46
Investigador, Cenipalma Colombian Oil Palm Research Centre, Cenipalma, Bogotá, Colombia -Biological and Agricultural Engineering Department, Washington State University, Pullman, WA, USA Evolución de las plantas de beneficio transformadas en biorrefinerías Jesús García Evolution of Palm Oil Mills into biorefineries Colombia

Jesús García - Fedepalma

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jesús García - Fedepalma

Investigador, Cenipalma Colombian Oil Palm Research Centre, Cenipalma, Bogotá, Colombia -Biological and Agricultural Engineering Department, Washington State University, Pullman, WA, USA

Evolución de las plantas de beneficio transformadas en biorrefinerías

Jesús García

Evolution of Palm Oil Mills into biorefineries

Colombia

Page 2: Jesús García - Fedepalma

EVOLUTION OF PALM OIL MILLS INTO BIOREFINERIES

Jesús  Alberto  García  Núñez1,2  -­‐  Manuel  Garcia-­‐Perez1,  Deisy  Ta>ana  Rodríguez2,  Nidia  Elizabeth  Ramirez2,  Carlos  Fontanilla2,  Claudio  Stockle1,  James  AmoneIe3,  Craig  Frear1  and  Electo  Silva4        

     

1Department  of  Biological  System  Engineering,  Washington  State  University,  Pullman,  WA  99164-­‐6120  2Colombian  Oil  Palm  Research  Center,  Process  and  Uses  Division,  Bogotá,  Colombia,  South  America  

3  4Pacific  Northwest  Na>onal  Laboratory,  PO  Box  999,  Richland,  Washington  99352  4Universidad  Federal  de  Itajubá,  BRASIL,  South  America  

Page 3: Jesús García - Fedepalma

Two approaches to biorefinery implementation

b)  Revamping  of  exis>ng  facili>es.  

Existing Agroindustries

New Technologies

Residual biomass

Administrative burden

Mass and energy exchange

New Biorefinery

- Conventional products

- New products

Conventional feedstock

New Biorefinery New Products

Energy crops

Residual biomass

Wastes

a)  Completely  new  facili>es  

Page 4: Jesús García - Fedepalma

Hurdles on biorefinery selection •   A  major  scien>fic  issue  is  how  to  generate  and  select  the  

best  biorefinery  op>on  among  those  that  can  be  

implemented  for  a  given  situa>on.  

•   The  selec>on  requires  a  deep  understanding  of  the  poten>al  technologies,  a  thorough  analysis  of  the  impact  

of  the  alterna>ves  on  sustainability,  societal  and  

economic  indicators.  

•   Different  methodologies  have  been  published  for  selec>ng  

biorefinery  op>ons.  

Page 5: Jesús García - Fedepalma

General Objective

To  propose  a  new  methodology  for  the  evalua>on  

of  paths  to  convert  of  an  exis>ng  industry  into  a  

biorefinery  and  the  implementa>on  of  this  

methodology  for  the  conversion  of  a  Colombian  

palm  oil  mill.    

   

Page 6: Jesús García - Fedepalma

Oil palm sector and palm oil mills (POMs)

•   Oil  palm  agroindustry  has  been  recognized  as  one  of  the  

agricultural  businesses  where    biorefinery  concepts  can  be  

implemented*.  

•   Crude  palm  oil  (CPO),  the  main  product  of  this  agribusiness,  

is  the  most  consumed  vegetable  oil  in  the  world.**  

•   The  biomass  generated  by  this  agro-­‐industry  is  almost  twice  

the  CPO  produced,    is  produced  permanently  during  25  year,  

and  is  located  in  a  single  point  (POM).  *B.  Vijayendran,  Bio  products  from  biorefineries  -­‐  trends,  challenges  and    opportuni>es,  J.  Bus.  Chem.  7  (2010)  109–115.    **Fedepalma,  Sta>s>cal  Yearbook  2014-­‐The  Oil  Palm  Agroindustry  in    Colombia  and  the  World  2009  -­‐  2013,  Javegraf,  Bogotá.  D.C.-­‐  Colombia,  2014.  

