urel(a)andaxeshownseparatelyinfiguresl(b)andl(c). Thoseinfigurel(b)areforthelongbearingsof Z/d= 3

fto 2 fromthe

experimentsusingshafts6Ato 6E. tifigwe l(c aredatafromrefer-ence1 forshortbearingsof Z/d= 1/4to 1. Itmaybe seenthatthedeviceofassumingvaluesof Z/d ofunityforthelongbesringsmakesthelong-sadshort-beartieccentricityd&tanearlycoincident.Theunitbearingpressureonprojectedarea p appearsintheloadnmiber,ratherthanthe.totalload,andtheabovedevicecanbe interpretedtomeanthattheafiowableunitbearingloadispracticallyindependentofZ/d forvaluesof Z/d abovelbut thatforvaluesof Z/d lessthan1theallowableunitbearingloadf~ asthesquareof Z/d.

Theexperimr@xaltitsoffiguresl(b)andl(c)arealsoshowninfiguresn(a) andn(b) usingthecapacitynumber& astheabscissaratherthanitsreciprocal,theloadnumiberl/~. Infigure11,theusefulloadregionis compressedintherangeofabscissasfromO to0.1,whereasinfiguresl(b)andl(c),whichusetheloadnuniberl/b, thisregionextendsfrom10to infinityinproportiontotheunit.load.Theload-nunibermethcdofplottingavoidsdevoting90percentof thegraphtotheL@ht-loadregionbelowa loadnumberof10.

Theexperimentalvaluesofeccentrici~ratioaremateriallylargerthanthoseindicatedbytheanalyticalcurveoftheshort-bearingapproxi-mation.Someofthedifferencebetweenthecurvesmaypossiblybe duetothesensitivityoftheexperimentaldatato smallerrorsindetermina- :tionofeitherthecoldclearanceortheclearanceatrunningtemperature.

Page 18: Journal Bearing

uNACATN3491 17

Usualmeasurementsofthebearingclearancetendtogivereadingsatthetopofthewavinessofthesurfaces,ratherthantheeffectivedisrm+r.An analyticalcorrectionforthechangeofclearanceat‘runningtemperaturewasusedin calculatingtheexperimentaldataandshouldbe includedinmakinguseofthecurves.An appreciationofthemagnitudeofthechangeineccentrici~correspondingtoa differencein n valueof 0.90to 0.95isgivenby consideringthatthisrepresentsa changeindisplacementofaboutO.~O@O inchinthesetests.

Perhapsthemostimportantfactorrelatedto thedifferencebetweentheanalyticalcurvegivenby theshort-bearingapproximationandthee~rimentaldataistheomissionintheanalyticalsolutionoftheeffectofthecircumferentialpressureclifferentialontheleakageinthecircumferentialdirectionoftheoilfilm. Theanalyticalsolutionincludesthesideleakageandthecircumferentialflowduetorotation,buttheomissionofpartofthecircumferentialleakagementionedwouldtheoreticallycausetheexperimentalvalueof n tobe abovetheanalyt-icalcurveby a small.unknownamount.Itisalsopossiblethatthedifferencebetweentheanalyticalandexperimentalcurvesisrelatedtotheuseofa temperaturenearthebearingsurfaceto obtaintiscosity,ratherthanthetemperatureoftheoilfilm.A constantviscositywasalsoused,ratherthanone&angingfrompointtopointwiththeoilfilmtemperatureandpressure.

Allofthesefactorsarerepresentativeofmethodsthatwouldcommonlybe usedinpredictingbearingperformancefromthecurves.Theexperimentalcurveisthusrepresentative“oftheeffecttobee~ectedwhenthesemethodsareused.

Consideringthesefactors,a singleexperimentalMe is showninfigurel(a)whichistheaverageofau ofthedatainbothcurvesl(b)andl(c).Whilefiguresl(b)andl(c)differslightlyinthelight-loadregion,thesingleexperimentallineoffigure1(a)is consideredtobea practicalinterpretationofthedata. Forpracticaluseandtobe ontheconservativeside,itisrecommendedthattheexperimentalcurveinfigurel(a)be used,ratherthantheanalyticalcurve.

b figurel(a)theexperimentalvaluesareabout15percentgreaterthantheanalyticalonesforloadnunibersbetween10and100. Forloadnunbersaboveabout60 itisanadvantagetohavean approximationthatbecomesasymptotictoa valueof n oflinthesam waythat,theanalyticalcurvedoes. Forvaluesoftheloadnur&r greaterthan100theexperimentalvalueevidentlyliesbetweentheanalyticalvalueLargerthan0.93as itbecomesasymptoticand1. Thiseffectcanbeobtainedby adding0.5(1- n) totheanalyticalvalueof n.

Blendingof (1/d)2transition.- Thedeviceof consideringthe

(Z/d)2 termintheloadnuniberashavinga valueof1 forvaluesof Z/d

Page 19: Journal Bearing

18 NACATM3491

greaterthan1 canbe expressedmathematicallyby consideringthe*

Z/d termtohaveanunlmownexponentof x. Thevalueoftheexponentxchangesfrom2 forvalues of Z/d lessthan1 to zerofor .Z/dgreaterthBxl1.

\.,Thetransitionoftheexponentfroma valueof2 to zerocan

thenbe consideredto occurina smoothmanner,andtheshapeofthetransitioncurveandtherangeof Z/d inwhichthetransition OCCllrSremaintobe determinedexperimentally.

Thedifferencebetweena smoothblendingofthechangeintheexponentx andanabruptchangeisminimizedby thefactthatthetransitionoccursintheneighborhoodofa valueof Z/d of1,wherethevalueof (Z/d)xis1 regardlessofthevalueof x. Theabruptchangemaybe sufficientlyaccurateforpracticalpurposes,as indicatedby thefollowingarbitraryexsmple.Assumethatthevalueof x shouldbe 2 at Z/d= 1 andthendecreases~early to zeroatwhere (1.2)0=1. Themaximum

Z/d= 1.2changeoccursata valueof Z/d of

about1.1where (Z/d)x= (1.1)1,withtheeffectdecreasingineitherdirectionfrom1.1. Thusthemaximumeffectofthismethcilofblendingisa changein loadnumberofabout10percentatmidrange,iftherangeinwhichthetransitionoccursis 0.2pointsof Z/d. .

