25
Name ___________________ Biology review: What you should know, what you should be able to do or answer. Bio 1.1 Understand the relationship between the structures and functions of cells and their organelles. Bio.1.1.1 Summarize the structure and function of organelles in eukaryotic cells (including the nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes) and ways that these organelles interact with each other to perform the function of the cell. Bio.1.1.2 Compare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and degree of complexity. Bio.1.1.3 Explain how instructions in DNA lead to cell differentiation and result in cells specialized to perform specific functions in multicellular organisms. Big Ideas Essential Questions Plants and animals, and eukaryotic and prokaryotic cells are different based upon structure and function. Cells are organized. Cells in multicellular organisms are differentiated based upon DNA. Organelle structure and cell structure are the basis of their functions. Microscopes are useful tools to see cell structure. 1. How are cells organized? 2. What are the differences in plant and animal cells? 3. Identify and describe the following cell organelles: nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes. 4. How does structure relate to the function of a cell’s organelle? 5. What are the two general types of cells? Describe each. 6. What is the proper order of steps when using a light microscope? 7. How are cells specialized? What causes stem cells to

It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

  • Upload
    ngothu

  • View
    218

  • Download
    4

Embed Size (px)

Citation preview

Page 1: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

Name ___________________

Biology review: What you should know, what you should be able to do or answer.

Bio 1.1  Understand the relationship between the structures and functions of cells and their organelles. 

Bio.1.1.1 Summarize the structure and function of organelles in eukaryotic cells (including  the nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes) and ways that these organelles interact with each other to perform the function of the cell. 

Bio.1.1.2Compare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and degree of complexity. 

Bio.1.1.3Explain how instructions in DNA lead to cell differentiation and result in cells specialized to perform specific functions in multicellular organisms. 

Big Ideas Essential Questions         Plants and animals, and eukaryotic and

prokaryotic cells are different based upon structure and function.

         Cells are organized.

         Cells in multicellular organisms are differentiated based upon DNA.

          Organelle structure and cell structure are the basis of their functions.

         Microscopes are useful tools to see cell structure.

1.         How are cells organized?2.         What are the differences in plant and

animal cells?3.         Identify and describe the following cell

organelles: nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes.

4.         How does structure relate to the function of a cell’s organelle?

5.         What are the two general types of cells? Describe each.

6.         What is the proper order of steps when using a light microscope?

7.         How are cells specialized? What causes stem cells to become specialized?

8.         How do cells communicate with one another?

9.         How does structure relate to the function of a cell?

Vocabulary

Cell wall

Chloroplast

DNA

Enzyme

Homeostasis

Eukaryotic

Nucleus

Plasmid

Prokaryotic

RNA

Differentiation

Embryonic cells

Multicellular

Stem cells

Unicellular

Page 2: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

Mitochondria

Nucleus

Organelle

Plasma membrane

Ribosome

Vacuole

Learning Targets Criteria for Success

I will… 

I can… 

         Explain how cell structure determines its function.

         Understand how cell structures interact.

         Differentiate between eukaryotic and prokaryotic cells.

         Explore and determine how cells are specialized.

         Discover the structure and function of cells and how they impact living things.

         Relate the structure of a cell’s organelle to its function by creating an analogy between a cell and a town.

         Use a venn diagram to compare the two types of cells and discuss their different structures.

         Differentiate between the specialized cell and the organelles within each and describe the function of the different cell parts by matching cell organelles with specific tissue types or organisms.

Bio 1.2 Analyze the cell as a living system.

Bio 1.2.1 Explain how homeostasis is maintained in the cell and within an organism in various environments (including temperature and pH).

Bio 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis and cytokinesis.

Bio 1.2.3 Explain how specific cell adaptations help cells survive in particular environments (focus on unicellular organisms).

Big Ideas Essential Questions

·      Cells and organisms must maintain homeostasis of many different substances in order to survive.

·         The plasma membrane’s semi-permeable structure allows for some substances to enter or leave a cell.

1.  How is homeostasis maintained in cells? How is homeostasis maintained within organisms in various environments? 2. How does the structure of plasma membrane allow for its function?  3. Compare active vs. passive transport.

