22
3/11/16 1 Chemical Toxicity to the Special Senses: Vision, Hearing, Taste, and Smell Jonathan S. Rutchik, MD, MPH Associate Professor, Department of Medicine Occupa=onal Medicine, UCSF Neurology, Environmental and Occupa=onal Medicine Associates Mill Valley, CA Introduc=on 50% of neurotoxic chemicals may affect some aspect of SENSORY SYSTEM. Most sensi=ve to exposure related toxicity First reported following exposure. Exist in the absence of other organ toxicity Visual symptoms are the most frequently reported. Altera=on in structure and func=on of the eye are oHen the criteria u=lized for seJng permissible exposure limits for chemicals in the USA Visual processing of informa=on can have immediate, long term, delayed effects on mental, social and physical health and performance Auditory and visual impairments can lead to occupa=onal injuries. www.neoma.com 3/10/16 2

Jonathan’S.’Rutchik,’MD,’MPH’ Associate’Professor

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

3/11/16  

1  

Chemical  Toxicity  to  the  Special  Senses:  Vision,  Hearing,  Taste,  and  Smell

Jonathan  S.  Rutchik,  MD,  MPH  Associate  Professor,  Department  of  Medicine  

Occupa=onal  Medicine,  UCSF  Neurology,  Environmental  and  Occupa=onal  Medicine  Associates  

Mill  Valley,  CA  

Introduc=on

•  50%  of  neurotoxic  chemicals  may  affect  some  aspect  of  SENSORY  SYSTEM.  • Most  sensi=ve  to  exposure  related  toxicity  •  First  reported  following  exposure.  •  Exist  in  the  absence  of  other  organ  toxicity  •  Visual  symptoms  are  the  most  frequently  reported.  •  Altera=on  in  structure  and  func=on  of  the  eye  are  oHen  the  criteria  u=lized  for  seJng  permissible  exposure  limits  for  chemicals  in  the  USA  

•  Visual  processing  of  informa=on  can  have  immediate,  long  term,  delayed  effects  on  mental,  social  and  physical  health  and  performance  

•  Auditory  and  visual  impairments  can  lead  to  occupa=onal  injuries.  

www.neoma.com  3/10/16   2  

3/11/16  

2  

Overview

•  Neuro-­‐Ophthalmological  Dysfunc=ons  (Toxicology  of  the  Visual  System)  

•  Ototoxicity  (Toxicology  of  the  Auditory  System)  

•  Gustatory  Dysfunc=ons  (Toxicology  of  the  Sensory  System  of  Taste)  

•  Olfactory  Dysfunc=on  (Toxicology  of  Sensory  System  of  Smell)  

www.neoma.com  3/10/16   3  

Occupa=onal  Exposures

• Greater  than  80,000  industrial  chemicals  in  use  today.  • Approx.  3,000  chemicals  known  toxic  to  the  eye/visual  system.    • Routes  of  exposure  can  vary  depending  on  chemical  form  (i.e.,  fumes,  liquids,  solids).  

•  Inhala=on  (e.g.,  fumes,  gases)  –  Primary  route  of  occupa=onal  exposures  •  Inges=on  (e.g.,  liquids,  dust)    •  Absorp=on  (e.g.,  solvents)    

• Onset  of  illness  can  be  either  by  ACUTE  or  CHRONIC  exposures  •  Chronic  exposures  are  the  most  widely  studied.  

www.neoma.com  3/10/16   4  

3/11/16  

3  

Visual  System    Anatomy

• Peripheral    •  External  Layers  of  the  Re=na  

•  Color  Vision  (cones)  •  Night  vision  (rods)  

• Central  •  Internal  layers  of  the  re=na  •  Op=c  Nerve  •  Visual  Pathways  •  Visual  Cortex  

www.neoma.com  3/10/16   5  

Visual  System  Dysfunc=on

• Peripheral  Visual  System  •  Re=nal  pigmented  epithelium  (RPE)    

•  photoreceptors  have  highest  O2  consump=on  of  any  =ssue  in  the  human  body  

•  75%  of  the  re=nal  mitochondria  in  this  area  (vulnerable  to  toxicity)  •  High  body  affinity  to  bind  PAH  and  metals  including  Pb,  Hg  

• Central  Visual  System  Pathways  • Op=c  nerve  and  Visual  cortex    

•  increased  basal  oxygen  consump=on  increases  with  visual  s=muli  

 www.neoma.com  3/10/16   6  

3/11/16  

4  

Visual  System  Tes=ng

• Color  Vision  Tes=ng  (dyschromotopsia)  

