52
January 2005 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon Slide 1 doc.: IEEE 15-05-0033-00-004a Submission Project: IEEE P802.15 Working Group for Wireless Personal Area N Project: IEEE P802.15 Working Group for Wireless Personal Area N etworks ( etworks ( WPANs WPANs ) ) Submission Title: [Enhanced Noncoherent OOK UWB PHY and MAC for Positioning and Ranging] Date Submitted: [04 January, 2005] Source: [Kwan-Ho Kim(1), Sungsoo Choi(1), Youngjin Park(1), Hui-Myoung Oh(1), Yoan Shin(2), Won cheol Lee(2), and Ho-In Jeon(3)] Company: [(1)Korea Electrotechnology Research Institute(KERI) and Korean UWB Industry Forum, (2)Soongsil University(SSU), and (3)Kyoungwon University(KWU)] Address: [(1)665-4, Naeson 2-dong, Euiwang-City, Kyunggi-do,Republic of Korea (2) 1-1, Sangdo-5-dong, Dongjak-Gu, Seoul, Republic of Korea (3)San 65, Bok-Jeong-dong, Seongnam, Republic of Korea] Voice:[(1)+82-31-420 6183, (2)+82-2-820-0632, (3)+82-31-753-2533], FAX: [(1)82-31-420 6183, (2)82-2- 821-7653, (3)+82-31-753-2532], E-Mail:[(1)[email protected], (2)[email protected], (3)hijeon@kyung won.ac.kr] Re: [] Abstract: [This document proposes a proposal for the IEEE 802.15.4 alternate PHY standard.] Purpose: [Proposal for the IEEE802.15.4a standard] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 1

doc.: IEEE 15-05-0033-00-004a

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area NProject: IEEE P802.15 Working Group for Wireless Personal Area Networks (etworks (WPANsWPANs))

Submission Title: [Enhanced Noncoherent OOK UWB PHY and MAC for Positioning and Ranging]Date Submitted: [04 January, 2005]Source: [Kwan-Ho Kim(1), Sungsoo Choi(1), Youngjin Park(1), Hui-Myoung Oh(1), Yoan Shin(2), Won cheol Lee(2), and Ho-In Jeon(3)] Company: [(1)Korea Electrotechnology Research Institute(KERI) and Korean UWB Industry Forum, (2)Soongsil University(SSU), and (3)Kyoungwon University(KWU)]Address: [(1)665-4, Naeson 2-dong, Euiwang-City, Kyunggi-do,Republic of Korea (2) 1-1, Sangdo-5-dong, Dongjak-Gu, Seoul, Republic of Korea (3)San 65, Bok-Jeong-dong, Seongnam, Republic of Korea]Voice:[(1)+82-31-420 6183, (2)+82-2-820-0632, (3)+82-31-753-2533], FAX: [(1)82-31-420 6183, (2)82-2-821-7653, (3)+82-31-753-2532], E-Mail:[(1)[email protected], (2)[email protected], (3)hijeon@kyung won.ac.kr]Re: []

Abstract: [This document proposes a proposal for the IEEE 802.15.4 alternate PHY standard.]

Purpose: [Proposal for the IEEE802.15.4a standard]Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Page 2: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 2

doc.: IEEE 15-05-0033-00-004a

Submission

Enhanced Noncoherent OOK UWB PHY and MAC for Positioning and

Ranging

KERI-SSU-KWURepublic of Korea

Page 3: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 3

doc.: IEEE 15-05-0033-00-004a

Submission

Contents

• Proposal Overview• Band Plan• Enhanced Noncoherent OOK UWB PHY • Ranging and Positioning• Modifying MAC• Energy window bank• Simulation Results• Link budget and Feasibility• Conclusion

Page 4: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 4

doc.: IEEE 15-05-0033-00-004a

Submission

Proposal Overview (1)• Motivation of proposal

– To satisfy IEEE 802.15.4a technical requirements, it is essential that low power consumption in the UWB system level as well as link level must be achieved.

– Conventional coherent UWB system based on correlator in the receiver can provide fairly good performance.

– However, coherent UWB system is very sensitive to the signal synchronization, and the additional pulse generator with specific pulse shaping is required in the receiver.