Page 3: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

·         Cells use both active and passive transport to move substances across the membrane. Osmotic pressure causes changes to cells.

·         Cells grow and asexually reproduce in a cell cycle.

·         Unicellular organisms have specific adaptations that allow for their survival.

 4. Explain changes in osmotic pressure in cells in different solution. 5. Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis. 6. How do cell structures and behaviors allow for unicellular organism survival?

Vocabulary

Homeostasis

Cell

Organism

Temperature

pH

Buffers

Passive transport

Active transport

Osmosis

Diffusion

Osmotic pressure

Plasma membrane

Semi-permeable membrane

Cell Cycle

Interphase

Mitosis

Cytokinesis

Asexual reproduction

Growth 1

Growth 2

Synthesis

Adaptation

Asexual reproduction

Cell

Chemotaxis

Cilia

Contractile Vacuole

Flagella

Phototaxis

Pseudopods

Learning Targets Criteria for Success

I will… 

I can… 

Describe ways organisms and cells maintain homeostasis.

Compare and Contrast Active and Passive Transport

Describe how the structure of a plasma membrane affects its function.

Explain the steps of the cell cycle and how it is controlled

Define cancer and relate it to the cell cycle Describe structural and behavioral adaptations of

unicellular organisms.  

Explain how buffers regulate cell pH and how cells can respond to maintain temperature, glucose levels and water balance.

Use a venn diagram to compare and contrast active and passive transport.

Identify the parts of a plasma membrane and describe how each works together to function.

Predict how a cell will change in differing concentrations due to osmotic pressure.

Draw and label the cell cycle steps: G1, S, G2, Mitosis, and Cytokinesis

Organize diagrams of mitosis phases and describe each.

Explain how contractile vacuoles, cilia, flagella, pseudopods, and eyespots help unicellular organisms to survive.

Summarize adaptive behaviors such as chemotaxis and phototaxis.

What can be used to distinguish between eukaryotic and prokaryoticcells?

A runner is competing in a 10 km track meet and just beforecompleting the race, the runner is

Constructed Response: Explain how many of the cells in an individual can be very different from one another in

Page 4: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

a. Only eukaryotic cells come from preexisting cells.

b. Only prokaryotic cells are the smallest unit of living organisms.

c. Only prokaryotic cells contain ribosomes.

d. Only eukaryotic cells contain membrane-bound organelles.

nearly out of breath and the energy needed to finish the race. Which cell structure is most affected by this lack of energy?a. nucleusb. ribosomec. mitochondriond. plasma membrane

terms of structure and function, even though they are descended from a single cell and thus have essentially identical genetic instructions.

Nerve cells and bone cells are specialized cells that descend from the same single cell (fertilized egg). Which statement best explains how each type of cell results in a different structure with a specialized function?

a. Nerve cells and bone cells begin with the same structure; however, bone cells harden over time.

b. Nerve cells and bone cells receive different DNA that determines the structure and function that each will perform.

c. Nerve cells and bone cells receive the same DNA; however, only specific parts of the DNA are activated in each cell.

d. Nerve cells and bone cells receive the same DNA; however, bone

cells receive more to make the protective outer covering

Bio 2.1 Analyze the interdependence of living organisms within their environments.

Bio 2.1.1 Analyze the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.

Bio 2.1.2 Analyze the survival and reproductive success of organisms in terms of behavioral, structural, and reproductive adaptations.

Bio 2.1.3 Explain various ways organisms interact with each other (including predation, competition, parasitism, mutualism) and with their environments resulting in stability within ecosystems.

Bio 2.1.4 Explain why ecosystems can be relatively stable over hundreds or thousands of years, even though populations may fluctuate (emphasizing availability of food, availability of shelter, number of predators and disease).

Big Ideas Essential Questions

Matter such as carbon, nitrogen, oxygen, and water are cycled.

1. Explain the ways in which energy flows

Page 5: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

Climate change is affected by greenhouse effect and natural environmental processes.

Energy moves from sun to autotrophs then through the energy pyramid where much of it is lost as radiant energy. An energy pyramid is a model that shows this energy transfer.