•  Electrore=nogram    (inner  and  outer  layers)  

• Visual  Field  Tes=ng    (Op=c  nerve  dysfunc=on)  

• Oculomotor  Tes=ng    (Cranial  nerve  dysfunc=on)  

 

• Contrast  Sensi=vity  Tes=ng  (nonspecific  threshold  tes=ng)  

• Cri=cal  Flicker  Fusion      (non  specific)  

• VISUAL  SEARCH  PERFORMANCE  • Visual  Evoked  Poten=al  Tes=ng  (central  pathway  dysfunc=on)  

www.neoma.com  3/10/16   7  

Vision  Tes=ng  Methods  

•  Color  Vision  Tes=ng  •  Farnsworth-­‐Munsell  100  (FM-­‐100)  Hue  Color  Vision  Test  •  Lanthony  Desaturated  D15  (LD15),  or  D15d  most  u=lized.  

• Visual  Evoked  Poten=al  (VEP)  •  Ini=ated  by  brief  visual  s=muli,  recorded  by  EEG  signals.  •  Measures  func=onal  integrity  of  the  visual  pathways  from  re=na  via  the  op=c  nerves  to  the  visual  cortex  of  the  brain.    

www.neoma.com  3/10/16   8  

3/11/16  

5  

Kollner’s  Rule  and  Dyschromatopsia •  Dysfunc=on  can  be  localized  by  the  type  of  vision  loss:  

•  Toxicity  to  peripheral  system  (Re=na)  leads  to  Blue-­‐Yellow  (BY)  deficits  •  Toxicity  to  central  pathways  leads  to  Red-­‐Green  (RG)  deficits  

•  Type  III:  External  re=nal  layers:  BY  loss;  RARE  INHERITED,  ALTITUDE?  •  normal  to  moderate  acuity  loss.    TRITAN  

•  Type  II:  Internal  re=nal  layers:  RG  and  BY  loss  ;    •  moderate  to  severe  acuity  loss.    DEUTAN  

•  Type  I:    Internal  re=nal  layers:  RG  loss:  •  moderate  acuity  loss.  PROTAN  

www.neoma.com  3/10/16   9  

Toxins  Associated  with  Vision  Loss  Occupa=onal  Exposure  to  Styrene

 Industrial  solvent  in  the  manufacturing  of  plas=cs;  associated  with  altera=ons  in  color  vision  (Type  III  blue-­‐yellow)  in  workers  exposed  to  concentra=ons  between  4-­‐70  ppm  for  5-­‐17  years  (Fox  2015).          

www.neoma.com  3/10/16   10  

3/11/16  

6  

Toxins Associated With Vision Loss Occupational Exposure to Perchloroethylene and Trichloroethylene

33  dry  cleaners  (mean  age  31)  exposed  to  occupa=onal  levels  of  TCE    Results  showed  significantly  lower  contrast  sensi=vity  (p  <0.05)  and  poorer  color  discrimina=on  (BY)  when  compared  to  controls  (n  =  35).      High  level  deficits  in  percep=on  of  global  form  and  mo=on  were  also  recorded  (p  <0.0001).        

www.neoma.com  3/10/16   11  

Toxins  Associated  With  Vision  Loss  Occupa=onal  Exposure  to  Carbon  disulfide Vast  industrial  uses  (e.g.,  clothing,  industrial  solvent,  pes=cides)    Known  for  neurological  and  vascular  dysfunc=on:  re=nal  altera=ons  (e.g.,  retrobulbar  neuri=s,  pre-­‐senile  arteriosclero=c  changes  in  the  fundus,  microaneurysms  and  small  hemorrhages,  delayed  papillary  filling,  and  irregulari=es  in  the  caliber  of  re=nal  arterioles  and  veins).    Clinical  studies  describe  severe  loss  of  central  vision  (central  scotoma),  decreased  sensi=vity  in  peripheral  visual  fields  (rod  scotoma),  op=c  atrophy,  blurred  vision,  impaired  color  vision  (BY),  and  papillary  changes.      