– Thus, this system may increase the implementation complexity, and consequently power consumption and system cost.

• To meet low power and low cost requirement with high precision ranging and positioning capability, we propose UWB system with OOK (On-Off Keying) modulation and noncoherent detection.

Page 5: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 5

doc.: IEEE 15-05-0033-00-004a

Submission

Proposal Overview (2)• Features

– In the proposed UWB system, unlike the conventional coherent UWBsystem, the signal demodulation is performed by simply comparing the received signal energy with detection threshold.

– It can significantly relieve the strict synchronization requirement in the receiver and also provide simplified transceiver structure without pulse generator for the minimal power and cost demand.

– Bit Error Rate (BER) performance of the conventional noncoherent OOK UWB system has been enhanced by adopting

– timing, calibration, and operation mode

– edge triggered pulse transmission

– multipath combining and data repetition.

Page 6: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 6

doc.: IEEE 15-05-0033-00-004a

Submission

Band Plan

• Proposed operating band : 3.1 ~ 5.1 GHz– To avoid Interferences and victim receivers and also to fit the FCC

spectrum mask for UWB systems– Bands for the future : Approximately 6 ~ 10 GHz

1 2 3 4 5 6 7 8 9 10 11

5.3 GHzWLAN

2.4 GHzBluetooth

WLAN

GPS

25

-41.3

Frequency[GHz]

Emis

sio

n L

eve

l[d

Bm

/MH

z]

Operating Band Future Bands

Page 7: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 7

doc.: IEEE 15-05-0033-00-004a

Submission

Enhanced Noncoherent OOK UWB PHY

Page 8: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 8

doc.: IEEE 15-05-0033-00-004a

Submission

Edge Triggered UWB Pulse

• Pulse duration : 2 nsec– Bandwidth : 2 GHz (3.1 ~ 5.1 GHz)– OOK modulation can be easily implemented by generating

UWB pulse based on edge triggering (rising and falling edges)

0 2 4 6 8 10 12 14 16 18 20-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

[nsec]

Rising Edge Falling Edge

Transmission Interval

* Measured by Tektronix, TDS8000B oscilloscope

Page 9: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 9

doc.: IEEE 15-05-0033-00-004a

Submission

0 20 40 60 80 100 120 140 160 180 2000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45Impuls e res pons e rea lizations

Time (nS )

Pulse Transmission Interval

0 50 100 150 200 250 300 350 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8Impuls e res pons e realizations

Time (nS )

0 100 200 300 400 500 600 7000

0.1

0.2

0.3

0.4

0.5

0.6

0.7Impuls e res pons e realizations

Time (nS )

CM1 : LOS Residential

CM5 : LOS Outdoor

IEEE 802.15.4aUWB Channel

In order to avoid IPI (Inter PulseInterference), pulse transmissioninterval must be at least 200 nsec

CM8 : NLOS Industrial

Page 10: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 10

doc.: IEEE 15-05-0033-00-004a

Submission

Enhanced Noncoherent OOK UWB System

• Non-coherent OOK UWB system based on noise power calibration and signal energy detection

• Data repetition and multipathcombining for performance improvement

• Three modes in the receiver for compensation of performance degradation(timing/calibration/operation)

Input BitSequence

DataRepetition

OOKModulation

Mod

eSw

itch(

//

)MultipathCombining

ReceivingData

Gathering

Output BitSequence

DecisionStage

UWB Transmitter

Operation Mode

UWB Receiver

Coarse Pulse Position Estimation

Timing Mode

ThresholdControl

NoiseMeasuring

Calibration Mode

nergyD

etection

Timing

Calibration

Operation

PulseGenerator

EEn

ergyD

etectionR

angin

g

An

alog Energy W

indow B

ank

Timing and Channel Gain Estimation

Page 11: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 11

doc.: IEEE 15-05-0033-00-004a

Submission

Data Repetition(R=1)

OOK Modulation(Edge Trigger)

: Rising Edge Triggered Pulse

: Falling Edge Triggered Pulse

Data Repetition(R=2)

OOK Modulation(Edge Trigger)

Data Repetition(R=4)

OOK Modulation(Edge Trigger)

TransmissionInterval

(200 nsec)

One BitDuration

Data Transmission Based on Edge TriggeringOOK modulation with data repetition (bit = “1”)