Organisms have specific behavioral adaptations that allow for their survival.

Organisms have specific structural adaptations that allow for them to carry out life functions.

Mutualism and parasitism are types of symbiotic relationships.

Communication is used within social structures.

Stability within an ecosystem is maintained through predator/prey and competition relationships.

Populations have limited resources that create specific carrying capacities.

through an ecosystem. 2. Deconstruct the carbon cycle. 3. Summarize the nitrogen cycle. 4. What are the factors that influence

climate change? 5. Analyze behavioral adaptations that

allow for survival. 6. Analyze how various organisms

accomplish life functions such as transport, excretion, respiration, nutrition, reproduction, growth, and development.

7. Identify and describe symbiotic relationships such as mutualism and parasitism.

8. Explain patterns of predator/prey and competition relationships.

9. Exemplify various forms of communication and territorialism.

10. What are the major limiting factors that influence carrying capacities?

11. Interpret various population graphs. 12. How does disease disrupt

ecosystem balance?

Autotrophs

Heterotrophs

Radiant Energy

Decomposers

Trophic Level

Energy pyramid

Biomass

Carbon cycle

Climate change

Decomposition

Ecosystem

Energy flow

Greenhouse effect

Nitrogen cycle

Nitrogen fixing bacteria

Oxygen cycle

Sustainability

Transport

Water cycle

Vascular plants

Nonvascular plants

Xylem

Phloem

Transpiration

Stomata

Guard cell

Tropism

Seeds

Spores

Sexual reproduction

Asexual reproduction

Open circulatory system

Closed circulatory system

Nephridia

External Fertilization

Internal Fertilization

Metamorphosis

Endoskeleton

Exoskeleton

Placental

Homeostasis

Suckling

Taxis

Predator

Prey

Competition

Niche

Symbiosis

Mutualism

Parasitism

Pheremones

Social behaviors

Territorialism

Courtship

2.1.4Limiting factors

Carrying capacity

Logistic growth

Exponential growth

Dynamic Equilibrium

Human Population Growth

Page 6: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

Migration

Estivation

Hibernation

Habituation

Imprinting

Classical conditioning

Trial and error

Learning Targets Criteria for Success

I will… 

I can… 

·   Identify types of autotrophs, heterotrophs, decomposers, and trophic levels.

·   Summarize the processes involved in the Nitrogen, Carbon, and Water Cycles and how they influence living things.

·   Analyze the efficiency of the cycling of energy/matter.·   Identify the role humans and the environment play in climate

change.·     Analyze how specific adaptations of an organism help it to

survive.·   Identify the various types of behaviors and the role they play

in survival.·     Identify/ describe symbiotic relationships.

·     Exemplify forms of communication (chemical & otherwise)/territorial defense.

·   Explain how patterns in certain populations including (predator /prey and competition) help maintain stability within an ecosystem.

·     Generalizing that some populations may grow exponentially, but that there are limited resources that create carrying capacities and the size of a population is in a dynamic equilibrium with them.

·     Interpret various types of population graphs – including human population growth graphs with emphasis on historical and potential changes.

·   Explain how diseases such as AIDS, TB, influenza, Dutch elm disease, Pfiesteria, can disrupt ecosystem balance.

 

Label organisms as autotroph, heterotroph, or decomposer and label trophic levels.

Draw and label an energy pyramid that shows how energy is transferred and lost as radiant energy in an ecosystem.

Label the steps of the carbon cycle. Summarize the nitrogen cycle. Describe factors attributing to climate change. Describe how specific adaptations allow

organisms to survive. Identify specific behavioral adaptations. Identify the types of symbiotic relationships

from a description. Provide examples of types of communication. Read and explain how ecosystem remain stable

due to predator/prey and competition relationships.

Describe the limited resources on a population that create its carrying capacity.