An~ical curves.-Analy-ticalJy,informationoneccentricityratioagainstloadnuniberforshortbearingsisavailablefromthesolutionsby theshort-bearingapproxhnation(ref.1)andby themethodofCameronandWood(ref.2). Theseareshownas theuppergroupofcurvesinfigures12and13. Thecurvefromtheshort-bearingapproximationisa singlecurvetheoreticallyapplicableto shortbearings.TheCsmeronandWoodexactsolutionofReynolds’equationgivespointsindicatingseparatecurvesfor Z/d= 1/4,1/2,and1. A comparisonoftheseuppercurveswiththeexperimentalcurvewhichisrepeatedinfigure13showsthattheplottingofthedataasa functionoftheloadnumberusingthe (Z/d)2termfor Z/d< 1 is justifiable.Theuseoftheloadnuniberinthismannerpermitsdirectcomparisonofanalyticalandexperimentaldataforau valuesof Z/d ononecurve.ThelocationsoftheCsmeronandWocxipointsarealsofoundtobe inrelativelycloseagreementwiththeexperimentalcurvesadsubstantiatetheuseofthecurveinfigurel(a)forpracticalpurposeswhenusingtheloadnuniberaa a parameter.

Ihfigmes 12and13,thelowergroupme analyticalcurvesforinfinitevaluesof Z/d fromtwosolutionsby Scmmerfeld(ref.3) andonefromCsmeronandWood(ref.2). ThesecurvesforinfinitevaluesofZ/d ofnecessityrefertotheabscissascalelabeled1/S sincenofinitevaluesof Z/d areavailable.Itcanalsobe saidthatthecurvesareplottedinaccordancewiththedevicetiatinfinitelylongbearingsareconsideredtobe of Z/d= 1, suchthattheSommerfeldnumberappliesratherthanthecapaci~number.Itis interestingthattheinfinite-hearingcurvesagreewiththeshort-bearingcurvesatthe

——— . —.——— ——— .--—–

Page 20: Journal Bearing

,

NACATN3491

highloadnumbersalthoughtheyaregreatlydivergentatItisperhapsforthisreasonthatuseoftheSomnerfeld

19

lowloadnumbers.solutionfor

bearingswith Z/d= 1 hasbeensuccessful.However,forbearingsshorterthan Z/d= 1,useoftheSommerfeldsolutionwouldbe lesscon-servativeas Z/d decreasesfrcxn1.

Thedifferencesinthethreecurvesshownforinfinitevaluesof Z/d area resultofdifferentassmnptionsasto thecircuml?erentialextentofpressurizedoilfilm. TheSommerfeldsolutionbasedona %tor360°etientofthefilmassumesthatnegativepressurescontributetotheloadcapaci~ofa bearing.IhtheCameronandWoodsolution,thefilmextentissomewhatgreaterthan1800jdependinguponassumptionsregardingboundaryconditionsofthecircumferentialpressuregradient.ThethirdcurveshownisbasedonSommerfeld’spressure-distributionfunctionforsm infinitebearing,buttheintegrationstodetermineloadcapaci~asa functionof n arebasedona pressurizedfilmof m or180°extent,thuseliminatingtheeffectofnegativepressures.Equations(15)and(16)belowshowthedifferenceintheanalyticalfunctionsoftheSommerfeldtypeonthebasisofextentoftheoilfilm.Forthe % film

() ‘1/2

s=PN’ d 2=(2 +n2)(l-n2)——p cd X%2n

Forthe m film

pN’fd\2 ( )(2+n21-n2S.yy = -#-

(15)

(16)

Theintegrationsforthe’determinationtheappendix.

- n2)+ kn~~”

ofequation(16)areshownin

Comparingthelowergroupof curvesinfigure13whichrefertobearingsofinfinitevaluesof Z/d withexperimentaldataof Z/dof2 orlessseemsto indicatethattheassumptionof Z/d ofinfini~givestoolowa valueofeccentricityratioat lightloads.The “assumptionofinfinitevaluesof Z/d el.imina$esthkeffectofendleakageonthepressuredistributionintheoilfilm. ThespreadoftheGta infiguretotheuppergroupinfinitkvaluesof

l(b)forbearingsof Z/d of1.5and2 is closerof curvesat ldghtloadsthantothecurvesforZ/a.

.—. —..——.—- .—

Page 21: Journal Bearing

20 NACATN3491

.I!earingFriction

Curvesofbearingfrictionratio ~/F. forlongbearingsandshortbearingsareshown,respectimly,infigures2(a)and2(b).Bothcurvesshowtheexperimentaldataplottedasa functionoftheloadnuniberl/~ inwhichthe (Z/d)2termisincluded.Itmaybe seenthattheshort-andlong-bearingexperimentaldata,whencompsredwiththeanalyticalcurve,arenearlycoincidentwithoutdistinguishingbetweenshortorlongbesringsintheloadnuniberas isdoneinthecurvesofeccentricityratio.Thecurveobtainedby meansofthedeviceofusing 1/S forthelongbearingsinwhich Z/d istakenasunitvis shownh figure14(a)forthesameexperimentaldataoffigure2(a).Itmaybe seenthatthesamedatasxeinbetteragreementwiththeshort-bearinganalyticalcurveinfigure2(a)thaninfigure14(a).Itisinteresting,however,thattheexperimentaldataforlongbearingsinfigure14(a)areinfairlyreasonableagreementwiththeanalyticalcurvesforinfinitevaluesof Z/d by CameronandWood(ref.2)andby theSommerfeldsolutionfor1800filmextentofthisreport.

Anal#sicalcurvesforbearingfrictionratiofromthesolutionsof u

CameronandWod (ref.2)andtheshort-besringapproximation(ref.1)agreewellwhenplotteda@nst loadnumberl/Cn forshortbearings.Theseareshowninfigure14(b)for Z/d= 1/4,1/2,and1. Originally,theCsmeronandWoodcurvesforfrictionwereplottedon coordinatesof f(r/cr)againsttheSommerfeldnwiber.A repottingoftheircurvesofbearingfrictionas infigure14(b)showstheinfluenceof (Z/d)2indrawingthecurvesfor Z/d= 1/4,1/2,and1 together.