When bit = “0” for OOK, no pulse is transmitted during one bit duration

Page 12: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 12

doc.: IEEE 15-05-0033-00-004a

Submission

Proposed Three Modes in the ReceiverSignal processing in three modes

Operation Mode (R=2)Calibration Mode

Noise Power LevelMeasurement by

Buffering & Averaging

Threshold Resetfor Bit Decision

Demodulation of theReceived Signal Basedon Energy Detection

Final Bit Decision byMultipathCombining &

Receiving Data Gathering

Noise Only (No Data)

Timing & ChannelGain Estimation

MultipathCombining

Receiving DataGathering

⊕“1” “1” “0”

Timing Mode

TransmissionInterval

PreambleSignal

1

Page 13: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 13

doc.: IEEE 15-05-0033-00-004a

Submission

More Details in the Operation Mode (1)Operation mode description

• Decision statistics

• : Number of pulse repetitions per data bit• : Number of multipath components for combining• : Received signal energy corresponding to the ’th path

of the ’th transmitted pulse

sNmN

( ).n

s kE kn

( ).

1 1

s mN Nn

s kn k

Z E= =

= ∑∑

★Analog energy window bank can achieve ranging accuracy improvement as well as multipath combining

Signal EnergyIntegration Z Th<>

ReceivedSignal Buffer

DecisionStage

DataOutput

(w.r.t. multipath combining & pulse repetition)

SimpleSimple

ETH

Page 14: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 14

doc.: IEEE 15-05-0033-00-004a

Submission

More Details in the Operation Mode (2)• Threshold value for bit decision (no pulse repetition & no

multipath combining)

• : Parameter relative to the signal power of the first path (estimated in the timing mode)

• : Noise power measured by noise calibration mode• : Pulse integration time

.1

2n

THPE Tαψ +⎡ ⎤= ×⎢ ⎥⎣ ⎦

.1αψ

nP

• Threshold value (only pulse repetition)

• Threshold value (pulse repetition & multipath combining)

.1

2n

TH sPE N Tαψ +⎡ ⎤= × ×⎢ ⎥⎣ ⎦

.

1 2

mNk n

TH sk

PE N Tαψ=

+⎡ ⎤= × ×⎢ ⎥⎣ ⎦∑

T

Page 15: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 15

doc.: IEEE 15-05-0033-00-004a

Submission

PHY Frame• PPDU data frame structure

– Preamble sequence for timing and calibration mode• Bit “1” : channel gain estimation as well as synchronization (ranging)• Bit “0” : noise level calibration

• Using all bit patterns in the preamble sequence, we can appropriately set the threshold value for the energy detection

4 1 1 PSDU : 32 bytes

Preamble (timing synchronization and noise calibration)

SFD (Start of Frame Delimiter)

PHY header

PPDU : 38 bytes

Page 16: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 16

doc.: IEEE 15-05-0033-00-004a

Submission

Payload Bit Rate• Basic timing parameters

– Pulse transmission interval : 200 nsec• To avoid IPI (Inter Pulse Interference) due to the excess delay spread of

IEEE 802.15.4a channel models (a prioritized list for CM8, CM1, CM5)

– Pulse repetition per bit : 2• Including at least one edge triggering for easy implementation of OOK

• Payload bit rate– One bit period : 200 x 2 = 400 nsec

– PHY-SAP payload bit rate (Xo) ⇒9

1 1000 2.4414 [Mbps]400 10 1024−

⎛ ⎞ ⎛ ⎞× =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

Page 17: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 17

doc.: IEEE 15-05-0033-00-004a

Submission

Useful Data Rate

• Useful data rate calculation for 32 byte PSDU (Xo = 2.4414 Mbps)– Data frame time : 38 x 8 x 400 = 121.6 µsec– ACK frame time : 11 x 8 x 400 = 35.2 µsec– tACK (considering 32 symbols) : 32 x 400 = 12.8 µsec– LIFS (considering 40 symbols) : 40 x 400 = 16 µsec– Tframe = 121.6 + 35.2 + 12.8 + 16 = 185.6 µsec

