22
Jacobs, A., Doran, C., Murray, D.S., Duffill Telsnig, J., Laskowski, K.L., Jones, N.A.R., Auer, S.K. and Praebel, K. (2018) On the challenges and opportunities facing fish biology: a discussion of five key knowledge gaps. Journal of Fish Biology, 92(3), pp. 690-698. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. This is the peer reviewed version of the following article: Jacobs, A., Doran, C., Murray, D.S., Duffill Telsnig, J., Laskowski, K.L., Jones, N.A.R., Auer, S.K. and Praebel, K. (2018) On the challenges and opportunities facing fish biology: a discussion of five key knowledge gaps. Journal of Fish Biology, 92(3), pp. 690- 698, which has been published in final form at http://dx.doi.org/10.1111/jfb.13545. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. http://eprints.gla.ac.uk/159208/ Deposited on: 3 May 2018 Enlighten Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

Jacobs, A., Doran, C., Murray, D.S., Duffill Telsnig, J., Laskowski, K.L., Jones,

N.A.R., Auer, S.K. and Praebel, K. (2018) On the challenges and opportunities

facing fish biology: a discussion of five key knowledge gaps. Journal of Fish

Biology, 92(3), pp. 690-698.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

This is the peer reviewed version of the following article: Jacobs, A., Doran, C.,

Murray, D.S., Duffill Telsnig, J., Laskowski, K.L., Jones, N.A.R., Auer, S.K. and

Praebel, K. (2018) On the challenges and opportunities facing fish biology: a

discussion of five key knowledge gaps. Journal of Fish Biology, 92(3), pp. 690-

698, which has been published in final form at http://dx.doi.org/10.1111/jfb.13545.

This article may be used for non-commercial purposes in accordance with Wiley

Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/159208/

Deposited on: 3 May 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

Page 2: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

1

Onthechallengesandopportunitiesfacingfishbiology:1

adiscussionoffivekeyknowledgegaps2

3

A.Jacobs1†,C.Doran2,D.S.Murray3,J.DuffillTelsnig4,K.L.Laskowski2,N.A.R.4

Jones5,S.K.Auer1,&K.Præbel65

1 Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life6

Sciences,UniversityofGlasgow,Glasgow,G128QQ,UK;2DepartmentofBiologyandEcologyofFishes,Leibniz7

InstituteofFreshwaterEcology&InlandFisheries,Müggelseedamm310,Berlin,12587,Germany;3Schoolof8

Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK; 4 School of9

MarineScience&Technology,UniversityofNewcastle,NewcastleuponTyne,NE17RU,UK;5ScottishOceans10

Institute,SchoolofBiology,UniversityofSt.Andrews,St.Andrews,KY169TH,UK;6FacultyofBiosciences,11

FisheriesandEconomics,NorwegianCollegeofFisheryScience,UiTTheArcticUniversityofNorway,N-903712

Tromsø,Norway13

14

Runningtitle:Challengesandopportunitiesinfishbiology15

16

†Authortowhomcorrespondenceshouldbeaddressed:Tel:+441413306637,email:17

[email protected] 18

19

Page 3: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

2

Abstract20

21

Many fish species face increasing challenges associated with climate change and22

overfishing.Atthesametime,aquacultureisbecomingvitalforfoodsecurity.Gaininga23

deeperunderstandingofthebasicbiologyoffishisthereforemoreimportantthanever.24

Herewesynthesiseandsummarisekeyquestions,opportunities,andchallengesinfish25

biologyhighlightedduringaround-tablediscussionatthe50thAnniversarySymposium26

ofTheFisheriesSocietyoftheBritishIsles,heldattheUniversityofExeter,UK,inJuly27

2017.Weidentifiedseveralknowledgegapsbutalsokeyopportunitiesforfishbiologyto28

informfoodsecurity,forcollectivebehaviour,evolutionaryhistory,andtraitcorrelations29

topredict responses to environmental change, and fornovel analytical approaches to30

mine existing data sets. Overall, more integrative approaches through stronger31

collaborations acrossdifferent fields areneeded to advanceourunderstandingof the32

basicbiologyoffish.33

34

Key words: Aquaculture; Integrative approaches; Behaviour; Food Security; Data35

analysis;Traitcorrelations36

37

38

39

40

41

Page 4: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

3

Introduction42

43

Similartomostfieldsinthebiologicalsciences,fishandfisheriesbiologyhaveadvanced44

rapidly over the last decade due to technological improvements in computer science,45

Next Generation Sequencing in genetics, and novel analytical approaches such as the46

decision-tree based random forest approach (Breiman 2001, Boulesteix et al., 2012).47

