35
Comparison of MPC Strategies for Building Control J. Drgoňa and M. Kvasnica Slovak University of Technology in Bratislava, Slovakia June 20, 2013 I A M J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 1 / 18

J. Drgoňa and M. Kvasnicadrgona/files/presentation/PC13.pdf · J. Drgoňa and M. Kvasnica Slovak University of Technology in Bratislava, Slovakia June 20, 2013 IAM J. Drgoňa (STU

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Comparison of MPC Strategies for Building Control

    J. Drgoňa and M. Kvasnica

    Slovak University of Technology in Bratislava, Slovakia

    June 20, 2013

    IAM

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 1 / 18

  • Motivation

    Problem: Almost 40% of final energy use in the world goestowards comfort control in buildings - heating, ventilation and air

    conditioning (HVAC).*

    In European countries it is over

    76% !!!*

    Goal: Increasement of building’s energy efficiency

    Solution: Building control

    *International Energy Agency ‘Energy efficiency requirements in building codes, energy efficiency policies for newbuildings’ 2013 OECD/IEA.

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 2 / 18

  • Motivation

    Problem: Almost 40% of final energy use in the world goestowards comfort control in buildings - heating, ventilation and air

    conditioning (HVAC).*

    In European countries it is over

    76% !!!*

    Goal: Increasement of building’s energy efficiency

    Solution: Building control

    *International Energy Agency ‘Energy efficiency requirements in building codes, energy efficiency policies for newbuildings’ 2013 OECD/IEA.

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 2 / 18

  • Motivation

    Problem: Almost 40% of final energy use in the world goestowards comfort control in buildings - heating, ventilation and air

    conditioning (HVAC).*

    In European countries it is over

    76% !!!*

    Goal: Increasement of building’s energy efficiency

    Solution: Building control

    *International Energy Agency ‘Energy efficiency requirements in building codes, energy efficiency policies for newbuildings’ 2013 OECD/IEA.

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 2 / 18

  • Motivation

    Problem: Almost 40% of final energy use in the world goestowards comfort control in buildings - heating, ventilation and air

    conditioning (HVAC).*

    In European countries it is over

    76% !!!*

    Goal: Increasement of building’s energy efficiency

    Solution: Building control

    *International Energy Agency ‘Energy efficiency requirements in building codes, energy efficiency policies for newbuildings’ 2013 OECD/IEA.

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 2 / 18

  • Presentation Outline

    1 Building Modeling and Control

    2 Model Predictive Control

    3 Case Study

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 3 / 18

  • Presentation Outline

    1 Building Modeling and Control

    2 Model Predictive Control

    3 Case Study

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 4 / 18

  • Building Thermal Control Scheme

    ����

    ��

    Building

    Measurements

    Energy minimization

    Comfort criteria

    OptimizationHeating/Cooling

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 5 / 18

  • Single Zone Building Model

    State Variables

    x1− floor temperaturex2− internal facade temperaturex3− external facade temperaturex4− internal temperature

    Disturbances

    d1− external temperatured2− occupancyd3− solar radiation

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 6 / 18

  • Single Zone Building Model

    State Variables

    x1− floor temperaturex2− internal facade temperaturex3− external facade temperaturex4− internal temperature

    Disturbances

    d1− external temperatured2− occupancyd3− solar radiation

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 6 / 18

  • Control Objectives

    Thermal Comfort

    Minimization of Energy Consumption

    qx

    qu

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 7 / 18

  • Control Objectives

    Thermal Comfort

    Minimization of Energy Consumption

    qx

    qu

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 7 / 18

  • Control Objectives

    Thermal Comfort

    Minimization of Energy Consumption

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 7 / 18

  • Presentation Outline

    1 Building Modeling and Control

    2 Model Predictive Control

    3 Case Study

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 8 / 18

  • Model Predictive Control

    Objective function

    minu0,...,uN−1

    N−1∑

    k=0

    ℓ(xk , uk)

    Constraints

    xk+1 = Axk + Buk + Edk ,

    x ≤ xk ≤ x ,

    u ≤ uk ≤ u,

    x0 = x(t)