Read and interpret population graphs. Explain how disease can disrupt an ecosystem

balance

A student observes a typical onion root tip where many of the cellshave just successfully completed mitosis. Which statement best explains what must have happened to result in cells that only have half as many chromosomes as all of the other cells in the same section of the tip?a. The parent cell completed mitosis

after undergoing interphase.b. The parent cell completed mitosis

after undergoing cytokinesis.c. The parent cell completed mitosis

before undergoing cytokinesis.d. The parent cell

Cell cycle checkpoints are proteins that monitor and regulate the progress of the cell cycle in eukaryotic cells. Which statement best describes what would most likely happen if a cell is permitted to progress to mitosis without the preparation stage of interphase?a. The new cells would

have all of the organelles except the nucleus.

b. The new cells would have all of the organelles except the mitochondria.

c. The number of chromosomes in

1.2.3 A single-celled organism is placed in fresh water. The

contractilevacuole pumps excess water out of the cell. How does this action help the organism to survive?

a. It helps the organism maintain a stable internal environment.

b. It helps the organism communicate with other cells.

c. It helps the organism reproduce.

Page 7: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

completed mitosis before undergoing interphase.

the daughter cells would be the same as the number of chromosomes in the parent cell.

The number of chromosomes in the daughter cells would be different from the number of chromosomes in the parent cell.

It helps the organism convert energy.

Bio 2.2 Understand the impact of human activities on the environment (one generation affects the next).

Bio 2.2.1 Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction and introduction of nonnative species) may impact the environment.

Bio 2.2.2 Explain how the use, protection and conservation of natural resources by humans impact the environment from one generation to the next.

Big Ideas Essential Questions

Humans modify the ecosystem through population growth, technology, consumption of resources, and production of waste.

Specifically NC ecosystems are impacted by acid rain in the mountains, beach erosion, urban development leading to habitat destruction and water runoff, waste lagoons on hog farms, Kudzu as invasive species.

Humans impact natural resources through resource depletion, deforestation, pesticide use and bioaccumulation.

Humans also maintain natural resources through conservation methods and stewardship.

1. Summarize how humans modify ecosystems. 2. Interpret data regarding impact on ecosystems

and climate change. 3. Explain factors that influence NC ecosystems. 4. How do humans impact natural resources? 5. What are methods of conservation and

stewardship?

Ecosystems

Acid Rain

Habitat Destruction

Fossil fuels

Global warming

Nonnative/Invasive species

Population growth

Natural Resources

Deforestation

Bioaccumulation

Conservation

Stewardship

Learning Targets Criteria for Success

I will… 

I can… 

Summarize how humans modify the ecosystem. Interpret data regarding historical and predicted

Describe the effects of population growth, pollution, burning of fossil fuels, technology, consumption of resources, and production of

Page 8: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

impact on ecosystems and global climate. Explain factors that impact NC ecosystems. Explain how humans impact natural resources. Exemplify conservation methods and

stewardship.

waste on an ecosystem. Interpret data from a graph or reading on

predicted impacts of ecosystems and global climate.

Explain the effects of acid rain in the NC mountains, NC beach erosion, urban development in the Piedmont leading to habitat destruction and water runoff, waste lagoons on NC hog farms, Kudzu as an NC invasive plant, etc.

Explain how humans affect natural resources through resource depletion, deforestation, pesticide use, and bioaccumulation.

Provide examples of conservation methods and stewardship.

Bio.3.1 Evolution and Genetics Bio 3.1 Explain how traits are determined by the structure and function of DNA.

Bio 3.1.1 Explain the double-stranded, complementary nature of DNA as related to its function in the cell.

Bio 3.1.2 Explain how DNA and RNA code for proteins and determine traits.

Bio 3.1.3 Explain how mutations in DNA that result from interactions with the environment (i.e. radiation and chemicals) or new combinations in existing genes lead to changes in function and phenotype.

Big Ideas Essential Questions

DNA has a specific structure that allows it to replicate itself and provides the code for protein synthesis.

Proteins must be made at the correct time and in the correct amount in specific cells.

DNA and RNA provide the code for proteins in a specific set of steps.

There are 3 types of RNA that help with protein synthesis.

A codon chart is used to determine the amino acids that would code for specifc mRNA codons.