Page 7: Jesús García - Fedepalma

General Selection Methodology

Requirements specifications

Data acquisition for base-line scenarios

Technical models of new technologies

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Baseline scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 8: Jesús García - Fedepalma

Excel Program

Input  variables Output  variables Func2ons

2,600 1,450 500

V2: To migrate the Excel version to a web platform.

Page 9: Jesús García - Fedepalma

Requirements specifications

Data acquisition for base-line scenarios

Technical models of new technologies

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 10: Jesús García - Fedepalma

Requirement Specifications

AT  THE  OIL  PALM  PLANTATION    AT  THE  MILL  •   POM  Capacity:  30  t  FFB  h  −1.  •   Working  >me:  5000  hours  year  −1.  •   The  POM  is  not  connected  to  the  electrical  grid.  •   The  electricity  is  generated  by  low  pressure  boiler  and  steam  

turbine.    •   It  is  required  a  complementary  Diesel  fuel  to  run  the  POM.  •   EFB  is  disposed  in  a  pit  near  to  the  POM  

Page 11: Jesús García - Fedepalma

Requirements specifications

Data acquisition for baseline scenarios

Technical models of new technologies

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 12: Jesús García - Fedepalma

Data  acquisi2on  for  baseline  scenarios  

-­‐   At  the  field  -­‐   Amount  of  fer>lizers  -­‐   Fuels  at  the  field  -­‐   LUC  

-­‐   At  the  POM  -­‐   Available  biomass  -­‐   Opera>onal  condi>ons  -­‐   Water  requirements  -­‐   Biomass  characteris>cs  

Page 13: Jesús García - Fedepalma

Requirements specifications

Data acquisition for baseline scenarios

Technical models of new technologies

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 14: Jesús García - Fedepalma

Baseline at the POM

205.01000.0 42.0700.0 215.0

1.00 35.622.0 13.9

89.4 46.1 880.0 6.0667.0

500.0 5.71.00

500.0 361.530.6 492.3

26.2

5.5 14.11.0

INPUT PROCESS OUTPUT

PALM OIL MILLFFB (kg)

- Low pressure boiler- Steam Turbine

Electric Generator

Wastewater treatment

Water (kg)

Fiber (kg) POME (kg)

CPO (kg)Kernel (kg)

EFB

Fiber (kg)Shell (kg)

losses & Impur. (kg)Evap. water (kg)

Treated POME (kg)

Electricity (kWh)

Electricity (kWh)

Electricity (kWh)

Electricity (kWh)Shell (kg)

Diesel (kg)

Water (kg) Evap. - Infilt.(kg)

Sludge (kg)

Ashes (kg)Steam (kg)

Page 15: Jesús García - Fedepalma

Technical models of new technologies

Requirements specifications

Data acquisition for baseline scenarios

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 16: Jesús García - Fedepalma

TRL Descrip2on

TRL  1. Basic  principles  observed

TRL  2. CONCEPT:  technology  concept  formulated

TRL  3. CONCEPT:  experimental  proof  of  concept

TRL  4. VALIDATION:  in  laboratory

TRL  5. VALIDATION:  in  industrial  environment

TRL  6. DEMONSTRATION:  in  industrial  environment

TRL  7. DEMONSTRATION:  prototype  in  opera>onal  context

TRL  8. SYSTEM:  complete  and  qualified

TRL  9. SYSTEM:  proven  and  economically  compe>>ve

Technology  readiness  level  (TRL)  descrip2on  (Overend  2014)  

Page 17: Jesús García - Fedepalma

Products  from  “new”  technologies   TRL Products  from  “new”  technologies   TRL

Phenol  from  POME TRL  3 Bio-­‐composites TRL  5

Chemical  via  cataly>c  technologies TRL  3 Biochar  from  slow  pyrolysis TRL  6

Enzymes  produc>on TRL  3 Bio-­‐oil  from  fast  pyrolysis TRL  6

Cellulosic  Ethanol TRL  4 Ac>vated  carbon TRL  8

Bio-­‐coal  from  torrefac>on TRL  4 Pellets  and  briqueZes TRL  8

Food  for  ruminants TRL  4 Compost TRL  9

Cellulose  pulp  and  paper TRL  4 Biogas  produc2on  and  use TRL  9

Hydrogen  and  synthesis  gases TRL  4 Electricity  genera2on  (CHP) TRL  9

Bio-­‐plas>cs TRL  4 Pretreatment   TRL  9

TRL  for  the  new  products  according  with  the  previous  literature  review.  

