15
Metal-Molecule-GaAs Devices Using Redox-Active Self Assembled Monolayers 2007 ISDRS a Rand Jean, b Bin Xi, b Tong Ren and a David B. Janes a School of Electrical & Computer Engineering, Purdue University b Department of Chemistry, Purdue University

Jean ISDRS 2007

  • Upload
    rkjean

  • View
    250

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jean ISDRS 2007

Metal-Molecule-GaAs Devices Using Redox-Active Self Assembled

Monolayers

2007 ISDRS

aRand Jean, bBin Xi, bTong Ren and aDavid B. Janes

aSchool of Electrical & Computer Engineering, Purdue University

b Department of Chemistry, Purdue University

Page 2: Jean ISDRS 2007

2007 ISDRS

Intro. and Summary

Motivation for Metal/Redox-active molecule /Semiconductor Devices

Choice of Molecules

IV Characteristics and Proposed Model

Device Fabrication

Conclusion

1

Modeling Parameters

Page 3: Jean ISDRS 2007

2007 ISDRS

Motivation for Redox-Active Structures

2

Metal

Semiconductor

Molecule

Metal Molecule Semiconductor Metal Redox-Active Molecule Semiconductor

• Molecular functionality; possible use in sensing, memory etc.

• CV indicate E-levels close to Ef

• Non-resonant tunneling

• E-levels 1-3 eV apart

• Resonant tunneling

• Molecular level close to Ef• Molecules in net charge state

LUMO

LUMO

HOMO

HOMO

Ef Ef

Ev

Ec

Ev

Ec

-2.5-2-1.5-1-0.500.51

-1/-2

+1/00/-1

E(V), vs Ag/AgCl

* Cyclic Voltammogram of Redox active Molecule

*

Page 4: Jean ISDRS 2007

2007 ISDRS

Device Fabrication

3

1. GaAs with ohmic back contact

2. SiO2 deposition and patterning

3. Molecular deposition

4. Au deposition and patterning

Final measured structures

Low energy, non destructive deposition of Au

Page 5: Jean ISDRS 2007

Au Deposition Comparison

2007 ISDRS4

• As metal penetration increases.• Conductivity in molecular

samples decreases.

m/z, positive ions230.80 230.85 230.90 230.95 231.00 231.05 231.10

inte

nsi

ty (a

.u.)

0

1

2

3

4

5

77K 300 K

Ar backfill 77K 77K 300 K 300 K

Ar backfill Ar backfill

Au/ODT/GaAs

AuSH2+

PeakAuSH2

+

Peak

AsSC9H16+

PeakAsSC9H16

+

Peak

300 K

77 K

Ar backfill

•R. M. Metzger, T. Xu, and I. R. Peterson, J. Phys. Chem. B 105, 7280 (2001).

Page 6: Jean ISDRS 2007

2007 ISDRS

Molecules Deposited

5

H

1. 2.3.

Diruthenium (III) tetra-2-anilinopyridinate-2-(Trimethylsilyl)ethyl-4-(ethynyl)phenyl Sulfide (Ru-complex)

16 Å Coverage: 5e11 cm-2 Dissolved in tetrahydrofuran (THF) (0.5mM)

2-(Trimethylsilyl)ethyl-4-phenyl Sulfide (Ligand)

14Å

Dissolved in THF (0.5mM)

SS SS SS S SSS

Octadecanethiol (ODT)

23 Å

Coverage: 4.5e14 cm-3

Dissolved in ethanol (0.5mM)

Page 7: Jean ISDRS 2007

2007 ISDRS

Molecules Deposited Cont’d

6

4.

STM of Mixed Monolayer of Ru complex in C11 alkanethiol matrix

Amy Szuchmacher Blum, Tong Ren, et. al., JACS VOL. 127, NO. 28, 2005

Mixed Monolayer of Ru complex and Ligand

• Ligand used to prop-up the larger bulkier Ru complex.

• Reasonable packing density.

Page 8: Jean ISDRS 2007

2007 ISDRS7

Ef(Au) = 5.1

0.13

0.5

5.23

4.6

GV Analysis

Evac

0.13

0.5

4.97

5.6

ENHE= 4.43

EAg/AgCl= 0.197

+

-

CV0~4.63

0.4

0.4

2.0

5.0

4.2

2.6

CV Analysis

EHOMO

ELUMO(1)

ELUMO(2)

Emol

Au EF

-2.5-2-1.5-1-0.500.51

-1/-2

+1/00/-1

E(V), vs Ag/AgCl

Ren et. al. J Orgn. Chem. 690, 4734, 2005.

Energies of Molecular Levels (C-V)

Cyclic voltammogram of Ru molecule

Page 9: Jean ISDRS 2007

2007 ISDRS

I-V Characteristics

8

General increase in current in molecular devices over metal- semiconductor device (control)

Highest current density from loosely packed redox-active Ru complex.

Page 10: Jean ISDRS 2007

2007 ISDRS

Proposed Model

9

Metal Semiconductor Metal SemiconductorMolecule

TFE

TE

TFE

ODT

Ligand

Ru

Ev

Ef

Ec

Thermionic Emission

Thermionic Field Emission

φ1

φ2

Φ1 > Φ2

Page 11: Jean ISDRS 2007

2007 ISDRS10

Thermionic &Thermionic-Field Emission comparison

Page 12: Jean ISDRS 2007

2007 ISDRS

Thermionic &Thermionic-Field Emission comparison Cont’d

11

Page 13: Jean ISDRS 2007

Thermionic &Thermionic-Field Emission comparison Cont’d

2007 ISDRS12

Page 14: Jean ISDRS 2007

Modeling Parameters

2007 ISDRS13

0.759

0.755

0.635

0.490

0.794

Barrier Height

(eV)

0.9441.82ODT

1.721.86Mixed Monolayer

0.03343.36Ligand

6.933.01Ru complex

0.03742.05Control

Saturation Current Density (A/cm)

nMol. Layer

Decrease of barrier height with introduction of molecular layer

High values of ideality factor; most prominent in loosely and moderately packed Ru complex and Ligand

Page 15: Jean ISDRS 2007

2007 ISDRS

Conclusion

14

Increase in Current Density in Metal-Mol-Semi conductor structures over Metal-Semiconductor structures. I-V relationship can be modeled on TE and TFE equations. Possible Mechanisms:

ODT: modest barrier height, low D(Ef)

Ru: low barrier height, large D(Ef)

Acknowledgements:

Collaborators: Jiewen Ying, Bin Xi, Adina Scott and Patrick Carpenter

Funding: NASA INAC and NSF NIRT