Proteins are consist of amino acids linked by peptide bonds to form polypeptides that are then put

1. Compare and contrast DNA and RNA.

2. Develop a cause and effect model relating the structure of DNA to the functions of replication and protein synthesis.

3. Infer the advantages and disadvantages of overproduction, underproduction, and production of proteins.

4. What is the process of protein synthesis?

5. What are the 3 types of RNA? 6. Interpret a codon chart. 7. How do amino acid sequences build

proteins and control phenotypes? 8. How do mutations affect DNA, its

Page 9: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

together. Proteins have specific functions within a cell or organism.

Mutations are changes to the DNA that can cause changes to the amino acid sequence and its resulting protein and phenotype.

resulting proteins and phenotypes?

DNA

RNA

Nucleic acid

Nucleotide

Hydrogen bonds

Complementary base pairing

Double helix

DNA Replication

Protein

Genetic code

Gene expression

Adenine

Thymine

Cytosine

Guanine

mRNA

tRNA

rRNA

protein synthesis

transcription

Translation

Codon

Anticodon

Peptide bond

Polypeptide chain

Structural protein

Functional Protein

Amino acid

Phenotype

Mutation

Mutagen

Deletion

Substitution

Addition

Heritable change

Learning Targets Criteria for Success

I will… I can… 

         Develop a cause and effect model relating the structure of DNA to the functions of replication and protein synthesis.

         Infer the advantages of disadvantages of overproduction, underproduction or production of proteins at incorrect times.

         Explain the process of protein synthesis         Interpret a codon chart to determine amino acid

sequence using a sequence of bases.         Understand mutations are changes in DNA, can

occur in several different ways, can be caused by mutations or be random.

         Develop a cause and effect and model in order to describe how mutations change the amino acid sequence, protein function, phenotype, and how they can be inherited by offspring.

         Describe the shape and make-up of the double helix model.

         Identify complementary base paring of A-T, C-G.

         Explain that the sequence of nucleotides is the code for proteins, therefore key for cell function and life.

         Identify when replication occurs.         Understand how all cells respond to their

environments by producing different types and amounts of proteins.

         Explain purpose of gene expression.         Describe how positive and negative situations of

too much or too little protein production.         Explain the steps of protein synthesis.         Determine the amino acid sequence based upon

Page 10: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

a sequence of nucleotides and using a codon chart.

         Illustrate how an amino acid sequence forms a protein with a specific function and phenotype.

         Describe the types of mutations, their causes and effects.

Bio 3.2

Understand how the environment, and/or the interaction of alleles, influences the expression of genetic traits. Bio 3.2.1 Explain the role of meiosis in sexual reproduction and genetic variation.

Bio 3.2.2 Predict offspring ratios based on a variety of inheritance patterns (including dominance, co-dominance, incomplete dominance, multiple alleles, and sex-linked traits).

Bio 3.2.3 Explain how the environment can influence the expression of genetic traits.

Big Ideas Essential Questions

Meiosis is a process where a cell divides twice with half the DNA in 4 cells in order to support sexual reproduction. This makes it different from mitosis.

The process of meiosis allows for more ways for genetic variation to occur within daughter cells than mitosis.

Genetic traits are determined by many different types of inheritance patterns; including autosomal, sex-linked, codominance, incomplete dominance, polygenic and multiple alleles.

Punnett squares are used to determine genotypic and phenotypic ratios for different inheritance patterns; including autosomal, sex-linked, codominance, incomplete dominance, and multiple alleles.

Sex-linked traits are carried on sex chromosomes and males are more

1. How does meiosis compare to mitosis?

2. How does meiosis lead to independent assortment and genetic diversity?

3. What sources lead to genetic variation in sexually reproducing organisms?

4. How do inheritance patterns influence offspring ratios?

5. How are genotypic and phenotypic ratios determined by using Punnett squares?

6. How are karyotypes used to identify gender and certain chromosomal abnormalities?

7. How can parentage be determined based on blood type?

8. How can sex-linked traits (color-blindness and hemophilia) be interpreted using Punnett squares?

9. How can pedigrees be used to identify the genotypes?

10. How does the environment influence the expression of genetic traits?

Page 11: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

likely to express sex-linked traits. Karyotypes are used to interpret

gender and chromosomal abnormalities in humans.

Pedigrees are used to identify genotypes and inheritance patterns of traits based upon phenotypes.