Page 18: Jesús García - Fedepalma

Requirements specifications

Data acquisition for baseline scenarios

Technical models of new technologies

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 19: Jesús García - Fedepalma

C1:  Biogas  )  Produc>on  of  biogas  from  the  anaerobic  treatment  of  the  POME  and  its  u>liza>on  for  electricity  genera>on.      C2:  Compost)  Compos>ng  of  empty  fruit  bunches  (EFB),  fiber  with  POME  and  electricity  genera>on  from  biogas.      C3:  CHP)  CHP  unit  for  the  u>liza>on  of  100%  of  the  biomass  to  produce  electric  energy  surplus  in  addi>on  to  electricity  from  the  biogas.    C4:  Pellets)  Pellets  produc>on,  including  biomass  drying  and  biogas  uses.    C5:  Biochar)  Biochar  produc>on  and  biogas  use.      C6:  Bio-­‐oil)  Bio-­‐oil  and  biochar  produc>on  plus  biogas  and  syngas  burning.  

Proposed Biorefinery Concepts

Page 20: Jesús García - Fedepalma

Concept 1. Biogas production

205.01000.0 42.0700.0 215.0

42.822.0 880.0 17.7

82.2 42.3 6.028.3 667.0

500.0 5.2

500.0 12.46.1 867.6

30.6 60.652.7

361.51.0 5.5 13.8

492.3

POME (kg)

PALM OIL MILL

- Low pressure boiler- Steam Turbine

Electric Generator

Covered anaerobic lagoons & gas recovery

Shell (kg)

Evap. water (kg)

Treated POME (kg)

Electricity (kWh)

Facultative lagoons

Dig. POME (kg)Sludge (kg)

INPUT PROCESS OUTPUT

Generator

Biogas (m3)

Elec. (kWh)

Elec. (kWh)

Evap. - Infilt.(kg)

Fiber (kg) Shell (kg)

Electricity (kWh)

Electricity (kWh)

Steam (kg)Electricity (kWh)

EFB (kg)

CPO (kg)Kernel (kg)

Fiber (kg)

losses & Impur. (kg)

Sludge (kg)

FFB

Water (kg)

Diesel (kg)

Water (kg)

Ashes (kg)

Page 21: Jesús García - Fedepalma

Concept 2. Compost and Biogas

205.01000.0 42.0700.0 0.0

0.022.0 880.0 17.7

82.2 42.3 54.528.3 667.0

2.9500.0

500.0 384.030.6 6.1

60.652.7

5.51.4 1.0 173.2

210.9

0.1 496.02.4

0.4215.0 42.8

207.3107.5

498.0

CompostingEFB (kg)

Ash (kg)

Dig. POME (kg)

Compost, (35% Moisture)

water (kg)

Elec. (kWh)

PALM OIL MILL

- Low pressure boiler- Steam Turbine

Electric Generator

Covered anaerobic lagoons and gas recovery

POME (kg)

Treated POME (kg)

Electricity (kWh)

Facultative lagoons

Dig. POME (kg)

Generator

Biogas (m3)

Elec. (kWh)

Elec. (kWh)

Evap. - Infilt.(kg)

Fiber (kg) Shell (kg)

Electricity (kWh)

Electricity (kWh)

Steam (kg)

Electricity (kWh)

Diesel

FFB (kg)Water (kg)

Diesel (kg)

Water (kg)

Shell (kg)

Evap. water (kg)

EFB (kg)

CPO (kg)Kernel (kg)

Fiber (kg)

losses & Impur. (kg)

INPUT PROCESS OUTPUT

Fiber (kg)

Ashes (kg)