     

www.neoma.com  3/10/16   12  

3/11/16  

7  

Toxins  Associated  With  Vision  Loss    Occupa=onal  exposure  to  Lead  (Pb)  –  inorganic Lead-­‐acid  banery  manufacturing,  welding,  electronic  manufacturing  (lead  solder),  jewelry  making,  etc.      Decreases  in  cri=cal  flicker  fusion  have  been  recorded  in  workers  with  a  mean  blood  lead  level  (BLL)  of  35-­‐47  ug/dL.    Peripheral  and  paracentral  scotomas  have  also  been  seen  in  workers  chronically  exposed  (>5  yrs)  to  moderate-­‐levels  of  Pb  or  those  acutely  exposed  to  high-­‐levels  of  Pb.    Many  papers  prior  to  2000  documen=ng  visual  toxicity  to  lead  using  various  method  of  assessment.        

www.neoma.com  3/10/16   13  

GENETICS AND ENVIRONMENT

• Macular  degenera=on  •  Lead  may  accumulate  in  RPE  layers  and  has  been  associated.      •  Herbicides  in  in  drinking  water.    

• Glaucoma  and  hair  lead.        

•  Leber’s  Op=c  Hereditary  Neuropathy  and  organic  solvents.          

www.neoma.com  3/10/16   14  

3/11/16  

8  

Ototoxicity:  Auditory  system  anatomy

•  Inner  ear  includes  Cochlear  hair  cells    •  Converts  of  sound  waves  of  different  frequencies  and  amplitudes  into  electrical  signals  

•  Tonotopically  organized  with  different  sounds  s=mula=ng  different  areas  of  the  organ  which  then  s=mulate  different  brain  stem  cell  nuclei  and  different  areas  of  auditory  cortex  

•  Conduc=on  hearing  deficit  is  the  outer  ear  (on  the  way  to  the  inner  ear)  •  Sensory  neural  hearing  loss  is  a  change  in  the  cochlea  •  Central  hearing  loss  localizes  to  the  acous=c  nerve  or  auditory  cortex      •  Outer  hair  cells  affected  first  •  Cochlear  hearing  loss  is  most  common  due  to  aging  and  noise  

www.neoma.com  3/10/16   15  

Noise  induced  hearing  loss

•  10  years  or  more:    •  8%  of  85  db;  22%  of  90  db;  38%  of  95  db;  44%  of  100  db  

•  20-­‐25  db  threshold  shiHs,  and  10  db,  high  frequency  loss  is  normal  •  Should  not  progress  if  noise  ceases  •  Early  detrimental  exposure  leads  to  worsened  suscep=bility  to  progression  with  age  related  hearing  loss  

•  Higher  frequencies  first  affected  than  progress  to  lower  frequencies  •  Combina=on  with  ototoxicity  and  aging  •  In  1940,  occupa=onal  popula=ons  had  higher  prevalence  of  hearing  loss  without  noise  exposure  in  industry  

www.neoma.com  3/10/16   16  

3/11/16  

9  

Audiology  Tes=ng  Methods  (Not  sensi=ve  to  ototoxicity)

•  Pure-­‐Tone  Audiometry  (R/L  ear  hearing  sensi=vi=es)  

•  High-­‐Frequency  Audiometry  (Frequencies:  10,  12.5,  14  and  16  kHz)  

•  ImmiPance  Audiometry  (physical  volume,  tympanometry,  etc.)  

•  Behavioral  and  Reflex  modifica=on  audiometry  (animals,  startle  and  warning  thresholds)  

•  Electrocochleography  

•  Central  Auditory  Processing  Test  (electrophysiological  and  behavioral  tests    www.neoma.com  3/10/16   17  

Toxins  Associated  with  Hearing  Loss  Occupa=onal  Exposure  to  Solvents  (e.g.,  Styrene,  Toluene,  Trichloroethylene)

Plas=cs  (styrene),  paint  industry  (toluene),  dry  cleaning  industry  (trichloroethylene).      Synergis=c  rela=onship;  exposures  and  to  noise.    Cochlear  toxicity.    Long-­‐term  exposure  to  Styrene  ((OEL  20-­‐100  ppm):  demonstrated  auditory  effects  in  workers  exposed  to  30-­‐50  ppm  for  at  least  10  years  with  levels  above  50  ppm  in  the  past.  In  humans,  the  type  of  interac=on  taking  place  between  noise  and  styrene  exposure  is  not  yet  clear.      Ototoxic  effects  (BAER  abnormali=es)  from  Toluene  (OEL  20-­‐200  ppm):  associated  with  current  exposure  levels  of  approximately  10-­‐50  ppm.  Historic  toluene  and/or  noise  exposure  levels  not  well  characterized  and  some  with  co-­‐exposures.    Exposed  to  higher  concentra=ons  in    past  and  present  could  explain.      

      www.neoma.com  3/10/16   18  

3/11/16  

10  

Toxins Associated with Hearing Loss Occupational Exposure to Lead (Pb)

Used  in  gasoline  as  an  an=knocking  agent;  jewelry  industry,  the  automo=ve  industry  (e.g.,  lead-­‐acid  baneries),  and  in  industrial  paints.  Inhala=on  of  dust  and  fumes;  inges=on  in  children.    Central  auditory  effects  (BAER)  found  with  currect  and  life  =me  weighted  average  of  28-­‐57  ug/  dl  of  BLL.      