Journall?riction

TheCameronandWoodcurvesof joun&lfrictionratio F3/Fo againstloadnumberinfigurel~(a)showa greaterdivergencewith 2/d thanthebearingfrictioncurves.infigure14(b).Theyalsoshowthatthediffer-encebetweenjournalfrictionandbearingfrictionmaybe greatforhighleadnunibersandlargevaluesof t/d. Thessmecurvesplottedon coor-dinatesof f(r/c&)againstS alsoshowa differencebetweenjournalandbearingfriction,butthisdifferenceisdifficulttodistinguishsincethehighloadvaluesplotneartheorigin.By plottingfrictionratioagainstloadnuniber,thedifferencebetweenjournalandbearingfrictionisshownmoreclearly.

Analytically,theshort-bearingapproximationdoesnotindicateadifferencebetweenjournalandbearingfrictionbecauseoftheassump-tionttitthecircumferentialveloci~profileintheoilfilmislinear.Ihthisrespect,theagreementoftheCameronandWoodandshort-bearingcurvesforbearingfrictionis of considerableinterest.Fromequilibrium

‘d

——

Page 22: Journal Bearing

NACATN 3491 21

.

conditions,thebearingfrictiontorqueistheoreticallylessthanthejournalfrictiontorqueby thecouplePe sin~. Curvesforjournalfrictioncanbedeterminedfromrelationshipsoftheshort-bearingapproximationby addingthiscoupletothefrictiontorqueofthebearing.!lhecurvesofjournalfrictioninfigure15(a),labeledshort-bearingapproximation,arebasedonthisadditioninaccordancewiththefollowinganalysis.

ThedifferencebetweenjournalandbearingfrictiontorqueAF(d/2)isequalto thecoupleoftheload P andthelateraldisplacementofthejournal~=esin~:

A+= Pe sin@ (17)

lhtermsoffrictionratio:

g= %&-E) (18)

Substitutionof P = ~N’(d/cd)2(t/d)2(l/~)Zd,e = n(cd/2),andthePetrofffrictionF.= 2#pN’Zd(d/cd)gives

& _ n sin@ (Z/d)2F. 2f12 Cn

(19)

(rAFd .nsin@l—-F. 1

(20)2fi2~..-

Since sin@ andtheloadnumberl/Cn arefunctionsof n asgiveninreference1,thecurveof (Al?/Fo)(d/t)2 againstloadnumberfromequation(20)isa singlelineas showninfigure3.

TheratioAl?/Foisthecouplefrictionratiowhichisaddedtothebearingfrictionratioto obtainthe~ournalfrictionratio

(21)

— .— —-——— ——. .——.——.—.. — ._ —

Page 23: Journal Bearing

..— — .- —.. — .

22 NACATN3491

Asshowninfigure15(a),theplotof journalfrictionratioagainstloadnumbergivesa familyofcurveswhichtiein closeagree-mentwiththecurvesfromtheCameronandWoodsolution.

~rimental dataonjournalfriction.- Sinceexperimentaldataofjournalfrictionaxenotavaila%lefromthisinvestigation,datafromMcKeeandMcKee(ref.7)andPalsulichandBlair(ref.8)areshownin

[figures15b) to l~(f)forcomparisonwiththeanalyticalcurvesfromequations19)and(21). Bat-afromtheseinvestigatorswereobtainedfromthefour-bearingmachinewhichmeasuresthefrictiontorqueofthejournal.

McKeeandMcKeepresentdatafora 1# -inch-diameter%earingwith

a rangeof clearanceratiosfromO.00~ t; O.O&O for Z/d= 1/4,1/2,3/4,1,ad 2.8. Comparativelylightloadswereused,buthighloadnunibersoftheorderof5~ wereobtainedat lowrotativespeeds.Thesedataareshowninreference7 asexperimentalcurves,ratherthanpoints,plottedoncoordinatesof f (frictioncoefficient= F/P)againstZN/p.Sincethe Z/d andcd/d informationaregivenwiththecurves,con-versionofthedatato Fj/Fo and l/Cn coordinatesispossibleasshowninfigures15(b)to 15(e).

.

Figures15(b)andla(c)comparetheMcKeeandMcKeedatawithequation(21)fortheshortbearingsof Z/d= 1/4and1/2 andfig-ures15(d)and15(e)comperethemfor Z/d= 1 and2.8. Thesecurvesshowthatagreementoftheanalyticalandexperimentalcurvesisbette(rfor Z/d= 1/2,1,and2.8 thanfortheveryshortbearingof 2/d= 1/4wheretheloadswereverysmall.-Sinceonesetofdatafor 2/d= 1 isgivenintabularforminreference7,itispossibleto showpointdatainfigures15(d)and15(e)forthefrictionrisebeyondthehookpointintheregionofboundarylubrication.Thesequenceofdatapointsaroundthehookis shownby the ZN/p curveinsetinfigure15(d).Thepointsabovethehookrapidlyleavethescaleofthe Fj~Fo curve.Thehookpointisindicatedonthe Fj/Fo curveby an increaseofslope 0ofthelinewhichtendstorisealmostverticallytopointsofftheverticalscale.Themoreroundedthehookonthe ZN/p curve,themoregradualthechangeof slopeinthe Fj/Fo c~e.

Highloadnumbersareshownintheexperimentalcurvesoffig-ures15(b)and15(c)for Z/d= 1/4and1/2 becauseoftheinfluenceofthe (t/d)2termintheloadntier,andthenwdmumloadnunibersfor Z/d= 1 and2.8 sremuchsmaller.

PalstichandBlairpresentexperimentaldatafroma four-bearingmachinesimilarinprincipletotheMcKeeandMcKkemachinebutmodified “to operateathigherloadsandgreaterspeeds.Dataarepresentedfor

b

———.

Page 24: Journal Bearing

NACATN3491 23

a bearingapproximately2 inchesin diameterand11incheslongwithaF

diametralclearanceof0.004inch. Speedsashighas 5,000rpmandunitloadsto4,000poundspersquareinchwereused. Theexperimentaldatasrepresentedinreference8.usingcoordinatesof f(r/c)and S,wherec is theradialbearingclearance.