However,adeeperunderstandingofthebiologyoffishismoreimportantthanever,as48

globalchallengessuchasclimatechange,overfishing,intensiveaquaculturesystems,and49

otheranthropogenicstressorshaveimpactsthatmayproveincreasinglychallengingto50

manyfishspecies(Fickeetal.2007;Halpernetal.,2008).Gapsinourknowledgeofthe51

basicbiologyofmanyspeciespreventusfromfullyunderstandingandpredictinghow52

fishspeciesandfishcommunitiesarerespondingandwillrespondtothesechallenges.53

Fillingthesegapsiscrucialifwewanttomaintainhealthyecosystemsandprovidefood54

securityforanever-growinghumanpopulation.55

Hereweoutlinefivekeyknowledgegapsthatwillbeimportantforadvancingthefieldof56

fishbiology inthenear future.Theseoutstandingquestionsandpotentialavenues for57

theirresolutionwereidentifiedaspartofadiscussionorganizedatthe50thAnniversary58

SymposiumofTheFisheriesSocietyoftheBritishIslesheldatTheUniversityofExeter,59

UK, in July 2017. They range from issues in aquaculture and fisheries, to physiology,60

behaviourandlifehistory,andtoproblemsinbioinformaticsandanalyticalapproaches.61

The overarching conclusion of this discussion was that more integrative studies are62

needed to understand fish responses to environmental change. In addition, available63

aquaticresourcesmustbeusedresponsiblyinordertoprovidefoodsecurityforfuture64

generations. In the following sections, we elaborate on each knowledge gap, outline65

Page 5: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

4

potentialwaystofilleach,andthenconcludewithashortsynthesis.Thisarticleisnota66

comprehensivereviewofthefield,butratherastartingpointforfuturediscussions.67

68

Keyquestionsandopportunitiesinfishbiology69

70

1.Howcanweusefishbiologytoinformaquacultureandwildfisheriesinordertosecure71

foodforagrowingpopulation?72

73

Incentivesforsustainableaquacultureandfisherieshaverisenexponentiallywithinthe74

lastdecadedueaprojectedincreaseof3billionpeopleby2050(Spragueetal.,2016).75

Eventhoughfish isalreadyaprimarysourceofproteinformillionsofpeopleandthe76

contributionofaquacultureisapproachingtheleveloffisheries,boththeaquacultureand77

fisheries industries are expected to play an increasingly important role in providing78

sustainablesourcesofessentialnutrientstohumans(Troelletal.,2014;Spragueetal.,79

2016;Bernatchezetal.,2017).80

81

Inaquaculture, feedsustainability,disease,andgametequalityareagrowingconcern.82

Systematic biological approaches involving multiple aspects of fish biology can help83

resolvetheseproblems.Asanexample,themicrobiomeisonefieldoffishbiologythat84

maydramaticallyfacilitateaquaculture'sgrowth.Ourgrowingunderstandingofafish’s85

‘secondgenome’andourabilitytomanipulatemicrobiomescanimproveaquaculture’s86

understandingofnutritionalrequirements,pathogenresistance,sexualmaturationand87

survivorshipinfarmedfish(Llewellynetal.,2014).Forexample,theuseofplant-based88

productstofeedpredominantlycarnivorousteleostsisakeyissue(Murrayetal.,2014).89

Fishareunable toprocess insolublecarbohydratesand fibre, commonly foundwithin90

Page 6: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

5

plant-based diets. Therefore, this huge, yet largely indigestible, source of nutrients is91

quickly excreted (Llewellyn et al., 2014). A considerable step towards sustainable92

aquaculture would be to 1) use our knowledge of fish microbiomes to improve93

predictionsregardinginteractionsbetweenplant-basedsustainablefeedsourcesandthe94

digestive systems of farmed fish, and 2) manipulate fish microbiomes to efficiently95

processandutilisepreviouslyindigestiblenutrients.96

97

There is also a dire need to prevent further declines inwild fisheries and tomanage98

fisheries sustainably. However, this is hindered by a lack of information and99

understandinginthreekeyareas:targetspecies’biologyandtheirspatialandtemporal100

distributionacrossalllifestages;theeffectofmultiplestressorsonfishpopulations;and101

the effectiveness of fisheries management in maintaining sustainable populations102

(Rassweileretal.,2014;Schineggeretal.,2016).Integrativeworkconnectingtheseareas103

iscrucialwhenpursuingsustainabilitygoals.Forexample,understandingthespatialand104

temporal overlap between population densities and distributions and how they are105

shapedbyanthropogenicfactorsisimperativewhenassessingsustainablemanagement106

measures(Alavaetal.,2017;Bernatchezetal.,2017;Thorsonetal.,2017).107

108

Asacaveattotheseandotherexamplesoffutureresearchprioritieswithinaquaculture109

andfisheries,scientistsmustalsocontinuetodeveloptheircoreunderstandingoffish110

biology.Despite thewealth of knowledge accruedduring decades of aquaculture and111

fisheriesresearch,fundamentalbiologicalresearchcontinuestoprovidenewinsightson112

thebasicbiologyoffish.Forexample,thegeneticbasesunderlyingecologicallyimportant113

traits(Barsonetal.,2015)orintraspecificvariabilityinphysiologicaltraits(Burtonetal.,114