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 9 / 18

  • Model Predictive Control

    Objective function

    minu0,...,uN−1

    N−1∑

    k=0

    ℓ(xk , uk)

    Constraints

    xk+1 = Axk + Buk + Edk ,

    x ≤ xk ≤ x ,

    u ≤ uk ≤ u,

    x0 = x(t)

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 9 / 18

  • Different Formulations of the Objective Function

    Reference Tracking + Energy Minimization (Basic)

    ℓ(xk , uk) = qx(Cxk − r)2 + quu

    2k

    r

    Comfort Zone Tracking + Energy Minimization (CZT)

    ℓ(sk , uk) = qss2k+ quu

    2k

    s.t. r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk

    -ϵr

    Minimization of Zone Violations + Energy Minimization (Hybrid)

    ℓ(δk , uk) = qδδk + quu2k

    s.t. r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk(sk > 0) =⇒ (δk = 1)

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 10 / 18

  • Different Formulations of the Objective Function

    Reference Tracking + Energy Minimization (Basic)

    ℓ(xk , uk) = qx(Cxk − r)2 + quu

    2k

    r

    Comfort Zone Tracking + Energy Minimization (CZT)

    ℓ(sk , uk) = qss2k+ quu

    2k

    s.t. r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk

    -ϵr

    Minimization of Zone Violations + Energy Minimization (Hybrid)

    ℓ(δk , uk) = qδδk + quu2k

    s.t. r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk(sk > 0) =⇒ (δk = 1)

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 10 / 18

  • Different Formulations of the Objective Function

    Reference Tracking + Energy Minimization (Basic)

    ℓ(xk , uk) = qx(Cxk − r)2 + quu

    2k

    r

    Comfort Zone Tracking + Energy Minimization (CZT)

    ℓ(sk , uk) = qss2k+ quu

    2k

    s.t. r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk

    -ϵr

    Minimization of Zone Violations + Energy Minimization (Hybrid)

    ℓ(δk , uk) = qδδk + quu2k

    s.t. r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk(sk > 0) =⇒ (δk = 1)

    -ϵr

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 10 / 18

  • Presentation Outline

    1 Building Modeling and Control

    2 Model Predictive Control

    3 Case Study

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 11 / 18

  • Simulation Study

    Closed Loop SimulationParameters

    Prediction horizon:N = 10

    Sampling time:Ts = 444 sec

    Simulation time:Tsim = 31 days

    Initial indoor temperature:x4 = 10

    ◦C

    No weather predictions

    Evolution of ExternalTemperature

    0 5 10 15 20 25 300

    5

    10

    15

    20

    Time [days]

    Tem

    pera

    ture

    [◦C

    ]

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 12 / 18

  • Simulation Study

    Closed Loop SimulationParameters

    Prediction horizon:N = 10

    Sampling time:Ts = 444 sec

    Simulation time:Tsim = 31 days

    Initial indoor temperature:x4 = 10

    ◦C

    No weather predictions

    Evolution of ExternalTemperature

    0 5 10 15 20 25 300

    5

    10

    15

    20

    Time [days]

    Tem

    pera

    ture

    [◦C

    ]

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 12 / 18

  • PI Controller

    0 5 10 15 20 25 3014

    15

    16

    17

    18

    19

    20

    21

    22

    referenceinternal temperaturecomfort boundaries

    Time [days]

    Tem

    pera

    ture

    [◦C

    ]

    0 5 10 15 20 25 30−1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PI

    Time [days]Energ

    yflow

    [W]

    Control strategy PI

    Thermal comfort [%] 87.5Energy consumption [kWh] 753.0Energy savings [%] -

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 13 / 18

  • Reference Tracking (Basic)

    0 5 10 15 20 25 3014

    15

    16

    17

    18

    19

    20

    21

    22

    referenceinternal temperaturecomfort boundaries

    Time [days]

    Tem

    pera

    ture

    [◦C

    ]

    0 5 10 15 20 25 30−1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PIBasic

    Time [days]Energ

    yflow

    [W]