‘se ‘y be Convertidb %/Foand l/Cn valuesasshowninfigure15(f).An exactvalueof Z/d isnotgiven,buta inspectionof thetabulardataindicatesthatthebearing

was2* by Ii inchestith Z/d= 0.607.Figure15(f)showsthecomparison

of experhentaldatawithequation(21).Wad numbersinexcessof 1,OCOwereobtainedas shown.Theexper~entaldataagreewellwiththeana-lyticalcurvebelowa loadnumberof 1~ butarebetweentheanalyticalcurvesof I/d= 0.607and1 at thehighloadnumbers.Inreference8,thep“lotof thefrictiondataon f(r/c)and S coordinatesdidnotexhibita hookpointevenat theveryhighloadnumbers.

An importantfeatureoftheanalyticalcurvesinfigure15(f)isthatonthecoordinatesshowntheyindicateJournalfrictiontobeseveralhundredpercentofthebearingfrictionathighloadnumbersandhighvaluesof Z/d.

BoththeMcKeeandMcKeeandPalsuMch-BlairdatawereusedtodeterminethecouplefrictionratioAF/Fo forplottingAl?/Fo(d/t)2as infigure3. Experimentaldataof couplefrictionratioweredeter-minedby subtractingtheshort-bearinganalyticalvalueofbearingfrictionratiofromtheexperimentaljournalfrictionratio.As showninfigure3,mostoftheexperimentaldataareabovetheanalfiicalcurve.TheMcKeeandMcKeecurveswhichdidnotcontinuebeyondthehookareinrelativelygoodagreementwiththeanalyticalline,exceptforthedataat 2/d= 1/4,whichareoffthescale.Themethodofplottingthedifferenceof journalandbearingfrictionas infigure3magnifiesthedifferencesshowninfigures15(b)to 15(e)andisworthyofwideracceptanceas a tooltomagnifythespreadoffrictiondataathighloadswhicharehiddenneartheoriginofthe ZN/p curves.

Analyticalcurves:infinitevaluesof 2/d.-Analyticalcurvesofbearingandjournalfrictionforbearingsof infinitelengthareshowninfigure16 on coordinatesoffrictionratioand 1/S. Thethreesetsof curvesshownarederivedfromtheanalyticalsolutionsof CameronandWood(ref.2)andSommerfeld.Twosetsoftheanalyt-icalcurvesarebasedontheSommerfeldpressure-distributionfunction,onesetas givenby Sommerfeld(ref.3) fora ~ or360°pressurizedfilmandonesetfora m or1800pressurizedfilmas determinedintheanalysisoftheappendix.Inallthreesolutions,thefrictionforce F isdeterminedfromintegrationsoffilmshearingstressesover360°.However,theeffectoffilmpressureontheshearingstressesdependsupontheangularextentofthepressurizedfilm. As shownin

...—

Page 25: Journal Bearing

24 NACATN3491

theappendix,thefriction-ratiocurvesfortheSomerfeldm casemaybe determinedfromthesumoftwointegrations,onefromtheSommerfeldshearingstressfunctionforthepressurizedfilmof m extent,andonefromtheshort-%earingapproximationfunctionforthenonpressurizedfilmof n extentwherea linearcircumferentialvelocityprofileisasswmd.Equations(22)and(23)belowshowthedifferenceinformofthefriction-ratiofunctionsofthe 2JCand m casesoftheSomnerfeldsolution.Forthe 2YCfilm

Forthe z film

Fb 21- ~2)—=F.

(2+ n2)(l- n2)1/2

9= 21+2n2F. 2 1/2

(2-1-n2)(l- n )

Fb 1 (4- n2)—=-F. 2

( )(2+n21-n )2 1/2

(22)

(23)

.

AEshowninfigure16jtheSOmmerfeldm curveandtheCameronandWoticurveforbearingfrictionarealmostidenticalintheload-numberrangeshownandareinfairagreementwiththeexperimentaldataforlongbearingsinfigure14(a).Theanalyticalcurvesforjournalfrictionaresomewhatdivergent,theScmmerfeld% curvegivingthelargestfrictionvalues.

TheSommerfeld% solutionshowsthegreatestdifferencebetweenbearingandJournalfrictionas showninfigure16. ‘lhisisa directresultoftheassumptioninthe ~ solutionthatnegativepressureqcontributetotheload-carryingcapacityofa bearingandcausedis-placementsalwaysnormaltotheloadlineas shownintheclearancecirclediagramoffigure17. Themomentarmofthefrictioncoupleisalwaysgreatirthereforeinthe % solutionthanthemomentarmsofthe x solutionortheCameronandWocdsolutionforthesamevalueof n.

.—-— ——.

Page 26: Journal Bearing

:U

.

25NACATN3491

IfinfiniteZ/d analyticalsolutionsaretobe [email protected]~ons,itwouldseemthattheCameronandWocilandSommerfeldx solutionsarethemostrealisticsincemostexperi-mentershavereporteddisplacementcurvesofthesemicircularformshowninfigure17.

.,ThedisplacementcurvefortheSommerfeldz caseshowninfig-

ure17 isbasedonequation(24)delierminedfromtheanalysisintheappendix:

(24)

oilFlow

Theexperimentaldataforoilflowfactorq shown.infigure4(b)arefromreference1 butarereplottedinorderto showoilflowrateasa reciprocalfunction.Theinlet-oil-pressurenumberl/~. con-tainstheloadnumberl/en andtheratioof oilsupplypressurep.totheunitbearingpressure.Thecurvepresentedinreference1 isshownforcomparisoninfigure18. Bothcurvesshowtheexperimentaldataforshortbearingshavinga singleoilfeedholelocatedoppositetheload.Alsoshownaredatafromtestsby McKee(ref.9)for%earingswitha singleoilholeandforbesringswithanaxialoilgroove.Thecurvesoffigure4(b)applytobearingsof Z/d up to 2,althoughonlytheshort-bearingdataareshownbecausethelong-bearingdataplotsoneartheorigin.An enlargedplotwithscalesfivetimessizeis shown

separatelyinfigure4(a)withdatafor ~ = 1,1A and2.d *Y Thesolid

linedrawnthroughtheexperimentaldataforlongbearingswitha singleoilholeinfigure4(a)isthesamelineshowninfigure4(b).