• We can obtain a useful data rate ⇒32 8 1000 1.347 [Mbps]185.6 1024

×⎛ ⎞ ⎛ ⎞× =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

LIFStACK

Data Frame (38 bytes) ACK

Tframe

(Time Slot for Multiple Piconet)

Page 18: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 18

doc.: IEEE 15-05-0033-00-004a

Submission

Payload Bit Rate (Optional)• Optional timing parameters

– Pulse transmission interval : 200 nsec• To avoid IPI (Inter Pulse Interference) due to the excess delay spread of

IEEE 802.15.4a channel models (a prioritized list for CM8, CM1, CM5)

– Pulse repetition per bit : 8 • Including four data repetition based on edge triggered UWB signal

• Payload bit rate– One bit period : 200 x 8 = 1.60 µsec

– PHY-SAP payload bit rate (Xo) ⇒ 610.35 [Kbps]

Page 19: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 19

doc.: IEEE 15-05-0033-00-004a

Submission

Useful Data Rate (Optional)

• Useful data rate calculation for 32 byte PSDU (Xo = 610.35 Kbps)– Data frame time : 38 x 8 x 1600 = 486.4 µsec– ACK frame time : 11 x 8 x 1600 = 140.8 µsec– tACK (considering 32 symbols) : 32 x 1600 = 51.2 µsec– LIFS (considering 40 symbols) : 40 x 1600 = 64 µsec– Tframe = 742.4 µsec

• We can obtain a useful data rate ⇒ 336.7 Kbps

LIFStACK

Data Frame (38 bytes) ACK

Tframe

(Time Slot for Multiple Piconet)

Page 20: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 20

doc.: IEEE 15-05-0033-00-004a

Submission

Multiple Piconets• Example : if we assume 4 uncoordinated piconets

– Considering the roughly synchronized TDM technique for SOP– After CCA, each piconet decides randomly or sequentially its time slot for

the CAP period of the super frame.– Multiple devices can communicate in each piconet based on CSMA/CA.– MAC has to provide the information of the number of SOPs within the

beacon payload.CAP CAP CAP

CAP CAP

CAP CAP

CAP CAP

Piconet 1

Piconet 2

Piconet 3

Piconet 4

Piconet 5 “Unacceptable”

Inactive

Page 21: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 21

doc.: IEEE 15-05-0033-00-004a

Submission

Checking Required Data Throughput• The reserved time in order to satisfy 1 kbps

– Considering the previous useful data rate 1.347 Mbps, the reserved time may become Treserved = 62.3 msec

• This long reserved time can sufficiently accommodate multiple devices (up to 100) with CSMA/CA within the same piconet.

LIFS

Data ACK

Tframe

tACK LIFS

Data ACK

tACK LIFS

Data ACK

tACK LIFS

Data ACK

tACK

Treserved

Frame #1 Frame #2 Frame #3 Frame #4

1024 bits per piconet(fit to 1 sec for 1 kbps)

TSOP_frame

Page 22: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 22

doc.: IEEE 15-05-0033-00-004a

Submission

Ranging and Positioning

Page 23: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 23

doc.: IEEE 15-05-0033-00-004a

Submission

Asynchronous Ranging Scheme• Synchronous ranging

– One way ranging– Simple TOA/TDOA measurement– Universal external clock

• Asynchronous ranging– Two way ranging– TOA/TDOA measurement by RTTs– Half-duplex type of signal exchange

Transmitted packets

Received packets

TOF : Time Of Flight

RTT : Round Trip Time

SHR : Synchronization Header

SHR Payload

SHR Payload

SHR Payload

Reference Time

A

B

C

TOFAB

TOFAC

TDOABC

RTT

TOF

TOF

SHR SHRPayload Payload

Pre-determined delay time(T)

SHR Payload SHR Payload

TOF = (RTT-2k-T)/2

k

Synchronous Ranging Asynchronous Ranging

But, HighComplexity

Page 24: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 24

doc.: IEEE 15-05-0033-00-004a

Submission

• Features- Sequential two-way ranging is executed via relay transmissions- PAN coordinator manages the overall schedule for positioning- Inactive mode processing is required along the positioning- PAN coordinator may transfer all sorts of information such as observed - TDOAs to a processing unit (PU) for position calculation

Benefits- It does not need pre-synchronization among the devices- Positioning in mobile environment is partly accomplished