Page 7: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

6

2011), enable scientists to fully investigate behavioural, physiological or genomic115

changesfromaccuratebiologicalbaselines.116

117

2. How can we use evolutionary biology to predict contemporary responses to climate118

change,harvesting,andotheranthropogenicstressors?119

120

Understanding and predicting the response of a particular species to environmental121

change,orotherstressors,isdifficultwithouthavingadetailedbaselineknowledgeofits122

evolutionary history or its ability to respond through phenotypic changes to123

environmentalchallenges.Sincephenotypicresponsescanbeeitherheritableorplastic,124

accurate baselinesmust be obtained for both populations and species. Ultimately, by125

combiningknowledgeofevolutionaryhistorieswithothertypesofdatawecangaina126

betterunderstandingoftheevolutionarypotentialofpopulationsandspeciesandbetter127

informconservationefforts.128

129

Species may be able to cope with environmental change by either shifting their130

distributions, copingwithnewenvironments viaphenotypicplasticity, or adapting to131

novel environmental conditions (Crozier & Hutchings, 2014; Campbell et al., 2017).132

Therefore, more detailed knowledge of evolutionary responses, and the underlying133

mechanisms, on different time scales, and in different environments and species are134

neededtoenhanceourunderstandingofhowfisheswillrespondtodifferentstressors.135

Forexample,studiesontheeffectsofstrongharvestingpressuresonfishpopulations,136

e.g. through long term declines in population size and genetic diversity (Pinsky &137

Palumbi,2014)orthroughshort-termchangesingeneexpression(Uusi-Heikkiläetal.,138

2017),havealreadygivenusabetterunderstandingofhowharvestingpressuremight139

Page 8: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

7

affecttheevolutionarypotentialoffishpopulations.Furthermore,evolutionarystudies,140

e.g. in combination with detailed ecological and developmental approaches, can141

illuminatequestionsof interest for conservation, regarding e.g. the effects of reduced142

geneticdiversityonpopulationpersistenceandadaptivepotential(Paulsetal.,2013),143

the flexibility of evolution (Elmer &Meyer, 2011), or in locating species refugia and144

driversofdiversity(Dornburgetal.,2017).145

146

We therefore argue for more collaborative studies that combine a wide range of147

informationonpopulationsandspeciesthatdifferindistribution,ecology,geneticand148

phenotypic diversity, adaptive potential, and evolutionary history. This will help to149

generatemoregenericinformationaboutthepotentialofpopulations,speciesorbiomes150

torespondtoenvironmentalandanthropogenicstressors.151

152

3.Canknowledgeofcorrelatedtraitsimprovepredictionsforfishpopulationresponsesto153

environmentalchange?154

155

Forsimplicityandclarity,weasfishbiologistsoftenconsiderourtraitofinterest-for156

examplereproductiveeffort,morphologicalspecialization,ormigrationtendencies-as157

independentoratleastinisolationfromothertraitsofthatsameindividual.However,it158

isclear that theexpressionand functionofall traitswithinan individualare, tosome159

extent,dependentoneachother.Wholesuitesoftraitscanbecorrelatedduetoeither160

mechanisticconstraints(e.g.geneticcorrelations,Steppanetal.,(2002))orbecausethey161

workwelltogetherandincreasethefitnessoftheindividual(i.e.correlationalselection,162

Sinervo & Svensson, 2002). A more complete and explicit consideration of these163

Page 9: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

8

connections among traits is therefore needed to improve our predictions of how164

individuals,andthuspopulations,willrespondtochangesintheirenvironments.165

166

Aprimeexampleoftheimportanceofunderstandingtraitcorrelationsisthelife-history,167

morphological,andbehaviouralchangesobservedinfishpopulationsheavilyexploited168

by fishing (Hutchings & Fraser, 2008, Uusi-Heikkilä et al., 2008). Many harvesting169

regulations are size selective, so individuals are removed from the population based170

(moreorless)solelyontheirmorphology,thatis,theirbodysize.However,aswenow171

know, individual growth rates are correlated with a whole suite of physiological,172

behavioural,andlife-historytraits(Réaleetal.,2010;Uusi-Heikkiläetal.,2008;Sutteret173

al.,2012:Arlinghausetal.,2017).Therefore,highlyselectiveharvestingwillultimately174

haveconsequencesatthepopulationlevel,leadingtochangesinrecruitment,population175

recovery,andsustainableyields(Hutchings&Fraser,2008).Disentanglinghowdirect176

and indirect selection shapes these trait correlations, and the genetic mechanisms177

underlying their coupling, has led to a better understanding of how and why fish178

populations respond to harvesting as they do (Hutchings & Fraser, 2008). Similar179

approaches shouldnowbe used to understandhowenvironmental change and other180

stressors,suchasoceanacidification,anthropogenicnoise,andwarmertemperatures,181

willimpactfishpopulationsglobally.182

183

4.Howcanweuseexistingdatasetsincombinationwithnewanalyticalapproachestogain184

novelinsightsintothebiologyoffishes?185

186

Withinthelastdecadescientistshaveaccumulatedvastamountsofgenomic,phenotypic187

andecologicaldataformanyfishspecies,mainlyduetotechnologicaladvancesindata188

Page 10: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

9

generation and rapidly decreasingmonetary costs (Muir et al., 2016). Collection and189

synthesisofexistingdataprovidesagreatopportunitytounderstandbetterthebiology190

of fish populations and communitieswithout the need to generatemore information.191