Expression of certain genetic traits can be influenced by environmental factors.

Meiosis

Homologous chromosomes

Haploid

Diploid

Gamete

Fertilization

Genetic variation

Crossing over

Nondisjunction

Independent assortment

Gene

Chromosome

Asexual reproduction

Sexual reproduction

Autosomal inheritance

Blood typing

Codominance

Colorblindness

Cystic fibrosis

Dominant allele

Genotype

Genotypic ratio

Hemophilia

Huntington’s disease

Incomplete dominance

Inheritance pattern

Karyotype

Monohybrid

Multiple allele

Pedigree

Phenotype

Phenotypic ratio

Polygenic

Recessive allele

Sex-linked traits

Sickle cell anemia

Lung Cancer

Oral Cancer

Skin Cancer

Diabetes

PKU

Heart disease

Gene expression

Environmental factors

Student Performance Goals

Learning Targets Criteria for Success

I will… I can… 

Page 12: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

Recall the process of meiosis Explain how meiosis leads to

independent assortment Exemplify sources that lead to

genetic variation in sexually reproducing organisms

Compare the processes of mitosis and meiosis

Determine genotypic and phenotypic ratios using Punnett squares.

Interpret karyotypes. Interpret pedigrees. Recognize patterns of inheritance. Interpret autosomal inheritance

patterns. Interpret blood typing problems. Understand sex-linked traits. Develop a cause-and-effect

relationship between environmental factors and expression of particular genetic traits.

Put images of meiosis in the correct order.

Describe how meiosis leads to independent assortment.

Name the sources of genetic variation in sexually reproducing organisms.

Compare/contrast mitosis and meiosis.

Set up and solve punnett squares to determine genotypic and phenotypic ratios. This should include Mendelian inheritance, codominance, bloodtyping, sex-linked traits.

Identify gender and chromosomal abnormalities from a karyotype.

Identify gender and inheritance patterns from a pedigree.

Identify pattern of inheritance based upon a description of phenotypic outcomes or a specific disorder. This should include Mendelian inheritance, codominance, incomplete dominance, sex-linked, multiple alleles, and polygenic.

Explain why males express sex-linked traits more often than females, and how sex-linked traits are inherited.

Connect the environmental factor with the potential gene expression that could occur

Bio 3.3 Understand the application of DNA technology.

Bio 3.3.1 Interpret how DNA is used for comparison and identification of organisms.

Bio 3.3.2 Summarize how transgenic organisms are engineered to benefit society.

Bio 3.3.3 Evaluate some of the ethical issues surrounding the use of DNA technology (including cloning, genetically modified organisms, stem cell research, and Human Genome Project).

Big Ideas Essential Questions

 3.3.1

Page 13: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

         The technique of gel electrophoresis separates DNA molecules based on size.

         DNA fingerprinting can be used for comparison and identification of organisms

          3.3.2

         The techniques used in bacterial transformation create transgenic organisms which can benefit society.

       

  3.3.3

         While having the potential to benefit society, DNA technology also has ethical issues.

How does electrophoresis separate DNA strands?

How is a DNA gel used to identify the criminal in a rape case?

What are the steps in bacterial transformation?

How can transgenic organisms benefit society?

How can the information from the Human Genome Project be useful?

What are some justifications for using DNA technology despite its ethical problems?

What are some common ethical issues surrounding DNA technology?

What are specific types of DNA technology where you think the ethical issues outweigh the benefits

DNA Fingerprinting Gel ElectrophoresisRestriction Enzymes

Bacterial Transformation Biotechnology Genetically Modified Organism (GMO)Genetic Engineering Genetic RecombinationPlasmidRestriction EnzymesTransgenic Organism

Vocab taught in earlier grades: GeneGenetic Modification Pharmaceuticals

Cloning Cystic FibrosisGenetically Modified Organism (GMO)Genetic Diversity Gene Therapy GenomicsHuman Genome ProjectSevere Combined ImmunodeficiencyStem Cell Research  Vector

Vocab taught in earlier grades: BiotechnologyCloningDifferentiation Specialized cells

Student Performance Goals

Learning Targets Criteria for Success

I will… I can… 

         Discover the process of gel          Describe how to do DNA

Page 14: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

electrophoresis.           “Read” a DNA gel.