PAN coordinator

P_FFD1

P_FFD2

P_FFD3

RFD

TOA14

TOA24

TOA34

P_FFD : Positioning Full Function DeviceRFD : Reduced Function Device

PU

Proposed Positioning Scheme

Page 25: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 25

doc.: IEEE 15-05-0033-00-004a

Submission

Process of Proposed Positioning SchemePAN

coordinator

P_FFD1

P_FFD2

P_FFD3

RFD

T

T

T

T

RTT12

RTT23

RTT13

RTT14

RTT24

RTT34

T12

T23T13

T14

T34

T24: Transmited packets

: Received packets TOA measurementTOA measurement

Page 26: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 26

doc.: IEEE 15-05-0033-00-004a

Submission

More Details for obtaining TDOAs• Distances among the positioning FFDs are calculated from RTT

measurements and known time interval T

• Using observed RTT measurements and calculated distances, TOAs/TDOAs are updated

RTTRTT1212 = T + 2T= T + 2T1212

RTTRTT2323 = T + 2T= T + 2T2323

RTTRTT1313 = T= T1212 + 2T + T+ 2T + T2323 + T+ T1313

TT1212 = (RTT= (RTT1212 –– T)/2T)/2

TT2323 = (RTT= (RTT2323 –– T)/2T)/2

TT13 13 = (RTT= (RTT1313 –– TT1212 –– TT2323 –– 2T)2T)

RTTRTT3434 = T= T3434 + T + + T + TT3434

RTTRTT1414 = T= T1212 + T + T+ T + T2323 + T + T+ T + T3434 + T + + T + TT1414

RTTRTT2424 = T= T2323 + T + T+ T + T3434 + T + + T + TT2424

TOATOA1414 = (RTT= (RTT1414 -- TT1212 -- TT2323 -- TOATOA3434 -- 3T)3T)

TOATOA3434 = (RTT= (RTT3434 -- T)/2T)/2

TOATOA2424 = (RTT= (RTT2424 -- TT23 23 -- TOATOA3434 -- 2T)2T)

TDOATDOA1212 = TOA= TOA1414 –– TOATOA2424

TDOATDOA2323 = TOA= TOA2424 –– TOATOA3434

Page 27: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 27

doc.: IEEE 15-05-0033-00-004a

Submission

Position Calculation using TDOAs• The range difference measurement defines a hyperboloid of

constant range difference • When multiple range difference measurements are obtained,

producing multiple hyperboloids, the position location of the device is at the intersection among the hyperboloids

2 2 2 2, , ( ) ( ) ( ) ( ) ( )i j i j i j i i j jR c TDOA c TOA TOA X x Y y X x Y y= × = × − = − + − − − + −

A

B

C

TOATag_A

TOATag_B

TOATag_CTag

TDOAB_C

TDOAA_B

Page 28: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 28

doc.: IEEE 15-05-0033-00-004a

Submission

Positioning Scenario Overview

Cluster 1

Cluster 1

Case 1

Case 2

PAN Coordinator

FFD

RFDPositioning FFD(P_FFD)

• Using static reference nodes in relatively large scaled cluster :– Power control is required– Power consumption increases– All devices in cluster must be in

inactive data transmission mode

• Using static and dynamic nodesin overlapped small scaled sub-clusters :– Sequential positioning is executed

in each sub-cluster– Low power consumption– Associated sub-cluster in

positioning mode should be in inactive data transmission mode

Page 29: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 29

doc.: IEEE 15-05-0033-00-004a

Submission

Positioning Scenario for Star topology• Star topology

– PAN coordinator activated mode• Positioning all devices• Re-alignment of positioning FFD’s list is not

required – Target device activated mode

• Positioning is requested from some device• Re-alignment of positioning FFD’s list is required

S_addr. : Source AddressD_addr. : Destination AddressP_addr. : Positioning AddressT_addr. : Target Address

PAN coordinator P_FFD2P_FFD1 P_FFD3 RFD

S_addr.

PAN_co.

D_addr.

P_FFD1

P_addr.

P_FFD1

P_FFD2

P_FFD3

S_addr.

P_FFD1

D_addr.

P_FFD2

P_addr.