However,analyticalapproachesforjointlyanalysinglargedatasetsarestilllackingdue192

to the low accessibility of data or challenges in combining different types of data.193

Therefore, it is important that the scientific community increases their efforts in194

developingnewapproachesforextracting,combining,andanalysingexistingdata.One195

promisingavenuefor fishbiology is thatofmachine learning.Whilemachine learning196

approaches, e.g. the decision-tree based random forest approach (Breiman 2001,197

Boulesteixetal.2012),havebeenpopularinmanyfieldssuchasbiomedicalscienceor198

agriculture,theyarenowbecomingmorepopularforanalysingcomplexdatasetsinmany199

otherfields,especiallyfordatasetswithmanyindicatorsandsmallsamplesizes(Chen&200

Ishwaran,2012;Bernatchez,2016).Randomforestapproacheshavebeensuccessfully201

usedinavarietyofstudiesanalysingpopulationgenomicandphenotypedatasets,e.g.for202

predictingadaptivephenotypes related to climate (Hollidayetal., 2012),determining203

genetic loci distinguishing ecotypes (Pavey et al., 2015), detecting intra-generational204

selection through pollutants (Laporte et al., 2016), improving stock assignments in205

complexormostlypanmicticpopulations (Sylvesteretal.,2017),orpredictingof fish206

agesfromotolithmorphometricdata(Williamsetal.,2015).Theseareallsituationsin207

whichclassicalapproacheshavelowerpowerorhavefailed.Randomforestalgorithms208

havealsoprovenuseful fortheanalysisofstableisotopedatasets,usingregressionor209

classification approaches to model interactions between predictor variables, and210

imputingmissingdata(Cutleretal.,2007).Whileadetailedreviewisoutsidethescope211

ofthisarticle,therearemanyotherpromisinganalyticalframeworksandsolutionsthat212

couldbeusedto tacklecomplexbiologicaldatasets. Inorder tomakesuch largescale213

Page 11: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

10

studiesfeasible,datahavetobecollectedandcompiledinanaccessibleandunifiedway.214

Such databases exist for some types of data or are in the process of being built, e.g.215

GenBankor IsoBank(NCBIResourceCoordinators,2017;Paulietal.,2017),butmore216

effort is needed to develop a common reporting format that permits integration of217

differenttypesofdata,suchasphenotypeandgenotypedata.218

219

5.Howcanweuseanimalcollectivebehaviourtobetterunderstandthegrouplevelimpacts220

ofenvironmentalstressors?221

222

As inmost animal groups, fish benefit from social living in a variety of ways. These223

advantagescaninfluenceindividualfitnessdirectly,suchasincreasedprotectionagainst224

predators, enhanced foraging success, better access to reproductive partners, and225

transmission of behaviour and information between individuals (Ward & Webster,226

2016).However,therearealsocostsassociatedwithgroupliving,forexample,increased227

chancesofparasitism(Côté&Poulin,1995)and increasedcompetition (Krauseetal.,228

2000).Trade-offsarisingfromthesecostsandbenefitsarelikelytobeinfluencedbylarge229

scale environmental stressors, including, but not limited to increases in water230

temperatures, ocean acidification, and fishing pressure. There has been considerable231

researchontheeffectsofthesestressorsshowingforexamplespeciesrangeshiftsdueto232

climatechange(Pecletal.,2017).However,whileconsiderableinformationisavailable233

attheindividualandpopulationlevel,fewstudiesseektoexplainorunderstandhowfish234

respondtoperturbationsorstressorsatthemoreecologicallyrelevantscaleofgroup,235

shoal,orschool.Alargeproportionoffishspeciesliveinsuchgroups,andinordertofully236

understandtheimpactsofglobalchangeonfish,studiesofgroupleveleffectsonanimal237

collectivebehaviourmaybeparamount.238

Page 12: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

11

239

Grouplivingprovidestheopportunityforsociallearningandinmanycasesthisbenefits240

individuals within groups, thereby allowing the spread of learnt behaviours or241

knowledgethroughsocialtransmissionandavoidingpotentiallycostliertrialanderror242

learning (Rendell et al., 2010). Social learning also enables cross-generational243

transmissionofinformationlikemigratoryroutes(Helfman&Schultz,1984).However,244

traditionsandsocial learningstrategiesmay leadtomaladaptiveoutcomes; traditions245