3.3.2         Discover the steps of bacterial

transformation         Explore the benefits of transgenic

organisms. 3.3.3

         Describe what the Human Genome Project did.

         Discover the ethical issues surrounding cloning, stem cell research, gene therapy, and GMO’s.

fingerprinting.          Determine which organisms are most

related by examining a DNA gel.

         Describe the steps bacterial transformation.

         Describe how transgenic organisms can help diabetics.

         Relate the Human Genome Project to genetic conditions and gene therapy.

         Describe my opinion on the ethical issues surrounding cloning, stem cell research, gene therapy, and GMO’s.

Bio 3.4 Explain the theory of evolution by natural selection as a mechanism for how species change over time.

Bio 3.4.1 Explain how fossil, biochemical, and anatomical evidence support the theory of evolution.

Bio 3.4.2 Explain how natural selection influences the changes in species over time.

Bio 3.4.3 Explain how various disease agents (bacteria, viruses, chemicals) can influence natural selection.

Big Ideas Essential Questions

3.4.1

Conditions on early earth affected the type of organisms that developed.

Fossil, biochemical, and anatomical evidence inform our understanding of evolution.

 

    How did earth’s early atmosphere influence       the type of cells that evolved?

What is the proposed sequence of how the first organisms developed?

What did the results of the Miller and Urey experiment suggest?

What can and cannot be inferred from fossils?

      How is biochemical analysis and       homologous structures used as evidence of       evolution?

Page 15: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

 3.4.2

Natural selection and geographic isolation are mechanisms of evolution which can lead to speciation.

3.4.3

Natural selection can result in pesticide, antibiotic, vaccine and antiviral resistance.

Passive and active immunity have a role in natural selection.

How did natural selection shape bird beaks on the Galapagos islands?

What does “fitness” mean in terms of natural selection?

How can geographic isolation result in speciation?

How are MRSA and natural selection related?

Why do you have to get a new flu vaccine every year?

What role do passive and active immunity play in natural selection?

AnaerobicAnatomical Biochemical Endosymbiosis                                           EvolutionFossilHomologousHydrothermal VentMiller and UreyProtocell

AdaptationsAlleles Genetic Recombination Genetic Variation Geographic Isolation Natural SelectionSpeciation

Vocab taught in earlier grades: AdaptationMutationVariation

Active Immunity Antibiotic ResistanceAntiviral Bacteria Natural Selection Passive Immunity Pesticide ResistanceVaccines Virus

Vocab taught in earlier grades:AntibioticPandemic

Student Performance Goals

Learning Targets Criteria for Success

I will… I can… 

3.4.1

          Discover that early earth atmosphere influenced cell development.

                      Describe how fossil, biochemical, and

Describe the sequence in which organisms developed on early earth.

Page 16: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

anatomical evidence show relatedness of organisms.      

3.4.2

                      Differentiate between the common meaning of fitness and natural selection’s meaning of fitness.

                      Discover how geographic isolation can lead to a new species.              

3.4.3

                      Discover that natural selection can lead to antibiotic, pesticide, or vaccine resistance.

Use fossil, biochemical or homologous structures to explain the relatedness of 3 organisms.

         Describe how fitness in natural selection resulted in differing finch beaks in the Galapagos.

Describe how natural selection, geographic isolation and speciation are related.

Describe why bed bugs have become resistant to pesticides.

Bio 3.5 Analyze how classification systems are developed based upon speciation.

Bio 3.5.1 Explain the historical development and changing nature of classification systems.

Bio 3.5.2 Analyze the classification of organisms according to their evolutionary relationships (including dichotomous keys and phylogenetic trees).

Big Ideas Essential Questions

3.5.1

The classification system changes based on new knowledge of evolutionary relationships

3.5.2

Organisms can be classified using dichotomous keys.

Phylogenetic trees can be used to determine evolutionary relationships.

How has the classification system changed?

    How do biologists use the classification       system to name organisms?

How do you use a dichotomous key?

How can a dichotomous key be used to determine relatedness of organisms?