P_FFD2

P_FFD3

T_RFD1

S_addr.

P_FFD2

D_addr.

P_FFD3

P_addr.

P_FFD3

T_RFD1

S_addr.

P_FFD3

D_addr.

T_RFD1

S_addr.

T_RFD1

P_addr.

T_RFD1

Broadcastingto all P_FFDs

T_addr.

T_RFD1

T_addr.

T_RFD1

T_addr.

T_RFD1

FDD 측위 용 FFD2

측위용 FFD1

RFD1

PANcoordinator

측위 용 FFD3

RFD3

RFD2

Page 30: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 30

doc.: IEEE 15-05-0033-00-004a

Submission

Positioning Scenario for Cluster-tree Topology

P_FFD1

RFD3

RFD0

RFD2

RFD1

FFD0

PANcoordinator

P_FFD3

RFD5

P_FFD2

RFD4

RFD1 RFD3

FFD1

FFD0

RFD2FFD2

RFD4

RFD6

RFD7

FFD1

Cluster-tree topology

PAN coordinator P_FFD2P_FFD1 P_FFD3 RFD

S_addr.

PAN_co.

D_addr.

P_FFD1

P_addr.

P_FFD1

P_FFD2

P_FFD3

S_addr.

P_FFD1

D_addr.

P_FFD2

P_addr.

P_FFD2

P_FFD3

S_addr.

P_FFD2

D_addr.

P_FFD3

P_addr.

P_FFD3

S_addr.

P_FFD3

D_addr.

T_RFD5

S_addr.

T_RFD5

T_addr.

T_RFD5

Broadcastingto all P_FFDs

N_P_addr.

P_FFD2P_FFD1

re-arragement

N_addr.

FFD0FFD1RFD6

S_addr. : Source AddressD_addr. : Destination AddressP_addr. : Positioning AddressT_addr. : Target AddressN_addr. : Neighbor AddressN_P_addr. : Neighbor Positioning Address

FFD1

P_FFD3

addition

P_addr.

P_FFD3

T_addr.

T_RFD5

T_addr.

T_RFD5

T_addr.

T_RFD5

Page 31: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 31

doc.: IEEE 15-05-0033-00-004a

Submission

Modifying MAC

Page 32: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 32

doc.: IEEE 15-05-0033-00-004a

Submission

Modifications of MAC Command Frame (1)• Features

– Frame control field• frame type : positioning (new addition using a reserved bit)

– Command frame identifier field• Positioning request/response (new addition)

– Positioning parameter information field• Absolute coordinates of positioning FFDs • POS range• List of positioning FFDs and target devices• Power control • Pre-determined processing time (T)

MFRMFR

FCSFCS

22

CommandCommandpayloadpayload

Positioning parameter

command frame

identifier

AddressingAddressingfieldsfields

SequenceSequencenumbernumber

Framecontrol

MAC payloadMAC payloadMHRMHR

variablevariable110/4/80/4/811Octets : 2Octets : 2

Page 33: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 33

doc.: IEEE 15-05-0033-00-004a

Submission

Modifications of MAC Command Frame (2)

ReservedReserved00x0c~0xffx0c~0xff

Positioning responsePositioning response00x0bx0b

Positioning requestPositioning request00x0ax0a

Association responseAssociation response00x02x02

Association requestAssociation request00x01x01

GTS requestGTS request00x09x09

Beacon requestBeacon request00x07x07

PAN ID conflict notificationPAN ID conflict notification00x05x05

Disassociation notificationDisassociation notification00x03x03

Coordinator realignmentCoordinator realignment00x08x08

Orphan notificationOrphan notification00x06x06

Data requestData request00x04x04

Command frameCommand frameCommand frameCommand frameidentifieridentifier

ReservedReserved

12~1312~13

ReservedReserved

7~97~9

AckAck..requestrequest

55

SecuritySecurityenabledenabled

33

SourceSourceaddressing modeaddressing mode

DestDest..addressing modeaddressing mode

IntraIntra--PANPAN

FrameFramependingpending

FrameFrametypetype

14~1514~1510~1110~116644bits : 0~2bits : 0~2

PositioningPositioning100100

AcknowledgmentAcknowledgment010010

BeaconBeacon000000

ReservedReserved101~111101~111

MAC commandMAC command011011

DataData001001

DescriptionDescriptionFrame type valueFrame type value

• Frame Control

•• Command frame identifier

• Positioning parameter

Power Power ControlControl

PrePre--determined determined processing processing

time(T)time(T)