EFB press

Page 22: Jesús García - Fedepalma

Concept 3. Cogeneration and Biogas

205.01000.0 42.0700.0 0.0

0.022.0 880.0 0.0

400.0 6.028.3 667.0

25.512.4

255.2 500.0 6.1252.7 252.7 124.5

361.5500.0 752.7 52.7 13.8

120.0 492.316.8

1.0 5.5

PALM OIL MILLT

- High pressure boiler- CET Turbine

Electric Generator

Covered anaerobic

lagoons and

POME (kg)

Electricity (kWh)

Generator

Biogas (m3)

Elec. (kWh)

Elec. (kWh)

EFB, Fiber and shell (kg)

Electricity (kWh)

Electricity (kWh)

Steam (kg)

Elect. (kWh)

Condenser

Facultative lagoons

Evap. - Infilt.(kg)

Treated POME (kg)Sludge (kg)

INPUT PROCESS

FFB (kg)Water (kg)

Diesel (kg)

Water (kg)

Sludge (kg)

Shell (kg)

EFB (kg)

CPO (kg)Kernel (kg)

Fiber (kg)

losses & Impur. (kg)

Pretreatment

Dry biomass (kg)

Elect. (kWh)

OUTPUTUT

Evap. water (kg)

Ashes (kg)

Page 23: Jesús García - Fedepalma

Concept 4. Pellets and Biogas

205.01000.0 42.0700.0 0.0

0.042.3 22.0 880.0 0.0

82.2 6.0500.0 28.1 667.0

5.2

500.0 6.1 12.430.6

22.552.7 361.5

5.5 13.81.0 492.3

18.819.3 505.5

42.817.7 142.2

215.0 8.4124.8

124.8Pellets (kg)

Dust (kg)

Elec. (kWh)

PALM OIL MILL

- Low pressure boiler- Steam Turbine

Electric Generator

Covered anaerobic lagoons and gas recovery

POME (kg)

Electricity (kWh)

Facultative lagoons

Generator

Biogas (m3)

Elec. (kWh)

Elec. (kWh)

Evap. - Infilt.(kg)

Fiber Shell

Electricity (kWh)

Electricity (kWh)

Steam (kg)

Electricity (kWh)

Moisture + oil (kg)

Sludge (kg)

Pretreatment, drying

Shell Fiber

EFB

Pellets plant

Dry biomass (kg)

Thermal ener.

Treated POME (kg)Sludge (kg)

FFB (kg)Water (kg)

Diesel (kg)

Water (kg)

INPUT PROCESS OUTPUT

Shell (kg)

Evap. water (kg)

EFB (kg)

CPO (kg)Kernel (kg)

Fiber (kg)

losses & Impur. (kg)

Ashes (kg)

Page 24: Jesús García - Fedepalma

Concept 5. Biochar and Biogas

205.01000.0 42.0700.0 0.00.0 0.0

0.0 22.0 880.0 0.0500.0 6.0

117.0 28.1 667.04.9

6.1 12.4654.9 654.9

154.936.4

24.8 52.7 361.513.8

1.0 492.35.5

405250 13.9 4.49 377.5

70.3 8.060.0 134.8

215.0 8.8139.4

64.6 43.930.9

304.3

Pretreatment, drying Shell (kg)Fiber (kg)

Char (kg)Bio-oil (kg)

PALM OIL MILL

- Low pressure boiler- Steam Turbine

Electric Generator

Covered anaerobic lagoons and gas recovery

POME (kg)

Electricity (kWh)

Facultative lagoons

Generator

Biogas (m3)

Elec. (kWh)

Elec. (kWh)

Evap. - Infilt.(kg)

Fiber (kg)

Shell

Electricity (kWh)

Electricity (kWh)

Steam (kg) Electricity (kWh)

EFB (kg)Moisture + oil (kg)

pyrolysis plant

Dry biomass (kg)

Dust (kg)

Gas (kg)

Elec. Ther. ener. (MJ)

Ther. ener. (MJ)

Treated POME (kg)Sludge (kg)

INPUT PROCESS OUTPUT

FFB (kg)Water (kg)

Diesel (kg)

Water (kg) Sludge (kg)