 Workers  with  a  mean  BLL  of  37  ug/dL  as  having  significant  increases  in  hearing  thresholds  compared  to  controls.    

 Uncertain  interac=on  with  noise  and  lead.    

www.neoma.com  3/10/16   19  

Hearing  loss  and  Toxicity

•  TCE,  CS2,  Xylene,  N  hexane,  Hg,  CO,  Pes=cides  associated  with  auditory  effects  in  humans.    

•  Occupa=onal  studies  (styrene,  toluene,  solvent  mixtures  and  lead)  indicate  that  much  lower  levels  in  industrial  seJngs  were  associated  with  hearing  deficits.  

•  Combina=ons  of  exposure  with  noise,  other  stressors  such  as  physical  ac=vity  during  exposure  contribute  to  lower  exposure  intensity  and  dura=on  leading  to  ototoxicity  

www.neoma.com  3/10/16   20  

3/11/16  

11  

Olfactory  Toxicity  and  Anatomy  

•  Olfactory  Dysfunc=on  1-­‐5%  from  toxins.      •  Exposures  irrita=on  and  removal  natural  •  Chronic  exposures,  subthreshold  dangerous  with  =me;  unno=ced  gradual  decrease  of  func=on.      

•  Age  related  loss  secondary  to  accumula=on  of  damage  from  low  level  non  irritant  exposures?  

•  Olfactory  epithelium  direct  contact  (10%  of  respired  air  flow)  •  Regenera=ve  capacity  •  Immunological  defense,  an=microbial  agents,  etc  •  Metabolizing  poten=al  detoxifica=on  (reac=ve  oxygen  scavenging)  or  increasing  toxicity?  

•  Neurons  with  dendrites  extending  into  Cribiform  plate  to  contact  directly  with  olfactory  bulb  in  CNS.  

•  Gases  and  solvents  may  reach  olf  bulb  via  systemic  circula=on,  Metals  via  receptors  

www.neoma.com  3/10/16   21  

Olfactory  Dysfunc=on

•  Types  of  olfactory  dysfunc=on:  •  Psychophysical  (detec=on  sensi=vity)  

•  Electrophysiological  (measured  electrical  changes  following  s=mulus)  

•  Psychophysiological  (assess  odor-­‐induced  autonomic  nervous  system  

responses)  

www.neoma.com  3/10/16   22  

3/11/16  

12  

Olfactory  Tes=ng  Method

•  UPSIT  (University  of  Pennsylvania  Smell  Iden=fica=on  Test)  

•  Test  consists  of  4  different  10  page  booklets  with  “scratch  and  sniff”  strips  

•  Scoring  accounts  for  age  and  gender  

•  Considered  the  gold  standard  of  smell  iden=fica=on    

•  Used  in  tes=ng  for  a  mul=ple  of  neurological  diseases  such  as:  Parkinson’s  

disease,  Alzheimer’s,  Hun=ngton’s  disease,  brain  tumors,  and  Mul=ple  

Sclerosis  

www.neoma.com  3/10/16   23  

Toxins  Associated  With  Olfactory  Dysfunc=on  Highlights  from  the  literature

• Cadmium:  Olfactory  dysfunc=on  noted  even  at  ACGIH  proposed  levels.  

• Mercury:  UPSIT  u=lized  in  Minimata  Bay  survivors  and  found  reduced  ability  to  iden=fy  s=muli.    

• Manganese:  Excitability  of  neurons  heralds  toxicity,  then  func=on  decreases.  Increase  in  urine  Mn  associated  with  lower  detec=on  threshold;  lower  in  iron  alloy  workers.    Changes  related  to  dopaminergic  dysfunc=on  at  the  level  of  receptor.  Ac=ve  transport  through  olfactory  tract.    

• Popula=ons  in  Italy  with  elevated  environmental  exposure  to  Mn  had  increased  prevalence  of  PD  and  odor  iden=fica=on.      

  www.neoma.com  3/10/16   24  

3/11/16  

13  

Toxin  Associated  Olfactory  Dysfunc=on

•  Lead:    No  influence  on  Olfactory  system  in  tetraethyl  lead  manufacturers  using  UPSIT.    