positioning positioning FFDsFFDs

Address & Address & Target devices Target devices

listslists

POSPOSrangerange

FixedFixedcoordinatecoordinate

Page 34: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 34

doc.: IEEE 15-05-0033-00-004a

Submission

Analog Energy Window Bank

Page 35: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 35

doc.: IEEE 15-05-0033-00-004a

Submission

Ranging Accuracy Improvement• Technical requirement for positioning

– “It can be related to precise (tens of centimeters) localization in some cases, but is generally limited to about one meter ”

• Parameters for technical requirement– Minimum required pulse duration :

– Minimum required clock speed for the correlator in the conventional coherent systems

8

1 [ ] 3.333 [nsec]3 10 [ / sec]

mm

1 300 [ ]3.333 [nsec]

MHz=

★Fast ADC clock speed in the conventional coherent receiver must be required for the digital signal processing

High Cost !

Page 36: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 36

doc.: IEEE 15-05-0033-00-004a

Submission

Analog Energy Window Bank (1)• Digital signal processing with fast clock can be replaced by

using analog energy window bank with low clock speed• Why analog energy window bank?

– Conventional single energy window may support the energy detection for data demodulation in the operation mode

– However, this cannot guarantee the correct searching of the signal position in the timing mode (that also means the ambiguity of ranging accuracy)

• Analog energy window bank can sufficiently support timing and calibration as well as operation mode – Integration time of each energy window : 2 nsec (pulse duration)– The number of energy windows in a bank : 20– Operation clock speed of each energy window : 25 MHz– Number of the required energy windows : depend on the power delay

profile of the multipath channel (effective multipath components)

Page 37: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 37

doc.: IEEE 15-05-0033-00-004a

Submission

Analog Energy Window Bank (2)

2

2 sec( )

ndt⋅∫

2

2 sec( )

ndt⋅∫

L L

Integrator Bankfor Timing and

Calibration Mode

Integrator Bankfor Operation Mode

(Demodulation)

ThresholdComparisonBit “1” Bit “0”

Buffer Buffer Buffer Buffer

Estimating orAveraging

2

2 sec( )

ndt⋅∫

2

2 sec( )

ndt⋅∫

2

2 sec( )

ndt⋅∫

2

2 sec( )

ndt⋅∫

Page 38: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 38

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results

Page 39: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 39

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Conditions• Simulation Parameters

– Number of bits for channel gain C estimation within timing mode : ⇒ 8 bits (1 byte in the preamble sequence)

– Number of bits for noise level N measurement in calibration mode : ⇒ 8 bits (1 byte in the preamble sequence)

– Threshold value for the signal energy detection :

– Number of bit repetition (a bit consists of two (rising & falling edge) pulses) : ⇒ R = 1, 2, 4

• Channel models – A prioritized list provided in P802.15.4a Alt PHY Selection Criteria document

(doc #04/581r7) ⇒ IEEE 802.15.4a CM8 (NLOS Industrial)⇒ IEEE 802.15.4a CM1 (LOS Residential)⇒ IEEE 802.15.4a CM5 (LOS Outdoor)

( )2

C NTh +=

Page 40: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 40

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (1)

0 2 4 6 8 10 12 14 16 18 2010

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM8– Number of bit repetition : 1– Number of integrators in the bank : W

Page 41: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 41

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (2)

0 2 4 6 8 10 12 14 16 18 2010

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM8– Number of bit repetition : 2– Number of integrators in the bank : W

Page 42: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 42

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (3)

0 2 4 6 8 10 12 14 16 18 2010

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM8– Number of bit repetition : 4– Number of integrators in the bank : W

Page 43: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 43

doc.: IEEE 15-05-0033-00-004a

Submission

0 2 4 6 8 10 12 14 16 18 2010

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

Simulation Results (4)• Simulation environments

– IEEE 802.15.4a UWB channel model : CM1– Number of bit repetition : 1– Number of integrators in the bank : W

Page 44: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 44

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (5)