maybecomedeleteriouswhendisadvantageousenvironmentalchangesariseorwhen246

naive fish follow leaders down sub-optimal routes (Laland & Williams, 1998). The247

potentialconsequencesofgroupmovementwhereleadersorspecificphenotypesmay248

beselectivelyremovedorimpactedbyglobalstressorsispoorlyunderstood.249

250

The argument tomove from studies focused on factorswhich affect behaviour at an251

individualleveltoconsidergrouplevelcollectivebehaviourhasbeenraisedbefore.For252

example,previousstudieshavesuggestedcombiningcognitivestudiesattheindividual253

levelwithsimilarquestionsposedatthecollectivelevel(Pelé&Sueur,2013).However,254

attemptsatdevelopingacohesiveapproachthatincorporatesindividualbehaviourinto255

collectivedecisionmakingattheshoalorschoollevelarelimited.Withrecentandrapid256

technicaladvancementsallowingimprovedvideoandtag-trackingabilities,questionson257

theimportanceofvariationattheindividuallevelingroupresponsestostressorsoron258

theeffectofenvironmentalchangeoncollectivemotion,arebecomingmoretractable.259

260

261

262

263

Page 13: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

12

Concludingremarks264

265

Challengesandopportunitiesfacingvariousthemeswithinfishbiologyareanalyticalin266

nature.However,themethodsproposedtosolvethesedifferentissuesareinmanycases267

interchangeable, highlighting the need and possibility for stronger collaborative268

networksbetweenfishbiologistsworkingwithindifferentdisciplines.Forexample,data269

onthechangingdietaryconstituentsoffishfeedandtheircorrespondingeffectonthe270

nutritionalqualityoffarmedfishhavebeencollectedfordecadesand,whilesomeeffort271

has been made to analyse patterns within these datasets and link them to human272

nutritional trends (Spragueetal.,2016),accessibilityanddata formatting issueshave273

prevented more powerful analyses. Collaboration among scientists involved in274

aquaculture and those researching analytical approaches, such as machine learning275

algorithms,couldrevolutionisepredictivemodellingofnutrientbudgetswithinfarmed276

systems,resultinginmoreaccuratepredictionsforfuturenutritionalavailability.Other277

scientific fieldsarebeginning to turn towards thesehighlydiversecollaborations.For278

example, theGlobalLakeEcologicalObservatoryNetworkorGLEON(gleon.org) is an279

internationalgroupof limnologistsandecologistsworking tounderstand,predictand280

communicate theresponseof lakeecosystemstoachangingglobalenvironment.This281

network of scientists shares resources, and near constantmonitoring of limnological282

variables from lakes in over 50 countries, allows near real-time, web-accessible283

databasesforrapiddatatransfers,facilitatinginternationalcollaborations.Whetheras284

partofaformalorinformalnetwork,manyofthechallengesdiscussedwithinthispaper285

could benefit frommore wide-ranging collaborations, thereby ensuring a productive286

futureforresearchonfishbiology.287

288

Page 14: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

13

Acknowledgments: The authors thank the organising committee of the 50th289

Anniversary Meeting of The Fisheries Society of the British Isles for organising and290

facilitatingthediscussionleadingtothisopinionpiece.Wealsothankthedelegatesfor291

excellentpresentationsanddiscussionsduringtheweekinExeter.Finally,theauthors292

would like to thank their respective funding bodies: A.J. was supported by an FSBI293

conference registration bursary, N.J. is supported by an FSBI studentship, J.D.T is294

supported by NERC and Cefas, K.L.L. is supported by the Deutsche295

Forschungsgemeinschaft(LA3778/1-1),andD.S.M.issupportedbyBBSRC.296

297

References298

299

Alava, J. J., Cheung, W. W. L., Ross, P. S. & Sumaila, U. R. (2017) Climate Change-300

ContaminantInteractionsinMarineFoodWebs:TowardaConceptualFramework.Global301

ChangeBiology1–18.DOI:10.1111/gcb.13667302

303

Arlinghaus,R.,Laskowski,K.,Alós,J.,Klefoth,T.,Monk,C.,Nakayama,S.&Schröder,A.304

(2017) Passive Gear-induced Timidity Syndrome in Wild Fish Populations and Its305

Potential Ecological and Managerial Implications. Fish and Fisheries 18, 360–373.306

DOI:10.1111/faf.12176307

308

Barson,N.,Aykanat,T.,Hindar,K.,Baranski,M.,Bolstad,G.,Fiske,P.,Jacq,C.,Jensen,A.,309

Johnston, S., Karlsson, S., et al. (2015) Sex-Dependent Dominance at a Single Locus310

MaintainsVariationinAgeatMaturityinSalmon.Nature528,405–408.311

312

Page 15: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

14

Bernatchez,L.,Wellenreuther,M.,Araneda,C.,Ashton,D.,Barth,J.,Beacham,T.,Maes,G.,313