•  Toluene:  Inhala=on  chamber  study  revealed  increased  thresholds  that  returned  to  normal.    No  permanent  insult  

• Paint  solvent:  UPSIT  tes=ng  revealed  dose  related  decrement  in  non  smoking  paint  manufacture  workers  sugges=ng  protec=on.    

www.neoma.com  3/10/16   25  

Gustatory  Toxicology:  Anatomy  of  Taste

Saliva  contains  sodium,  potassium,  chloride  and  bicarbonate  Salivary  glands:    paro=d,  submandibular,  sublingual  and  minor  

 Autonomic  nervous  system  controlled    Altera=on  of  components  or  volume  will  affect  sal=ness,  sourness    Autoimmune  disorders,  medicines,  systemic  diseases  

Oral  mucosa    Chemical  burns,  fungi,  viruses,  tobacco,  gastric  acid  

Taste  Bud  Receptors-­‐      Ac=vated;  reduced  in  number    Botox,  tetrodotoxin,  chemotherapeu=cs,  tobacco  

Central  pathways    Infec=on,  inflamma=on:  Botox,  HZV,  Bells  palsy,  GBS,  poliomyeli=s,  MS  

 www.neoma.com  3/10/16   26  

3/11/16  

14  

Gustatory  Tes=ng  Methods

•  Taste  strips  (taste  infused  strips)  •  Inexpensive  and  very  simple  to  use  

•   Administered  and  recorded  in  clinical  or  field  seJng)  •  Electrogustometry  (measurement  of  taste  threshold)  

•  Clinical  seJng  

•  Pass  controlled  anodal  current  through  the  tongue  causing  unique  and  dis=nct  metallic  taste  (e.g.,  sensa=on  experienced  when  placing  9-­‐volt  banery  

on  the  tongue)  

www.neoma.com  3/10/16   27  

Toxins  Associated  with  Gustatory  Dysfunc=on  Isodecanes  used  in  manufacturing  of  paint,  imaging  toners  and  floor  cleaners.

•  63-­‐year-­‐old  woman:  Smell  and  taste  loss  aHer  a  3-­‐year  exposure.    Ini=ally  welts  on  her  tongue  and  lips,  chest  =ghtness,  biner  taste  8  years  prior.  

•  Gradual  smell  and  taste  loss,  intraoral  burning  sensa=ons,  and  periodic  perioral  derma==s.    

•  No  improvement  occurred  with  cromolyn  sodium,  zinc  chloride,  or  copper  sulfate.    

•  Examina=on  of  the  olfactory  epithelium  revealed  a  flat,  yellow  area  with  scarring.  Sinus  CT  scan  was  normal.  

•  Olfactory  tes=ng:  mild-­‐to-­‐moderate  hyposmia.    •  Suprathreshold  taste  tes=ng:  Depressed  intensity  ra=ngs,  poor  taste  iden=fica=on,  and  no  response  to  biner  s=muli.    

•  AHer  topical  anesthesia,  taste  responses  were  reduced  to  zero.    •  Ineffec=ve  treatment.    

www.neoma.com  3/10/16   28  

3/11/16  

15  

Toxins  Associated  with  Gustatory  Dysfunc=on  Acute  ammonia  exposure

• A  31-­‐year-­‐old  man  presented  with  hypogeusia  4  months  aHer  bi=ng  down  on  an  ammonia  capsule  hidden  in  a  store-­‐bought  sandwich.    

• He  sustained  an  intraoral  chemical  burn  injury,  immediate-­‐onset  ageusia,  and  decreased  sensi=vity  to  oral  s=muli.    

• His  medical  history  was  significant  for  environmental  allergies.  He  smoked  <1  pack  of  cigarenes  per  day  for  <5  years.    

•  Examina=on  and  olfactory  tes=ng  was  normal.    •  Suprathreshold  taste  was  consistent  with  hypogeusia:  iden=fied  s=muli  of  moderate  and  high  concentra=on.      

www.neoma.com  3/10/16   29  

Toxins  Associated  with  Gustatory  Dysfunc=on  Lead  (Pb)

• Workers  complain  of  metallic  tastes,  coinciding  with  a  specific  metal.      • Brass  pipe  finers  and  jewelry  workers  suffering  from  lead  poisoning,  frequently  report  a  persistent,  sweet,  metallic  taste.      