As in~catedinreference1,theoilfluwfactorq (eq.(7))istheratiooftotaloilflowrate Q issuingfromtheendsofthebearingtotheanal@icaUydeterminedflowrate fidZcd(N~/2)ndiscMgh.g frOIII

thepressurized180°ofthebearing.Theanalyticalflowrate,basedontheshort-bearingapproximation,maybe viewedas a volumetricdis-placementratein cubicinchespersecond.Itisequaltothedifferencebetweentheflowrateenteringatthepointofmaximumfilmthiclalessandthatleavingthebearingat thepointofminimumfilmthiclmess,undertheeffectsofrotitionandviscosity,at zerocircumferentialpressuregradient.Thetotalflowrate Q wasdeterminedlyexperi-ment.almeasurement.By empiricalmethodsofplottingtheexperimentaldata,itwasfoundthattheoilflowfactorq appearstobe a functionoftheinlet-pressurecapacitynumberho:

—.— — —— ——- ——.——z— —.—...

Page 27: Journal Bearing

.—.——.

26 NACATN3491

However,thereciprocalformo? thecur&soffiguresk(a)andk(b)seemstogive--evenbettercorrelationasa functionof theinlet-oil-“I

I~resswe‘mber 1 %0 ‘ (l/cn)(Po/P)as giveninequation(8).

IE@uresk(a)andk(b)areintended”toserveas a meansforthedeterminationofoilflowrate Q fromknownconditionsinvolvingthevariablesintheloadnuniberandthelumwnoilfeedpressurepo. Itshouldbe noticedthatthedeticeoftakingZ/d as 1 forvaluesofZ/d greaterthan1 isnotusedfortheoilflowcurves,exceptindirectlywhenthevalueof n so obtainedentersintothecalculationoftheanalyticalpartoftheoilflowrate.

Figure4 isnotintendedtobe usedasa devicetopredictthe ‘.

oilsupplypressurep-o.No criterion,otherthanoperatingtemperature,isavailablewhichspecifiestheminimumvalueofoilflowfactorq oroilflowrate Q. Casesofbearingsperformingsuccessfullyonthickfilmsunderstarvedconditionsofoilflowareknown,butthedegreetowhichstarvationcanbe toleratedisnotkn6wn.lHgurek(a)indicatesthatbearingshatig Z/d greaterthsn1 areapttohavean oilflowfactorq lessthan1,whichmaybe an indicationthatoilgroovesaredesirableforlongbe~gs toficreaseoil fluwandloweroperating“-rature as Wcatedby figure37 inreference1.

USEOF CURVES

l?Lgures1 to4 maybe usedtopredicteccentricity,minimumfilmthiclmess,bearingandjournalfriction,journalpowerloss,andoilflowrateforbearingsto I/d= 2. However,thevariablescontainedintheloadnumberandinlet-oil-pressurenumbermustbe known,includingtherunningtemperatureofthebearingwhichdeterminesfilmviscosity.Inletoilpressuremustalsobe lumrn.Forbearingsof I/d of1 orless,theloadnumbermaybe calculatedincludingtie (l/d)*termtodeterminetheabove-namedperformancecharacteristics.However,forbearingsof Zjd ~eaterthan1,twoloadnumbersarerequired.Theloadnumber1/S withoutthe (z/d)*termisusedto determinetheeccentric@ratio n fromfigurel(a)whichisusedinthecalculationofoilflowrate Q fromfigure4. Ioadnumberl/Cn including(Z/d)2 ‘-

.

-. _— -

Page 28: Journal Bearing

NACATN3491 27

isrequiredinthedetermination-ofbesringandjournalkriction,couplefrictionratio,andinlet-oil-pressurenuniber.

A methcdofapproximatingmaximumbearingtemperatureby theuseofa heatbalancediagramisdescribedinreference1. lRtgures2 and3canbe usedto estimatebearingfrictionandtheincrementofcouplefrictionto obtainthefrictionoftherotatingelementwhichgives.thepowerlosssndheatgenerated.Mgure4 givesoilflowd.ataforuseinestimatingtheheatcarriedawayby theoilflow.

CONCLUSIONS .

Thefollowingconclusionsmaybe drawnfromtheresultsoftheexperimentalinvestigationofeccentricityratio,friction,andoilflowoflongandshortjournalbearingswithloadnumbercharts:

1.The-performanceofplainbearingsundersteadyloadisreducedto single-klnechartscoveringtheusualrangeoflength-to-dismeterratiosZ/d from1/4to 2 by theuseoftheloadnumberin&mannerdescribed.

2. Inclusionofthe (Z/d)2termintheloadnumbercollectstheexperimentaldataina singlelineinallcasesexceptoneofeccen-tricityratiowhere Z/d valuesgreaterthan1 ne takenasuni-&yincomputingtheloadnumber.

3. The (t/d)2termis.includedintheloadnunibertodeterminethefriction-ratioandtheoilflowfactorfrcnnthefigures.

4. Theadditionoftheincrementoffrictiontorqueformedbythesidewarddisplacementoftheloadto thefrictiontorqueonthestationaryelementtopredictthefrictiontorqueoftherotattigelement,heatgenerated,andpowerlossis supportedby analyticalcurvesandexperi-mentaldataof otherinvestigatorswhohavemeasuredjournalfriction.

5.Themethodofplottingfrictionintwoparts,thebearingfric-tionratio ~/F. andtheincrementoftheloadcoupleAF/Fo,permitshydrodynamicfrictiontobe determinedfromsingle-linecurveswhichhavebeenshowntoapplyto theusualrangesofclearanceandlength-to-diameterratio.ThepredictionoffrictionfromratiosrelatedtothePetrofffrictionatno loadismorerationalthantheuseofafrictioncoefficientbasedonload.

6.Thereciprocalformoftheloadnumberl/Cn ispreferableto~ as a parameter.Theloadnumberincreasesindirectproportionto

Page 29: Journal Bearing

28 NACATN3491

unitloadandisproperlyweightedtohavemeaningas a quantitativemeasureofrelativeloading.Theareaonthegraphdevotedtothe13.ght-loadregionisminhized,andtheeffectofhighloadnunibersis shqn moreclearly.

CornellUniversi@,Ithaca,N.Y.,August20,l-.

———.