Martinsohn, J.,Miller,K.,Naish,K., etal. (2017)Harnessing thePowerofGenomics to314

SecuretheFutureofSeafood.TrendsinEcology&Evolution32,665–680.315

316

Bernatchez, L. (2016) On the Maintenance of Genetic Variation and Adaptation to317

EnvironmentalChange:ConsiderationsfromPopulationGenomicsinFishes. Journalof318

FishBiology89,2519–2556.DOI:10.1111/jfb.13145319

320

Boulesteix, A., Janitza, S., Kruppa, J. & König, I. (2012) Overview of Random Forest321

Methodology and Practical Guidance with Emphasis on Computational Biology and322

Bioinformatics.WileyInterdisciplinaryReviews:DataMiningandKnowledgeDiscovery2,323

493–507.DOI:10.1002/widm.1072 324

325

Breiman, L. (2001) Random Forests. Machine Learning 1, 5–32. DOI:326

10.1023/A:1010933404324327

328

BurtonT.,KillenS.S.,Armstrong J.D.&MetcalfeN.B. (2011)WhatCauses Intraspecific329

Variation in Resting Metabolic Rate and What Are Its Ecological Consequences?330

Proceedings of the Royal Society B: Biological Sciences 278, 3465–3473. DOI:331

10.1098/rspb.2011.1778332

333

Campbell,C.,Adams,C.,Bean,C.&Parsons,K.(2017)ConservationEvo-Devo:Preserving334

Biodiversity by Understanding Its Origins. Trends in Ecology & Evolution. DOI:335

10.1016/j.tree.2017.07.002336

337

Page 16: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

15

Chen,X.&Ishwaran,H.(2012)RandomForestsforGenomicDataAnalysis.Genomics99,338

323–329.DOI:10.1016/j.ygeno.2012.04.003 339

340

Côté, I. M. & Poulin, R. (1995) Parasitism and Group Size in Social Animals: AMeta-341

Analysis.BehaviouralEcology6,159–165.DOI:10.1093/beheco/6.2.159342

343

Crozier,L.&Hutchings,J.(2014)PlasticandEvolutionaryResponsestoClimateChange344

inFish.EvolutionaryApplications7,68–87.DOI:10.1111/eva.12135345

346

Cutler,R.,Edwards,T.,Beard,K.,Cutler,A.,Hess,K.,Gibson,J.&Lawler,J.(2007)Random347

ForestsforClassificationinEcology.Ecology88,2783–2792.DOI:10.1890/07-0539.1348

349

Dornburg,A.,Federman,S.,Lamb,A.,Jones,C.&Near,T.(2017)CradlesandMuseumsof350

AntarcticTeleostBiodiversity.NatureEcology&Evolution1.DOI:10.1038/s41559-017-351

0239-y352

353

Elmer,K.&Meyer,A.(2011)AdaptationintheAgeofEcologicalGenomics:Insightsfrom354

Parallelism and Convergence. Trends in Ecology & Evolution 26, 298–306. DOI:355

10.1016/j.tree.2011.02.008356

357

Ficke,A.D.,Myrick,C.A.&Hansen,L.J. (2007)Reviews inFishBiologyandFisheries17,358

581-613.DOI:10.1007/s11160-007-9059-5359

360

Halpern,B.,Walbridge,S.,Selkoe,K.,Kappel,C.,Micheli,F.,D’Agrosa,C.,Bruno,J.,Casey,361

K.,Ebert,C.,Fox,H.,Fujita,R.,Heinemann,D.,Lenihan,H.,Madin,E.,Perry,M.,Selig,E.,362

Page 17: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

16

Spalding,M.,Steneck,R.,andWatson,R.(2008)AGlobalMapofHumanImpactonMarine363

Ecosystems.Science319,948–952.DOI:10.1126/science.1149345364

365

Helfman,G.&Schultz,E.(1984)SocialTransmissionofBehaviouralTraditionsinaCoral366

ReefFish.AnimalBehaviour32,379–384.DOI:10.1016/S0003-3472(84)80272-9367

368

Holliday,J.,Wang,T.&Aitken,S.(2012)PredictingAdaptivePhenotypesFromMultilocus369

Genotypes in Sitka Spruce (Picea Sitchensis) Using Random Forest. G3:370

Genes|Genomes|Genetics2,1085–1093.DOI:10.1534/g3.112.002733371

372

Hutchings,J.&Fraser,D.(2008)TheNatureofFisheries-andFarming-inducedEvolution.373

MolecularEcology17,294–313.DOI:10.1111/j.1365-294X.2007.03485.x374

375

Krause,J.,Hoare,D.J.,Croft,D.,Lawrence,J.,Ward,A.,Ruxton,G.D.,Godin,J.G.J.andJames,376