• Because  heavy  metals  are  concentrated  in  saliva  and  their  topical  applica=on  on  the  tongue  can  diminish  taste  percep=on,  a  possible  direct  mechanism  of  ac=on  has  been  hypothesized  

   

www.neoma.com  3/10/16   30  

3/11/16  

16  

Toxins  Associated  with  Gustatory  Dysfunc=on    Occupa=onal  exposure  to  Chromium  (Cr)

• Metal  plaJng,  an=-­‐corrosive  agent,  manufacture  of  stainless  steel  

•  Increased  taste  thresholds  noted  in  workers  with  chromium  

exposures  using  both  chemical  s=muli  and  electrical  s=muli.  

 

www.neoma.com  3/10/16   31  

Toxins  Associated  with  Gustatory  Dysfunc=on  Organophosphate-­‐based  pes=cides  (e.g.,  DDT,  Parathion)

           

• Workers  with  frequent  exposure  to  pes=cides  have  complaints  of  sustained  metallic,  biner  taste.    

 •  Specific  OP  exposures  associated  with  a  garlic  taste  and  odor.      •  Experimental  models,  disrup=on  of  sensory  nerve  termina=ons,  but  they  may  also  interfere  with  central  neurotransminers.    

   

www.neoma.com  3/10/16   32  

3/11/16  

17  

Toxins  Associated  with  Gustatory  Dysfunc=on    Solvents Cross-­‐sec=onal  study  of  264  workers  exposed  to  organic  solvents      Increase  prevalence  of  smell  and/or  taste  dysfunc=ons,  similar  to  work  related  dizziness.  Disturbances  in  smell  or  taste  were  most  oHen  hyposmia,  but  hypogeusia  and  a  persistent  “glue”  taste  were  reported.      Symptoms,  however,  were  generally    transitory,  reversible,  and  likely  due  to  to  concentra=on  peaks  rather  than  long-­‐term  exposures.      

www.neoma.com  3/10/16   33  

Solvent-­‐induced  sensory  dysfunc=ons Chemical   Reference  

Neurotoxic  Sensory  Endpoint(s)  

Vision  C  or  P   Hearing   Smell   Taste  

Ammonia   Prudhomme  et  al.  1998   X  

Carbon  disulfide    Fox  D.  2015,  Gobba  2003   C,  P   X      X      

Isodecanes   Smith  et  al.  2009   X  

Methyl  isobutyl  ketone  (MIBK)   Gagnon  et  al.  1994           X      

N-­‐  Hexane   Gobba,  2003   P,  C   X  

Perchloroethylene  (PCE)   Gobba  and  Cavalleri  2003   P.,  C  

Styrene   Fox  D.  2015;  Kjell,  ed.  2010   P   X          

Toluene   Fox  D.  2015;  Kjell,  ed.  2010,  Mergler  1992    P,  C   X   X        

Trichloroethylene  (TCE)   Barbosa  et  al.  2015,  Gobba  2003   P,  C   X   X          

Xylene   Gobba  2003   X   X  

www.neoma.com  3/10/16   34  

3/11/16  

18  

Heavy  metal-­‐induced  sensory  dysfunc=on

Chemical   Reference  Neurotoxic  Sensory  Endpoint(s)  

Vision,    C  or  P   Hearing   Smell   Taste  

Arsenic   Gobba  2006,  2003   X   X  

Cadmium   Mascagni,  2003,  Gobba  2003   X   X   X  

Chromium  (Cr)   Reiter  et  al.  2006;  Seeber  et  al.  1990,  Gobba  2003           X     X  

Lead  (Pb)   Fox  D.  2015;  Kjell,  ed.  2010;  Reiter  et  al.  2006;  Bolla  et  al.  1995   C   X    X   X  

Manganese  (Mn)   Antunes  et  al.  2007;  Bowler  et  al.;    Zoni  et  al.  2012,  Sinczuk-­‐  Walzak  2001    X   X     X      

Mercury  (Hg)   Gobba  2006,  2003    Organic  C,  Inorg  C,  

Elemental  P  X   X   X    

www.neoma.com  3/10/16   35  

Pes=cide-­‐induced  sensory  dysfunc=on

Chemical   Reference  Neurotoxic  Sensory  Endpoint(s)  

Vision   Hearing   Smell   Taste  

Chlorpyrifos   Gobba,  2003.   X  

DDT   Reiter  et  al.  2006   X  

OP-­‐based  pes=cides   Reiter  et  al.  2006               X  

Parathion   Reiter  et  al.  2006   X  

Sulfuryl  fluoride   Calvert  et  al.  1998           X      

www.neoma.com  3/10/16   36  

3/11/16  

19  

References •  Antunes  MB,  Bowler  RM,  Doty  RL.  San  Francisco/Oakland  Bay  Bridge  welder  study:  olfactory  func=on.  Neurology  2007;69:1278–84.    