     How do you use a phylogenetic tree to        determine relatedness of organisms?

Class ClassificationDomainFamily Genus KingdomOrder Phylum

Binomial NomenclatureDichotomous Key GenusPhylogenetic Tree Species

Page 17: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

SpeciesSpeciation

Vocab taught in earlier grades: Species

Learning Targets Criteria for Success

I will… I can… 

3.5.1 Discover that the classification system changes.

3.5.2

Describe how to use a dichotomous key. Describe how to use a phylogenetic tree.

Describe why the classification changes and how it has changed in the past.

Use a dichotomous key to classify an organism.

Use a phylogenic tree to determine the relatedness of three organisms.

Bio.4.1 Molecular Biology Bio 4.1.1 Compare the structures and functions of the major biological molecules (carbohydrates,

proteins, lipids, and nucleic acids) as related to the survival of living organisms.

Bio 4.1.2 Summarize the relationship among DNA, proteins and amino acids in carrying out the work of cells and how this is similar in all organisms.

Bio 4.1.3 Explain how enzymes act as catalysts for biological reactions.

Big Ideas Essential Questions

4.1.1 The structure and function of the 4 major biomolecules impacts all living things

4.1.2 The sequence of DNA nucleotides codes for specific proteins.

4.1.3 Enzymes are necessary for all biochemical reactions.

5 An enzyme’s shape is linked to its function.

What are the building blocks of each organic molecule?

What are the functions of each organic molecule?

How are a lipid and a carbohydrate similar?

     What is the relationship between DNA, RNA,      and amino acid sequence?

    How do enzymes speed up chemical       reactions in a cell?                How do changes in pH and temperature        affect enzymes?           

Page 18: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

   Why does the shape of an enzyme affect its       ability to function?

Amino Acids

Biological Molecule

Carbohydrate

Cellulose

DNA

Enzyme

Fatty Acids

Glucose

Glycerol

Glycogen

Hemoglobin

Insulation

Insulin

Lipid

Monomer

Sugar

Monosaccharide

Nitrogenous

Base

Nucleic Acid

Nucleotide

Organic Molecule

Peptide Bonds

Phosphate

Phospholipid

Polymer

Polypeptide

Protein

RNA

Starch

Steroid

4.1.2Amino AcidsDNANucleic Acid NucleotidesPeptide bonds Protein SynthesisRNA

4.1.3Activation EnergyActive Site Catalyst EnzymepH Protein SpecificitySubstrateTemperature

Learning Targets Criteria for Success

I will… I can… 

4.1.1 Discover that biomolecules are essential to the survival of organisms

4.1.2 Describe the process of protein synthesis

4.1.3 Describe how enzymes speed up reactions.

Describe the structure and function for each of the 4 major biomolecules.

Relate the sequence of DNA nucleotides to proteins and traits.

Use enzyme graphs to explain how enzymes are affected by temperature and pH.

Label an Enzyme diagram.

Bio 4.2 Analyze the relationships between biochemical processes and energy use in the cell.

Bio.4.2.1 Analyze photosynthesis and cellular respirationin terms of how energy is stored, released, and transferred within and between these systems.

Bio.4.2.2 Explain ways that organisms use released energyfor maintaining homeostasis (active transport).

Page 19: It helps the organism maintain a stable internal · Web viewCompare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and

Big Ideas Essential Questions

4.2.1 Photosynthesis and Respiration are complementary reactions which store and release energy.

4.2.2 Aerobic or Anaerobic respiration may be used by cells

Active transport uses energy to maintain homeostasis in a cell.

Why can’t animals and fungi perform photosynthesis?

How are photosynthesis and cellular respiration alike? How are they different?

      How are photosynthesis, respiration, and       ATP dependent on each other?

      How are aerobic and anaerobic respiration           different?

How does active transport differ from passive transport?

What are some examples of why active transport is necessary for life?

AerobicAlcohol Fermentation AnaerobicATP Cellular Respiration ChloroplastLactic Acid FermentationMitochondriaPhotosynthesisProductsReactants

Active TransportATPCarrier ProteinConcentration GradientHomeostasis Plasma Membrane