R.(2000).Fishshoalcomposition:mechanismsandconstraints.ProceedingsoftheRoyal377

SocietyofLondonB:BiologicalSciences,267,2011-2017.DOI:10.1098/rspb.2000.1243378

379

Laland,K.&Williams,K.(1998)SocialTransmissionofMaladaptiveInformationinthe380

Guppy.BehavioralEcology9,493–499.DOI:10.1093/beheco/9.5.493381

382

Laporte,M.,Pavey,S.A.,Rougeux,C.,Pierron,F.,Lauzent,M.,Budzinski,H.,Labadie,P.,383

Geneste,E.,Couture,P.,Baudrimont,M.&BernatchezL.(2016)RADSequencingReveals384

Within-generationPolygenicSelectioninResponsetoAnthropogenicOrganicandMetal385

Contamination in North Atlantic Eels. Molecular Ecology 25, 219–237. DOI:386

10.1111/mec.13466387

Page 18: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

17

388

Llewellyn,M.S.,Boutin,S.,Hoseinifar,S.H.&Derome,N.(2014)TeleostMicrobiomes:389

The State of the Art in Their Characterization, Manipulation and Importance in390

Aquaculture and Fisheries. Frontiers in Microbiology 5, 1–1. DOI:391

10.3389/fmicb.2014.00207392

393

Muir,P.,Li,S.,Lou,S.,Wang,D.,Spakowicz,D.,Salichos,L.,Zhang,J.,Weinstock,G.,Isaacs,394

F.,Rozowsky,J.&Gerstein,M.(2016)TheRealCostofSequencing:ScalingComputation395

toKeepPacewithDataGeneration.GenomeBiology17,53.DOI:10.1186/s13059-016-396

0917-0397

398

Murray,D.S.,Hager,H.,Tocher,D.R.&Kainz,M.J.(2014)EffectofPartialReplacementof399

Dietary Fish Meal and Oil by Pumpkin Kernel Cake and Rapeseed Oil on Fatty Acid400

CompositionandMetabolisminArcticCharr(SalvelinusAlpinus).Aquaculture431,85–401

91.DOI:10.1016/j.aquaculture.2014.03.039402

403

NCBIResourceCoordinators,N.R.C.(2017)DatabaseResourcesoftheNationalCenter404

for Biotechnology Information. Nucleic Acids Research 45, D12–D17. DOI:405

10.1093/nar/gkw1071406

407

Pauli,J.,Newsome,S.,Cook,J.,Harrod,C.,Steffan,S.,Baker,C.,Ben-David,M.,Bloom,D.,408

Bowen,G.,Cerling,T.,Cicero,C.,Cook,C.,Dohm,M.,Dharampal,P.S.,Graves,G.,Gropp,R.,409

Hobson,K.A.,Jordan,C.,MacFadden,B.,Birch.S.,Poelen,J.,Ratnasingham,S.,Russell,L.,410

Stricker, C.A., Uhen,M.D., Yarnes, C.T. &Hayden, B. (2017) Opinion:WhyWeNeed a411

Page 19: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

18

CentralizedRepositoryforIsotopicData.ProceedingsoftheNationalAcademyofSciences412

114,2997–3001.DOI:10.1073/pnas.1701742114413

414

Pauls, S., Nowak, C., Bálint,M. & Pfenninger,M. (2013) The Impact of Global Climate415

ChangeonGeneticDiversitywithinPopulationsandSpecies.MolecularEcology22,925–416

946.DOI:10.1111/mec.12152417

418

Pavey,S.,Gaudin,J.,Normandeau,E.,Dionne,M.,Castonguay,M.,Audet,C.&Bernatchez,419

L.(2015)RADSequencingHighlightsPolygenicDiscriminationofHabitatEcotypesinthe420

Panmictic American Eel. Current Biology 25, 1666–1671. DOI:421

10.1016/j.cub.2015.04.062422

423

Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C., Clark, T.D.,424

Colwell,R.K.,Danielsen,F.,Evengård,B.andFalconi,L.(2017).Biodiversityredistribution425

underclimatechange:Impactsonecosystemsandhumanwell-being.Science,355,9214.426

DOI:10.1126/science.aai9214427

428

Pelé,M.&Sueur,C. (2013)Decision-MakingTheories:LinkingtheDisparateResearch429

Areas of Individual and Collective Cognition. Animal Cognition 16, 543–556. DOI:430

10.1007/s10071-013-0631-1431

432

Pinsky, M. & Palumbi, S. (2014) Meta-analysis Reveals Lower Genetic Diversity in433

OverfishedPopulations.MolecularEcology23,29–39.DOI:10.1111/mec.12509434

435

Page 20: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

19

Rassweiler,A.,Costello,C.,Hilborn,R.&Siegel,D.(2014)IntegratingScientificGuidance436

intoMarineSpatialPlanning.ProceedingsoftheRoyalSocietyB:BiologicalSciences281,437