•  Barbosa  IAJ,  Boon  MY,  Khuu  SK  (2015).  Exposure  to  Organic  Solvents  Used  in  Dry  Cleaning  Reduces  Low  and  High  Level  Visual  Func=on.  PLoS  ONE  10(5):e0121422.  Doi:10.137/journal.pone.0121422.  

•  Bolla  KI,  Schwartz  BS,  Stewart  W,  Rignani  J,  Agnew  J,  Ford  DP.  Comparison  of  neurobehavioral  func=on  in  workers  exposed  to  a  mixture  of  organic  and  inorganic  lead  and  in  workers  exposed  to  solvents.  Am  J  Ind  Med  1995;27(2):231–46.  

•  Bowler  RM,  Gocheva  V,  Harris  M,  et  al.  Prospec=ve  study  on  neurotoxic  effects  in  manganese-­‐exposed  bridge  construc=on  welders.  NeuroToxicol.  2011;32:596-­‐605.  

•  Erie  JC,  Good  JA,  Butz  JA.  Excess  lead  in  the  neural  re=na  in  age-­‐related  macular  degenera=on.  Am  J  Ophthalmol.  2009;148:890–894.    

•  Farahat  TM,  Abdel-­‐Rasoul  GM,  El-­‐Assy  AR,  Kandil  SH,  Kabil  MK.  Hearing  thresholds  of  workers  in  a  prin=ng  facility.  Environ  Res.  1997;73:189–92.    

•  Fox  D.  (2015).  Re=nal  and  visual  system:  occupa=onal  and  environmental  toxicology.  In.  LoJ  M  and  Bleecker  ML  (Eds).  Handbook  of  Clinical  Neurology,  Vol.  131  (3rd  Series)  OccupaJonal  Neurology.  (pp  325-­‐340).  Elservier  BV.  

•  Frank  ME,  HeJnger  TP.  What  the  Tongue  Tells  the  Brain  about  Taste.  Chem.  Senses.  2005;30(Supp  1):  i68-­‐i69.  www.neoma.com  3/10/16   37  

References  (cont’d)

•  Furuta  S,  Nishimoto  K,  Egwa  M,  Ohyama  M,  Moriyama  H.  Olfactory  dysfunc=on  in  pa=ents  with  Minimata  disease.  Am  J  Rhinol  1994;8:259–63  

•  Gobba  F,  Cavalleri  A.  Color  Vision  Impairment  in  Workers  Exposed  to  Neurotoxic  Chemicals.  NeuroToxicology.  2003;24:693-­‐702.  

•  Gobba  F.  Olfactory  toxicity:  long-­‐term  effects  of  occupa=onal  exposures.  Int  Arch  Occup  Environ  Health.  2006;79:322-­‐331.  

•  Hotz  P,  Tschopp  A,  Söderström  D,  et  al.  Smell  or  taste  disturbances,  neurological  symptoms,  and  hydrocarbon  exposure.  Intl  Arch  Occupa  Environ  Health.  1992;63(8):525-­‐530.  

•  Johns  DR,  Smith  KH,  Miller  NR  (1992).  Leber’s  hereditary  Op=c  neuropathy.  Clinical  manifesta=ons  of  the  3460  •  Johnson  and  Morata,  Occupa=onal  Exposures  to  Chemical  and  Hearing  Impairment.    In  Torén  Kjell,  Editor-­‐in-­‐Chief.  

Arbete  och  Hälsa  (Work  and  Health).  Occupa=onal  and  Environmental  Medicine  at  Sahlgrenska  Academy,  Univ.  of  Gothenburg.  2010.  

•  Klein  BE,  McElroy  JA,  Klein  R  et  al.  Nitrate-­‐nitrogen  levels  in  rural  drinking  water:  is  there  an  associa=on  with  age-­‐related  macular  degenera=on?  J  Environ  Sci  Health  A  Tox  Hazard  Subst  Environ  Eng.  2013;48:1757–1763.    