Page 30: Journal Bearing

NACATN3491’ 29

APPENDIX

INI!Q3RATIONSFORSOMMERI!ELDY( CASE

Thefo120wingintegrationsgivingeccentxici~ratio,attitudeangle,andfrictionratioarebasedontheSomerfeldpressure-distributionfunction(ref.3)fora bearingwithoutendleakage.How-ever,a basicchsmgeinassumptionsismadeconcerningthecircumferen-tialextentofthepressurizedfilm. Sommerfeld’sintegrationtodeter-minetheresultantforceorload P includes-thenegativepressureregionofthedivergingwedgeoftheoilfilmaswe= asthepositivepressureregionoftheconvergingwedge.Tneffect,a workingfilmof & or360°isassumedsuchthatthenegativepressureregioncon-tributesto thesupportoftheload.Thefollowin$analysisisbasedontheassumptionthatsupportoftheloadby negativepressuresisnegligibleandthattheworkingfilmis intheconvergingwedgeandisof YC or180°in circumferentialextent.Thesameassumptionismadeintheshort-bearingapproximation(ref.1).

Eccentrici@-RatioFunction

Thefollowingequationisthepressure-distributionfuhctiongivenby Sommerfeldinwhich PS representsthedatumfilmpressureat theleadingandtrailingendsoftheconvergingwedgeoftheoilfilm:

[ 16VUr nsine(2+ncos e) +PPfilm‘~

( )(2+n21+ncose2 )

s (27)

IhthefollowingstepSPs isassumedtobe zerogagepressuresuchthatequation(27)givesfilmgagepressures.Thean- variableeismeasuredfromthelocationofmaximumfilmthickness.

The X and Y coordinatesarechosenparallelandperpendicular,respectively,tothelinejoiningthejournalandbearingcenterswhichareatan eccentricitye. TbeorthogonalcomponentsoftheresultantPare Px and py. T& followinginte~ationsover m radianstherelationshipoftheload P asa functionofeccentrici~

determineratio n:

..—..-—— — —.————— .——

Page 31: Journal Bearing

30

P~=zJ

r cose de~filme=o

d 2

()=@12—

cd

.~2

)(2+n2 l-n2

. .

=

Substituting

z“Jl--.:!.

*filmlro‘sine de

n sin2e(2+ n cose) de

(2+ 112)(1+ n .0se)2

d2-() “&m~@L ~

( )( )2 1/22+n2 l-n

,.

i PX2+.PY2

NACATN3491

P= pld>.

and U = I-KIN’

(2 + n2)(l- n2)

&M[Yt2(l-n2)+ 4n~1/2

(29)

(31)

.

.- -.

Page 32: Journal Bearing

NACATN3491 31

Equation(31)isthesameasequation(16)inthebodyofthisreport.TheanalyticalcurvesofeccentricityratioagainstSommerfeldnumberrepresentingequation(31)areshowninfigures12and13.

AttitudeAngle I

TheangularlocationoftheresultantP withrespecttotheX-tis,orattitudeangle #, isdeterminedfromthefollowingexpression:

‘Ytan@=—Px

‘=&&!!2n (32)

Theattitudeanglealsogivesthean*-po8itionJoftheminimumfilmthiclmessrelativetotheloadlhe as showninfigure17. Equation(32),whichisthessmeas equation(29),showsthedisplacementpathinfig-ure17tobe nearlysemicircularratherthans~aightas intheSOmmerfelil% solution.

l?rictionRatio

Equationsforfrictionforceson thebearingandjournal’aregivenby%mnerfeld(ref.3)forthe Zh radiansor360°extentof thepressurizedfilm. Todeterminethefriction.forces~’ and Fj’ Orlbearing and -journal,respectively,forthe%mmxrfeld,x case,witha pressurizedfilmextending1800or 1/2of thearc,haH of thevaluesgivenby Samerfeldmay“beusedtorepresenttheeffectof thepressurizedonfriction:

()d ( 2)Fb‘ 23cl-n= pu2~

1/2(2+ n2)(l. n2)

halfof the oilfilm

(33)

(*)

Toequations(33)~d (%) mustbe tidedthefrictionofthenon-pressurizedfilminwhichthevelocityprofileisMnear. Halfofthevaluesgivenby theequationsoftheshort-bearingapproximationmaytieusedtorepresentthisfrictionF’:

—.—. _ ——..—. —_ — .— —.— —.

Page 33: Journal Bearing

32 NACATN3491

ThetotalfrictionforcesFb and FI erethesumsofequa-tions(33)and(35)andequations-(~)and”(35):

Fb‘+F’

Fj’+F’

241 + 2n2)‘%)[(2 + n2)(l- ~2)’/2+ (,. :2)’/:

( ti(k+ 5n2)@J2~

cd‘(2-1-n2)(l-“n2)1’2

(37)

IMvidingFb and Fj by theload P inequations(36)and(37)resultsinequs.tiunsinSLibstitutingu = Y’Cdl?‘,

termsofcoefficientoffrictionf~ and fj.P =pZd, and S= (@’/P)(d/cd)2,

fb(d/Cd)= S (~24-n2 )

‘(2+ n2)(l- n2)1/2

*2(4+ ~n2)f3(d/cd)= S

(2+ n2)(1- n2)1/2.

——. —

Page 34: Journal Bearing

NACATN3491

To obtainfrictionintermsoffrictionratio,equations(36)(37)aredividedby thePetroffvalueoffrictionFo:

Fb—=F.

=

Equations(40)

I.LUt(d/Cd) I-r(4- n2J2 1/2

(2+ n2)(l- n )

1 (4- n2)z( )( )2+n2 l-n2i’2

q=~ (4+ ~n2)TO 2

(2 + n2)(l- n~l’2

33

and

,(40)

and(41)arethesameasequations(23)andareshownplottedinfigure16forcomparisonwiththeSomnerfeld21solution.

(41)

-. . -. ..———..—. —.. ~-— .-. —.— _ — .— —.— — —

Page 35: Journal Bearing

34 NACATN3491

REFERENCES

1.

‘2.

3.

‘4.

5.

6.

7-

8.

9.

D@ois, GeorgeB.,andOcvirk,l&edW.: AnalyticalDerivationandExperimentalEvaluationofShort-EearingApproximationforIiUJournalBear@S. NACARep.11.57,1953. (SupersedesNACATN’S2808~d 2809.)

Cmeron,A.,andWoml,W. L.: TheFullJournalBearing.Proc.InstitutionWch. Eng.(Icmdon),vol.161,W.E.P.Nos,.47-54,1949,pp.59-72.