Shell (kg)

Evap. water (kg)

EFB (kg)

CPO (kg)Kernel (kg)

Fiber (kg)

losses & Impur. (kg)

Fiber (kg)

Steam (kg) Steam (kg)

Burner

Gas & Tar

Ther. ener. (MJ)(Boiler Gases)

Ashes (kg)

Page 25: Jesús García - Fedepalma

Concept 6. Bio-oil, Biochar, and Biogas

205.01000.0 42.0700.0 0.0

0.09.9 22 880.0 0.0

500.0 29.3125.0 28.3 667.0

5.712.4

500.0 500.0 6.10

37.430.6 52.7 361.5

13.81.0 5.50 492.3

4.9 229 (m3)18.4

0.0 344.250.1 132.3

215.0 7.9124.9

29.0 9.430 63.2

20.6

Pretreatment, drying

Shell (kg)Fiber (kg)

Biochar (kg)Bio-oil (kg)

Elec. (kWh)

PALM OIL MILL

- Low pressure boiler- Steam Turbine

Electric Generator

Covered anaerobic lagoons and gas recovery

POME (kg)

Electricity (kWh)

Facultative lagoons

Generator

Biogas (m3)

Elec. (kWh)

Elec. (kWh)

Evap. - Infilt.(kg)

Fiber (kg)

Shell (kg)

Electricity (kWh)

Electricity (kWh)

Electricity (kWh)

EFB (kg)Moisture + oil (kg)

pyrolysis plant

Dry biomass (kg)Dust (kg)

Gas (kg)

Ther. ener. (MJ) (Boiler

Treated POME (kg)Sludge (kg)

INPUT PROCESS OUTPUT

Sludge (kg)

Shell (kg)

Evap. water (kg)

EFB (kg)

CPO (kg)Kernel (kg)

Fiber (kg)

losses & Impur. (kg)

FFB (kg)Water (kg)

Diesel (kg)

Water (kg)Steam (kg)

Steam (kg)

Burner

Ther. ener. (MJ)

Gas flux for fluidization

Biochar (kg)Gas flux for fluidization

Ashes

Steam

Page 26: Jesús García - Fedepalma

Summary products

215   215  

36   43  14   18  

18  

207  125  

44  

9  

63  

0  

50  

100  

150  

200  

250  

300  

Baseline   C1   C2   C3   C4   C5   C6  

Prod

ucts  (k

g/  t  FFB)  

Biooil   Biochar    

Pellets   Compost  

Shell   Fiber  

EFB  

Biogas  Compost          CHP  Pellets  Biochar  Bio-­‐oil  

Biorefinery  Concepts  

Page 27: Jesús García - Fedepalma

Summary products

14  

61   61  

125  

23  36   37  

0  

20  

40  

60  

80  

100  

120  

140  

Baseline   C1   C2   C3   C4   C5   C6  

Surplus  E

lectric

ity    (kW

h/t  F

FB)  

Biorefinery  Concepts  Biogas  Compost          CHP  Pellets  Biochar  Bio-­‐oil  

Page 28: Jesús García - Fedepalma

Technical models of new technologies

Requirements specifications

Data acquisition for baseline scenarios

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 29: Jesús García - Fedepalma

Boundary conditions for LCA (Cradle to Gate)

p

Ss

p

FFB production

and transportation

POM with conventional POME treatment, and

CHP internal generation

New Technology

X

New Technology

Y

POM Biorefinery Conventional Products •   CPO •   Kernel

New products Avoided products

Bio-oil

Biochar

Compost

Electricity from grid

Natural gas

Fossil fuels

Pellets

Surplus Electricity

Fertilizer production

CO2 captured, N2O reduction

System boundary

Page 30: Jesús García - Fedepalma

Reduction between 30 and 99% compared with the baseline scenario

-­‐438  -­‐586   -­‐664   -­‐569   -­‐593  

-­‐873  

-­‐584  

-­‐1.300  

-­‐800  

-­‐300  

200  

700  

Baseline   C1   C2   C3   C4   C5   C6  

CFP  (kg  CO

2  /  t  F

FB)  