•  LoJ  M  and  Bleecker  ML,  editors.  Handbook  of  Clinical  Neurology,  Vol.  131  (3rd  Series)  Occupa=onal  Neurology.  Elservier  BV.  2015.  

www.neoma.com  3/10/16   38  

3/11/16  

20  

References  (cont’d) •  Mascagni  P,  Consonni  D,  Bregante  G,  Chiappino  G,  Toffoleno  F.  Olfactory  func=on  in  workers  exposed  to  moderate  airborne  cadmium  levels.  Neurotoxicology  2003;24(4–5):717–24.  

•  Mergler  D,  Beauvais  B.  Olfactory  threshold  shiH  following  controlled  7-­‐h  exposure  to  toluene  and/or  xylene.  NeuroToxicol.  1992;13(1):211–15.  

•  Morata  TC,  Fiorini  AC,  Fischer  FM,  Colacioppo  S,  Wallingford  KM,  Krieg  EF,  Dunn  DE,  Gozzoli  L,  Padrao  MA,  Cesar  CL.  Toluene-­‐induced  hearing  loss  among  rotogravure  prin=ng  workers.  Scand  J  Work  Environ  Health  1997b;23(4):289–98.      

•  Prudhomme,  JC,  Shusterman  DJ  and  Blanc  PB.    Acute-­‐Onset  Persistent  Olfactory  Deficit  Resul=ng  From  Mul=ple  Overexposures  to  Ammonia  Vapor  at  Work  JABFP  Jan.-­‐Feb.I998  Vol.  II  No.1  

•  Reiter  ER,  DiNardo  LJ,  Costanzo,  RM.  (2006).  Toxic  Effects  on  Gustatory  Func=on.  In,  Hummel  T  and  Welge-­‐Lüssen  A  (Eds),  Taste  and  Smell.  An  Update.  Adv  Otorhinolaryngol,  Vol  63.  (pp  265–277).  Basel,  Karger.    

3/10/16   www.neoma.com   39  

References

•  Schwartz  BS,  Ford  DP,  Bolla  KI,  Agnew  J,  Rothman  N,  Bleecker  ML.  Solvent-­‐associated  decrements  in  olfactory  func=on  in  paint  manufacturing  workers.  Am  J  Ind  Med.  1990;18(6):  697–706.    

•  Sinczuk-­‐Walczak  H,  Jakubowski  M,  Matczak  W.  Neurological  and  neurophysiological  examina=ons  of  workers  occupa=onally  exposed  to  manganese.  Int  J  Occup  Med  Environ  Health  2001;14(4):329–37.  

•  Smith  WM  et  al.    Toxin-­‐induced  chemosensory  dysfunc=on:  A  case  series  and  Review.  Am  J  Rhinol  Allergy.  2009  ;  23(6):  578–581.  

•  Treibig  et  al.    Occupa=onal  Styrene  exposure  to  and  hearing  loss.  Int  Archives  of  Occupa=onal  and  Environmental  Health  2009;  82;  463-­‐480    

•  Upadhyay  UD  et  al.  Olfactory  loss  as  a  result  of  toxic  exposure.  Otolaryngol  Clin  N  Am  37  (2004)  1185–1207    2004  

•  Yuki  K,  Dogru  M,  Imamura  Y,  et  al.  Lead  accumula=on  as  possible  risk  factor  for  primary  open-­‐angle  glaucoma.  Biol  Trace  Elem  Res.  2009;132:1–8.  

3/10/16   www.neoma.com   40  

3/11/16  

21  

MOC  Ques=on  ONE

• Which  industries  have  NOT  been  studied  regarding  color  vision  toxicity?  

• A.  Dry  cleaning  • B.  Airline  workers  • C.  Boat  builders  • D.  Tetraethyl  Lead  workers    

www.neoma.com  3/10/16   41  

MOC  Ques=on  TWO

• Which  of  these  sensory  systems  anatomical  areas    are  considered  part  of  the  Central  Nervous  System?  

 • A.  Olfactory  Bulb  • B.  Cribiform  Plate  • C.  Salivary  Glands  • D.  External  Re=nal  Layer  

www.neoma.com  3/10/16   42  

3/11/16  

22  

MOC  Ques=on  THREE   • Which  neurophysiological  test  is  matched  incorrectly?    • A.  Cri=cal  Flicker  Fusion:  Vision  • B.  UPSIT:  Smell  • C.  Electrogustography:  Taste  • D.  High  Frequency  Audiometry:  Hearing  •  E.  None  

3/10/16   www.neoma.com   43  

Answers

•  I.    B  •  II.  A  •  III.    A-­‐3,B-­‐1,C-­‐2,  D-­‐4      

www.neoma.com  3/10/16   44