0 2 4 6 8 10 12 14 16 18 2010

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM1– Number of bit repetition : 2– Number of integrators in the bank : W

Page 45: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 45

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (6)

0 2 4 6 8 10 12 14 16 18 2010

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM1– Number of bit repetition : 4– Number of integrators in the bank : W

Page 46: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 46

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (7)

0 2 4 6 8 10 12 14 16 18 20 2210

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 20 2210

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM5– Number of bit repetition : 1– Number of integrators in the bank : W

Page 47: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 47

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (8)

0 2 4 6 8 10 12 14 16 18 20 2210

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 20 2210

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM5– Number of bit repetition : 2– Number of integrators in the bank : W

Page 48: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 48

doc.: IEEE 15-05-0033-00-004a

Submission

Simulation Results (9)

0 2 4 6 8 10 12 14 16 18 20 2210

-6

10-5

10-4

10-3

10-2

10-1

100

Bit

Erro

r Rat

e (B

ER

)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

0 2 4 6 8 10 12 14 16 18 20 2210

-3

10-2

10-1

100

Pac

ket E

rror R

ate

(PE

R)

Eb/No [dB]

W = 5W = 10W = 20W = 50W = 100

• Simulation environments– IEEE 802.15.4a UWB channel model : CM5– Number of bit repetition : 4– Number of integrators in the bank : W

Page 49: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 49

doc.: IEEE 15-05-0033-00-004a

Submission

Link Budget &

Complexity and Power Consumption

Page 50: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 50

doc.: IEEE 15-05-0033-00-004a

Submission

Link Budget

7 dB11 dBMinimum Eb/No @ PER=1%

23.4 dB13.4 dBLink Margin at 10 m

-72.7 dBm-72.7 dBmRx power (PR) at 10 m

0 dBi0 dBiTx antenna gain (GT)

13.8 dB3.9 dBLink Margin at 30 m

5 dB5 dBImplementation Loss (I)

8 dB12 dBMinimum Eb/No (S) @ BER=10-5

-109.1 dBm-103.1 dBmAverage noise power per bit (PN)

7 dB7 dBRx noise figure (NF)

-116.1 dBm-110.1 dBmAverage noise power per bit (N)

-82.3 dBm-82.3 dBmRx power (PR) at 30 m

0 dBi0 dBiRx antenna gain (GR)

29.54 dB at d=30 meter29.54 dB at d=30 meterPath loss at d m (L2)

44.48 dB44.48 dBPath loss at 1 meter (L1)

4 GHz4 GHzGeometric center frequency of waveform (fc)

-8.2 dBm-8.2 dBmAverage Tx power (PT)

X1= 615.35 KbpsX0= 2.4414 MbpsPeak payload bit rate(Rb)

(optional) ValueValueParameter

Page 51: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 51

doc.: IEEE 15-05-0033-00-004a

Submission

Complexity and Power Consumption

Coherent OOK Detector

350 TR5mW50 TR0.5mWEnhanced Non-coherent Detector

500 TR7.5mW200 TR2.5mW

ComplexityPower Consumption

ComplexityPower Consumption

Using 2 bit ADC& S/HUsing 1 bit ADC& S/HDetectionApproaches

• Preliminary Evaluation– Assumption: 500Msps

Page 52: January 2005 Project: IEEE P802.15 Working Group for ......January 2005 Slide 2 K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. Jeon doc.: IEEE 15-05-0033-00-004a Submission

January 2005

K. Kim, S. Choi, Y. Park, H. Oh, Y. Shin, W. Lee, and H. JeonSlide 52

doc.: IEEE 15-05-0033-00-004a

Submission

Conclusions• Enhanced Noncoherent OOK UWB transceiver with energy detection

can meet the low power, low cost, and simple architecture– Edge-triggered OOK signals and data repetition for better detection– Three modes (timing/calibration/operation) in the receiver for

system performance improvement – Roughly synchronized TDM, randomly or sequentially allocated for

SOP• TDOA/TWR positioning & ranging techniques

– Asynchronous ranging by round trip time– Positioning based on sequential relay transmission– Positioning scenarios according to network topologies– Modifying MAC command frame for SOP and positioning– Energy window bank with low clock speed for energy detection and

ranging accuracy improvement