    Control strategy PI Basic

    Thermal comfort [%] 87.5 89.2Energy consumption [kWh] 753.0 722.7Energy savings [%] - 4.0

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 14 / 18

  • Comfort Zone Tracking (CZT)

    0 5 10 15 20 25 3014

    15

    16

    17

    18

    19

    20

    21

    22

    referenceinternal temperaturecomfort boundaries

    Time [days]

    Tem

    pera

    ture

    [◦C

    ]

    0 5 10 15 20 25 30−1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PICZT

    Time [days]Energ

    yflow

    [W]

    Control strategy PI Basic CZT

    Thermal comfort [%] 87.5 89.2 84.1Energy consumption [kWh] 753.0 722.7 684.0Energy savings [%] - 4.0 9.1

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 15 / 18

  • Minimization of Comfort Zone Violations (Hybrid)

    0 5 10 15 20 25 3014

    15

    16

    17

    18

    19

    20

    21

    22

    referenceinternal temperaturecomfort boundaries

    Time [days]

    Tem

    pera

    ture

    [◦C

    ]

    0 5 10 15 20 25 30−1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PIHybrid

    Time [days]Energ

    yflow

    [W]

    Control strategy PI Basic CZT Hybrid

    Thermal comfort [%] 87.5 89.2 84.1 88.2Energy consumption [kWh] 753.0 722.7 684.0 640.1Energy savings [%] - 4.0 9.1 15.0

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 16 / 18

  • Conclusions - Comfort vs Energy Consumption

    84 85 86 87 88 89 90

    640

    660

    680

    700

    720

    740

    760

    Thermal comfort [%]

    Ene

    rgy

    cons

    umpt

    ion

    [kW

    h]

    PI

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 17 / 18

  • Conclusions - Comfort vs Energy Consumption

    84 85 86 87 88 89 90

    640

    660

    680

    700

    720

    740

    760

    Thermal comfort [%]

    Ene

    rgy

    cons

    umpt

    ion

    [kW

    h]

    PIBasic

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 17 / 18

  • Conclusions - Comfort vs Energy Consumption

    84 85 86 87 88 89 90

    640

    660

    680

    700

    720

    740

    760

    Thermal comfort [%]

    Ene

    rgy

    cons

    umpt

    ion

    [kW

    h]

    PIBasicCZT

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 17 / 18

  • Conclusions - Comfort vs Energy Consumption

    84 85 86 87 88 89 90

    640

    660

    680

    700

    720

    740

    760

    Thermal comfort [%]

    Ene

    rgy

    cons

    umpt

    ion

    [kW

    h]

    PIBasicCZTHybrid

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 17 / 18

  • Conclusions

    Design and evaluation of different MPC strategies

    Best case: hybrid formulation with energy savings up to 15%

    Drawback: higher computational complexity

    No weather predictions

    Suitable for application in ”intelligent“ building

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 18 / 18

  • Conclusions

    Design and evaluation of different MPC strategies

    Best case: hybrid formulation with energy savings up to 15%

    Drawback: higher computational complexity

    No weather predictions

    Suitable for application in ”intelligent“ building

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 18 / 18

  • Conclusions

    Design and evaluation of different MPC strategies

    Best case: hybrid formulation with energy savings up to 15%

    Drawback: higher computational complexity

    No weather predictions

    Suitable for application in ”intelligent“ building

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 18 / 18

  • Conclusions

    Design and evaluation of different MPC strategies

    Best case: hybrid formulation with energy savings up to 15%

    Drawback: higher computational complexity

    No weather predictions

    Suitable for application in ”intelligent“ building

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 18 / 18

  • Conclusions

    Design and evaluation of different MPC strategies

    Best case: hybrid formulation with energy savings up to 15%

    Drawback: higher computational complexity

    No weather predictions

    Suitable for application in ”intelligent“ building

    J. Drgoňa (STU Bratislava) Building MPC June 20, 2013 18 / 18

    Building Modeling and ControlModel Predictive ControlCase Study