Sommerfeld,A.: TheHydrodynamicTheoryofLubricationFriction.Zs.Math.und”phys.,vol.-5O,nos.1 and2, 19&, pp.97-155.

DuBois,G.B.,Ocvirk,F.W.,andWehe,R. L.: Experimental~vesti-gationofMisallyingCouplesandEccentiici@at theHs ofMis-alinedPlainBearings.NACATN3352,l=.

Wilcock,D. F.,andRosenld.att,Murray:OilFlow,KeyIbctorinSleeve-BearingPerformance.Trans.A.S.M.E.,vol.74,no.5,JtiY1952,PP,W9-866.

.

!l?imoshenko,S.: StrengthofMaterials.PartII - AdvancedTheoryandproblems.Secondcd.,D. VanI?ostrandCo.,Ihc.,1941,pp.258-264.

McKee,S.A.,andMcKEe,T.R.”:Fcictionof JournalBearingsasInfluencedbyClearanceandLength.Trans.A.s.M.E.,u-51-15-161,vol.51,Aug.1929,PP.593-595.

Palsulich,J.,andBlair,R.W.: TestingofHighlyIoadedSleeveBearings.SAEJour.,vol.~, no.9, Sept.1946,pp.481-490.

McKee,S.A.: OilFlowinPhin JournalBearings.Trans.A.S.M.E.,vol.74,no.5, J- 1952,pp.841-848.

.

Page 36: Journal Bearing

1

TA31EI.- EWHUWRTAL COIiDITIONSIN DI??PMCEMENTExPERIMmm

[& -in.-dam. steeljcmmal and bronzebemingj8SAE10 Ofl SU@id thrcq@ a 1./8-in.diem.Ofl hole qqx)aitiC@ti= Icai]

cd> ~-d, kamm UIllt WxLm!Jmbearing oil inlet

Shal?t l/d N, MdJm.unlcaa, lad, p,in.

mP, lb *$, q) presmme,

lb/6qin. Po) w4 ~.

6A 2 0.-52 0.00183 5m, 1,007 m 80l,m 1,293 %“ 9 M2,50il 1,438 &g5,m 1,538 g 1~ R5,CCI0 1,653 170 1.20

63 2 0.cH3376 o.oo.?~ yo 1%3 223 w1,mo 1,q 266 132 25,(YW 1,4T8 yil 156 2-40.3,030 1,438 3&l @ 140

&62 z 0.00M o.oo142 1,2W 938 329 134 80

1,200 31?a 137 1.28 801,2CN 938 32$) 132 802,500 1,438 508 151 805,030 1,713 601 179 80

6D 1 o.m183 o.cxl133 1,203 988 523 1332,5~ 1,538 814 fig 25,m 1,610 80Y,Coo 1,660 ,% ;$ m

6E 3/4 O.o@8 o.(xl18’7 1,(X20 489 343 1282,500 838 g 139 ::5,CW m. 158 40

Page 37: Journal Bearing

TABLE II.- ExPERIMmmL CONDI!IICONBIN FRICTIONM?O OIL FU)W EXP~S

[fl-in.-diem. steel JournalW br~ze bearing; ME 10 oil mrpp~ed8

1+bX@il8@-iL-&WOfi hole OppOBi& COdHd bad

cd) ‘sped,k ~, WsLimsmlad, =yM3dmurnbearing a,l inlet oil flow,

ihaftl/& ~&

t~.> T4>w P, lb

pressure, Q,. lb/aq in. OF Po) w.w ~. lb/ndn

6A 2 0.OCE-52o.00IEFJ1,203 1,283 338 1361,2(XI l,2a!3

o.M338 135 R .(2$8

1,2(XI 1,288 g; 133 120500

.155938 130 80 .m+

500 938 248 132 MO .1485,000 1,663 458 tig .285

6B 2 o.oc576o.w~ 5(XI 836 220 w 80 6.3321,138 136 .4M?

;$% 1,663 ~8 160 : .6485,0co 1,663 @8 158 120 .7%

6C 1$o.ool~o.cQ1421,200 938 329 132 40 O.*5

1,200 938 529 1-33 .do1,203 936 529 134 1% .W5,m 1,689 Ml .1325,m 1,688 ;% 1~ 1% .175

Page 38: Journal Bearing

/.0

>9

,$

.7

,6

5

.4(

,3

.Zc

.1 ?! t I I I I I I I I

.’j I 1 1 I I I I I I I 1/0

Loa D

(a) Data for both long

FOR

frmu data in figures l(b) and l(c). ‘

Figure l.- Eccentricity ratio aga~ load number.

aM 2. Data are cambined

!2

Page 39: Journal Bearing

u

(b) Data for long bearings with Z/d .1, ~, and 2 ti .gh@ bearlnga with Z/d = 3/4. se,

table I for experherrtal conditions.

Figure 1.- Continued.

Page 40: Journal Bearing

,

c

?’h

“o /0 w 90 40 50 60 ?0’80 %

(c) Dataforshort bearinga with Z/d = 1/4, 1/2, and 1. Experimental data are taken fromreference 1.

Figure 1.- Concluded.ww

Page 41: Journal Bearing

(a) Data for long bearinge with l/d = l% ‘9Jld2. See table II for exprimerrtal condltione. E*

Figure 2.- Bearing friction ratio againd load number.5

~F

I

I

I

E #

Page 42: Journal Bearing

, 1

I

I

,

?

Figure 2.- Concluded.

Page 43: Journal Bearing

-Fm

u

~ O/4D ~UM-~y % ‘ /~N) (.)2 (-)’

Figure 3.- Couple friction ratio agaimt load number.F4

,

Page 44: Journal Bearing

, a

[/v LITr- t7/L-p/?E5JoicG h’UMB6E&, y~, ‘ ycn g

(a) Data for long bearinga. See table II for experimmt.al conditlona of SHE 6A, 6B,and6C.

Figure 4.-

GOil flow factor againat inlet-oil-pressure number.

Page 45: Journal Bearing

!,-

Q\.. ,$ J---J-1 I

IW#

3IT

(NL~T. olk - PRESSUR G NfJM&!ER ,%%

(b) Data for short bearinga.

Figure 4.- Concluded.