20132252.DOI:10.1098/rspb.2013.2252438

439

Réale,D.,Garant,D.,Humphries,M.,Bergeron,P., Careau,V.&Montiglio,P.-O. (2010)440

PersonalityandtheEmergenceofthePace-of-LifeSyndromeConceptatthePopulation441

Level.PhilosophicalTransactionsof theRoyalSocietyB:BiologicalSciences365,4051–442

4063.DOI:10.1098/rstb.2010.0208443

444

RendellL.,BoydR.,CowndenD.,EnquistM.,ErikssonK.,etal.(2010).Whycopyothers?445

Insights from the social learning strategies tournament. Science, 328, 208-213. DOI:446

10.1126/science.1184719447

448

Schinegger, R., Palt, M., Segurado, P. & Schmutz, S. (2016) Science of the Total449

EnvironmentUntanglingtheEffectsofMultipleHumanStressorsandTheirImpactson450

FishAssemblages inEuropeanRunningWaters.Scienceof theTotalEnvironment573,451

1079–1088.DOI:10.1016/j.scitotenv.2016.08.143452

453

Sinervo,B.&Svensson,E.(2002)CorrelationalSelectionandtheEvolutionofGenomic454

Architecture.Heredity89,329–338.DOI:10.1038/sj.hdy.6800148455

456

Sprague,Dick,J.R.&Tocher,D.R.(2016)ImpactofSustainableFeedsonOmega-3Long-457

Chain Fatty Acid Levels in Farmed Atlantic Salmon, 2006–2015. Scientific Reports 6,458

21892.DOI:10.1038/srep21892459

460

Page 21: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

20

Steppan,S.,Phillips,P.&Houle,D.(2002)ComparativeQuantitativeGenetics:Evolution461

of the G Matrix. Trends in Ecology & Evolution 17, 320–327. DOI: 10.1016/S0169-462

5347(02)02505-3463

464

Sutter,D.,Suski,C.,Philipp,D.,Klefoth,T.,Wahl,D.,Kersten,P.,Cooke,S.&Arlinghaus,R.465

(2012)Recreational Fishing Selectively Captures Individualswith theHighest Fitness466

Potential. Proceedings of the National Academy of Sciences 109, 20960–20965. DOI:467

10.1073/pnas.1212536109468

469

Sylvester,E.,Bentzen,P.,Bradbury,I.,Clément,M.,Pearce,J.,Horne,J.&Beiko,R.(2017)470

Applications of Random Forest Feature Selection for Fine-scale Genetic Population471

Assignment.EvolutionaryApplications11,153-165,https://doi.org/10.1111/eva.12524472

473

Thorson,J.,Jannot,J.&Somers,K.(2017)UsingSpatio-TemporalModelsofPopulation474

Growth and Movement to Monitor Overlap between Human Impacts and Fish475

Populations.JournalofAppliedEcology54,577–587.DOI:10.1111/1365-2664.12664476

477

Troell,M.,Naylor,R.,Metian,M.,Beveridge,M.,Tyedmers,P.,Folke,C.,Arrow,K.,Barrett,478

S.,Crépin,A.-S.,Ehrlich,P.,etal.(2014)DoesAquacultureAddResiliencetotheGlobal479

FoodSystem?ProceedingsoftheNationalAcademyofSciences111,13257–13263.DOI:480

10.1073/pnas.1404067111481

482

Uusi-Heikkilä, S., Sävilammi, T., Leder, E., Arlinghaus, R. & Primmer, C. (2017) Rapid,483

Broad-scaleGeneExpressionEvolution inExperimentallyHarvestedFishPopulations.484

MolecularEcology26,3954–3967.DOI:10.1111/mec.14179485

Page 22: Jacobs et al. - FSBI accepted authorversioneprints.gla.ac.uk/159208/1/159208.pdf1 1 On the challenges and opportunities facing fish biology: 2 a discussion of five key knowledge gaps

21

486

Uusi-Heikkilä,S.,Wolter,C.,Klefoth,T.&Arlinghaus,R.(2008)ABehavioralPerspective487

on Fishing-Induced Evolution. Trends in Ecology & Evolution 23, 419–421. DOI:488

10.1016/j.tree.2008.04.006489

490

Ward,A.&Webster,M.(2016)Sociality:TheBehaviourofGroup-LivingAnimals.Springer.491

111–124.DOI:10.1007/978-3-319-28585-6_6492

493

Williams, A., Newman, S.,Wakefield, C., Bunel,M., Halafihi, T., Kaltavara, J. &Nicol, S.494

(2015) Evaluating the Performance of Otolith Morphometrics in Deriving Age495

CompositionsandMortalityRatesforAssessmentofData-PoorTropicalFisheries.ICES496

JournalofMarineScience72,2098–2109.DOI:10.1093/icesjms/fsv042497

498

ElectronicReference499

500

Gleon (2016). Global Lake Ecological Observation Network. Available at501

http://www.gleon.org(lastassessed14thAugust2017).502

503

504