Total  CO2  emisions   Total  CO2  captured  in  FFB   Carbon  Footprint  

Carbon footprint

Biogas  Compost                      CHP              Pellets                Biochar                      Bio-­‐oil  

Page 31: Jesús García - Fedepalma

LCA Eutrophication Potential

0  

0,2  

0,4  

0,6  

0,8  

1  

1,2  

1,4  

Baseline   C1   C2   C3   C4   C5   C6  

EP  kg  PO

43-­‐  eq/  T  FFB

 

Dump-­‐EFB/  compost   POME   Mill   Field  

Eutrophication Potential can be reduced up to 30% in C2

Biogas  Compost            CHP        Pellets            Biochar        Bio-­‐oil  

Page 32: Jesús García - Fedepalma

NER

18,1   18,5   17,7  19,0  

22,9  

18,3  

21,3  

0  

5  

10  

15  

20  

25  

Baseline   C1   C2   C3   C4   C5   C6  

NER

 

NER  Biofuels  +  EE  

Is improved up to 26% in C4

Biogas  Compost                  CHP          Pellets            Biochar                Bio-­‐oil  

Page 33: Jesús García - Fedepalma

Technical models of new technologies

Requirements specifications

Data acquisition for baseline scenarios

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 34: Jesús García - Fedepalma

CAPEX and OPEX for the biorefinery concepts

Produc>on  Costs Biorefinery  Concepts

Biogas Compost CHP Pellets Biochar Bio-­‐oil

CAPEX  (USD  t−1  FFB) 0.71 0.87 2.85 1.19 2.45 2.38

OPEX  (USD  t−1  FFB) 1.62 6.77 6.72 3.39 5.69 7.33

Page 35: Jesús García - Fedepalma

Main Economic Indicators among the biorefinery concepts

Economic  Indicators Biorefinery  Concepts

Biogas Compost CHP Pellets Biochar Bio-­‐oil

NPV  (Thousands  USD)   2,503 3,420 −4,819 13,953 −9,344 6,821

IRR  (%) 24 27 3 56 -­‐-­‐-­‐ 20

Payback  period  (years) 6 5 -­‐-­‐-­‐ 3 -­‐-­‐-­‐ 8

Extra  incomes  USD  t−1  FFB 3.3 4.5 1.9 12.8 −2.1 9.6

Page 36: Jesús García - Fedepalma

Minimum sale prices to achieve economic feasibility of the biorefinery concepts

Biorefinery  Concepts  

Products  from  the  biorefinery  concepts  

Electricity  (USD  kWh−1)  

Compost  (USD  t−1)  

Pellets  (USD  t−1)  

Biochar  (USD  t−1)  

Bio-­‐oil  (USD  t−1)  

C1   0.062                  

C2   0.092   19.46              

C3   0.121                  

C4   0.092       40.75          

C5   0.092           216.30      

C6   0.092           60.00   162.72  

Page 37: Jesús García - Fedepalma

Social Aspects Total labor per shift per each biorefinery concepts

    Biogas Compost CHP Pellets Biochar Bio-­‐oil

Technicians   0.5   1   0.5   1   1   1  

Operators   1   5   4   6   6   7  

Total   1.5   6   4.5   7   7   8  

Page 38: Jesús García - Fedepalma

Technical models of new technologies

Requirements specifications

Data acquisition for baseline scenarios

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 39: Jesús García - Fedepalma

Results Generation (Summarized Results)

Cs  

LCA   Economic  Assessment   Social  CO2  eq.    (kg  CO2    t−1  FFB)  

EP  (kg  PO4

3-­‐  eq  t−1  FFB)  

NER    (MJ  MJ−1)  

Extra  Inc.    (USD  t−1  FFB)  

NPV  (USD)  (x1000)  

P-­‐back  period  (years)  

New  Jobs    (#)  

Skills  (#)  