70

.gn$ “0 s

o

I

1

Page 46: Journal Bearing

, ,

G

7

Figure 5.-Configuration of temt bearing and aheft showing location of oil hole, thermocouples,and dieplacemmt-mamring riders.

Page 47: Journal Bearing

o

Figure 6.-Schemat~ctiagramofappsratwforapplytngcentral1-, formeaauringfrictiontorque on teat bearing, and for rceaauringoil flow through test bearing.

1

Page 48: Journal Bearing

, I

I(

1

1I

>

1

-%z/M3 Suff=twr

-qq:;-::’” aFigure7.-Mechanlcal system for maasuri~ displacement of Journal rehtive. to bearing.

.

Page 49: Journal Bearing

’51 m /’-45’ r-h

q}

+—-—.*, ----

OIL 70 /BEARING

7/4

.

k7%-#-&’AR’--l=F=lFigure 8.- Diagrem of thermocouple locations. All thermocouples

I/16Inch frm bearing surface.except 9 and16arelocated

g

Q

y-

> ,

Page 50: Journal Bearing

‘7UNACAIIN3491 49

P 100 /520 ax? 300

TEMPZEX?TURE, ‘F

.Figure9.-Viscosity-temperaturecharacteristicsofS.AE10oilusedin

experiments.“Measumentsofviscosityweremadeina standardSayboltviscosimeter.‘.

—. _ .-__ ———. —.— ..—. —.—

Page 51: Journal Bearing

Uo

20

/$

16

M’

/.?

Jo

a

6

4

2

00 /234,5 67 @910// IZ~S/+&

CU4NG& IN DMII+KTKRL f=Lg~K R~C~ ~d.

Figure 10.- Changes in diemetral.clemce as a function of temperature difference of two Epoints in teat-bearing wall. tk and tg are bearing temperatures at l/16 inch and b

2 inches, res~ctively, from bearing surface. Running clearances of test bearing are ‘adetermMed by subtracting change in clearance frcnnrmm-temperatwe clearance.

gP

1 .

Page 52: Journal Bearing

* ,

(a) Lcng bearing,’with Z/d = 1, 1~, and 2 and short bar- with Z/d m 3/4. ~e~ti~dataare sue aq In figure l(b); for exprimmtd conditions, see table I.

Figure11.- Eccentricity ratio against Smmerfeld number and capacity number. UP

Page 53: Journal Bearing

vlm

,“

,6

,7

,6

I

. .

Short beaings with Z/d = 1/4, 1/2, and 1. _tientaland are from reference 1.

Figure Il.- Concluded.

a!%ta are same as In figure l(c)

Page 54: Journal Bearing

E1-

Figure K!.- Analytical curves of eccentricity ratio against lmd number.

Page 55: Journal Bearing

wl-!=

,9 — 5’HOR T. J9E14 R /NG,A PP~OXIIWa TION

.8 + — c.4M6.eoM &.VD WOOD

.9 –- –— SOMM6RFELD

.G

5 \

\ ‘,

Nl

4 \ \ \

>,3

b$ \ x.&

‘%’(y . \,2

\\

\ ‘. —/ .*,C mca D

FigureI-3.- AnEJ@Aml curvesof eccedmicity ratio against Ekmnerfeld number andCapaclty number.

I

Page 56: Journal Bearing

,)

I

(a) Coiuparimn if’ long-bearing data with analytical curves.

Figure 14,- Bearing friction ratio [email protected] load number.

.

Page 57: Journal Bearing

Um

LOa D NUMBER] ‘~ “%(592($)’

(b) Analytical cwveE for short bea@ngs.

Figure 14.- Concluded.

‘ ,

I

,,

Page 58: Journal Bearing

,

I

it (a) Analytical curves for long and short bearinga; Camron and Wood

reference 2.

Figure 15.- Curvesof Jcmrnalfrictionratio ag*13t load

cum-m tdmn frm

number.

I

Page 59: Journal Bearing

58 NACATN3491

.

(b)ComparisonofexperimentalcurvesofMcKeeandMcK&e(ref.7)with-icdcmes ofequatio~(19)and(21);Z/d.1/4.

0 100 zoo 3C70 +%7 500

LORD NUMB ERA Y&O

(c)ComparisonofexperimentalcurvesofMc~e andMcKee(ref.7)withanalyticalcurvesofequations(19)and(21.);Z/d= 1/2.

.

.

Figure15.- Continued.

Page 60: Journal Bearing

NACATN3491 59

.

“o /00 208 3da 4.90 5U0

~ 0.4D ~tiM8ER ~ ~tn

(d)ComparisonofexperimentalcurvesofMcKeeandMcKke(ref.7)withanalyticalcurvesofequations(19)and(21);Z/d= 1.

qli’

(e) Comparisonof experimental curves of McKee and McKEe (ref. 7) withanalytical curves of e~tions (19) and(21);Z/d= 2.8.

Figure15.- Continued.

——. — —-—.. ...—z —.. __ . .. —.-——— _ ——

Page 61: Journal Bearing

mo

(f) Comparison of expdmmtal data of Palsulich and Blair (ref. 8)with analytical curves of~

equations (19)and(21); 10KW and short bearlnga. ki

Figure U.- Concluded. gP

.

Page 62: Journal Bearing

Figure 16.- Analytical curves of journal emd beax

7

friction ratio against 1/S for Imfinltevalues of 1 d.

Page 63: Journal Bearing

62 NACATN 3491

SffORT 6E4R ING 4PPzO%IM4710RV

— — CA ME ROAJ &UD WOOD

—-.\ .-~o MM ERFKLD

GCCEAJTJZICITY KG T~O, n

,/

.2

.3

.4

,5

.6/ Y2ii (4

#“,7

&

.9

Figure17. - Clearancecircle diagram showing paths of journalment relative to bearing under central loa~ in terms ofcity ratio against altitude ar@e; analytical curves.

&kplace-eccentri-

.

.

—— .— . .

Page 64: Journal Bearing

+—

PP /?-8 Lo-

.20 ,25 30 .35 ,40, ,, $-

Figure 18.- Oil flow factor against inlet-pressure capacity number for short bearings with .z/d = 1/4,1/2, 0.62, and 1. Exprhental data are from references 1 and 9 andare also

shown in figure l(b).