Biogas   −585.6   1.23   18.5   3.3   2,503   6   1.5   0.5  

Compost   −663.7   0.86   17.7   4.5   3,420   5   6.0   1.0  

CHP   −569.4   0.98   19   1.9   −4,819   -­‐-­‐-­‐   4.5   0.5  

Pellets   −593.3   0.98   22.9   12.8   13,953   3   7.0   1.0  

Biochar   −872.6   0.98   18.3   −2.1   −9,344   -­‐-­‐-­‐   7.0   1.0  

Bio-­‐oil   −584.4   0.98   21.3   9.6   6,821   8   8.0   1.0  

Page 40: Jesús García - Fedepalma

Results Generation (Normalization Process)

00%  10%  20%  30%  40%  50%  60%  70%  80%  90%  100%  

LCA  CO2  emissions  

LCA  EP  

LCA  NER  

Economic  assesment  Extra  Incomes  

Economic  assesment  NPV  

Economic  assesment  Payback  period  

Social  New  workers  

Social  Skilled  workers  

Concept  1   Concept  2   Concept  3  Concept  4   Concept  5   Concept  6  

Page 41: Jesús García - Fedepalma

Choosing weighting factors

Categories   Equilibrated  Scenario

Environmental  Scenario

Economic  Scenario

Social  Scenario

Main  Categories       LCA    (A) 33.3 80 10 10 Economic  Ass.  (B) 33.3 10 80 10 Social    (C) 33.3 10 10 80 LCA         GHG  emissions  (D) 33.3 60 60 60 EP  (E) 33.3 20 20 20 NER  (F) 33.3 20 20 20 Economic  Ass.         Extra  Incomes  (G) 33.3 60 60 60 NPV  (H) 33.3 20 20 20 Payback  Period  (I) 33.3 20 20 20 Social         New  jobs  (J) 50 60 60 60 Skills  (K) 50 40 40 40

Page 42: Jesús García - Fedepalma

Technical models of new technologies

Requirements specifications

Data acquisition for baseline scenarios

Development of biorefinery concepts (BC)

LCA model

Results generation and decision matrix

Best biorefinery concepts!!!

Tech. models & Base-line scenarios (BS)

Review of biomass uses can be applied at POMs

Technology readiness ≥ 6

No Technology is not considered

Yes

Yes No Is the BC technically feasible? The BC is not

considered

Economic model Social aspects

Were the

expectations meet?

No

Yes

Page 43: Jesús García - Fedepalma

Best Biorefinery Concepts!!!

0%  

20%  

40%  

60%  

80%  

100%  

C1   C2   C3   C4   C5   C6  

Equilibrated  

0%  

20%  

40%  

60%  

80%  

100%  

C1   C2   C3   C4   C5   C6  

Environmental  

0%  

20%  

40%  

60%  

80%  

100%  

C1   C2   C3   C4   C5   C6  

Economic  

Biogas    Comp.      CHP          Pell.        Bioc.    Bio-­‐oil  

0%  

20%  

40%  

60%  

80%  

100%  

C1   C2   C3   C4   C5   C6  

Social  

Biogas    Comp.      CHP          Pell.        Bioc.    Bio-­‐oil  

Biogas    Comp.      CHP          Pell.        Bioc.    Bio-­‐oil   Biogas    Comp.      CHP          Pell.        Bioc.    Bio-­‐oil  

Page 44: Jesús García - Fedepalma

Conclusions

1.   The  implementa>on  of  biorefinery  concepts  improves  the  

environmental  impacts  on  Carbon  Footprint,  Eutrophica>on  

Poten>al,  and  the  Net  Energy  Ra>o.    

2.   The  decision  matrix  tool  helps  the  stakeholders,  the  decision-­‐

makers  and  the  policy-­‐makers  to  choose  different  biorefinery  

op>ons,  taking  into  considera>ons  specific  site  condi>ons  by  

weighing  values  on  environmental,  economic  and  social  

impacts.    

Page 45: Jesús García - Fedepalma

ACKNOWLEDGMENTS

WSU,  Cenipalma,    Oil  Palm  Promo>on  Fund  (FFP),  

administrated  by  Fedepalma,  POMs  (Entrepalmas,  

Agroince,  Morichal,  Tequendama,  Manuelita)  

Page 46: Jesús García - Fedepalma

Thank you ! Questions?

46